Yüklenen Kütüphaneler
library<-c("reactable","crosstalk","dplyr","tibble","tidyr","ggplot2","formattable","ggthemes","readr","readxl","ggpubr","formattable", "ggstance", "stringr","explore", "lubridate","leaflet", "tidytext", "scales", "data.table", "CCA", "pastecs", "gtools", "rmarkdown", "knitr", "gtsummary", "writexl", "ppcor", "reshape2", "GGally", "CCP", "Hmisc", "VIM", "philentropy", "haven","mice", "corrplot","factoextra","dendextend", "correlation", "mvtnorm", "MVN")
loading<-sapply(library, require, character.only = TRUE)
## Loading required package: reactable
## Loading required package: crosstalk
## Loading required package: dplyr
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
## Loading required package: tibble
## Loading required package: tidyr
## Loading required package: ggplot2
## Loading required package: formattable
## Loading required package: ggthemes
## Loading required package: readr
## Loading required package: readxl
## Loading required package: ggpubr
## Loading required package: ggstance
##
## Attaching package: 'ggstance'
## The following objects are masked from 'package:ggplot2':
##
## geom_errorbarh, GeomErrorbarh
## Loading required package: stringr
## Loading required package: explore
## Loading required package: lubridate
##
## Attaching package: 'lubridate'
## The following objects are masked from 'package:base':
##
## date, intersect, setdiff, union
## Loading required package: leaflet
## Loading required package: tidytext
## Loading required package: scales
##
## Attaching package: 'scales'
## The following object is masked from 'package:readr':
##
## col_factor
## The following objects are masked from 'package:formattable':
##
## comma, percent, scientific
## Loading required package: data.table
##
## Attaching package: 'data.table'
## The following objects are masked from 'package:lubridate':
##
## hour, isoweek, mday, minute, month, quarter, second, wday, week,
## yday, year
## The following objects are masked from 'package:dplyr':
##
## between, first, last
## Loading required package: CCA
## Loading required package: fda
## Loading required package: splines
## Loading required package: Matrix
##
## Attaching package: 'Matrix'
## The following objects are masked from 'package:tidyr':
##
## expand, pack, unpack
## Loading required package: fds
## Loading required package: rainbow
## Loading required package: MASS
##
## Attaching package: 'MASS'
## The following object is masked from 'package:formattable':
##
## area
## The following object is masked from 'package:dplyr':
##
## select
## Loading required package: pcaPP
## Loading required package: RCurl
##
## Attaching package: 'RCurl'
## The following object is masked from 'package:tidyr':
##
## complete
##
## Attaching package: 'fda'
## The following object is masked from 'package:graphics':
##
## matplot
## Loading required package: fields
## Loading required package: spam
## Loading required package: dotCall64
## Loading required package: grid
## Spam version 2.5-1 (2019-12-12) is loaded.
## Type 'help( Spam)' or 'demo( spam)' for a short introduction
## and overview of this package.
## Help for individual functions is also obtained by adding the
## suffix '.spam' to the function name, e.g. 'help( chol.spam)'.
##
## Attaching package: 'spam'
## The following object is masked from 'package:Matrix':
##
## det
## The following objects are masked from 'package:base':
##
## backsolve, forwardsolve
## See https://github.com/NCAR/Fields for
## an extensive vignette, other supplements and source code
##
## Attaching package: 'fields'
## The following object is masked from 'package:explore':
##
## describe
## Loading required package: pastecs
##
## Attaching package: 'pastecs'
## The following objects are masked from 'package:data.table':
##
## first, last
## The following object is masked from 'package:tidyr':
##
## extract
## The following objects are masked from 'package:dplyr':
##
## first, last
## Loading required package: gtools
## Loading required package: rmarkdown
## Loading required package: knitr
## Loading required package: gtsummary
##
## Attaching package: 'gtsummary'
## The following object is masked from 'package:MASS':
##
## select
## Loading required package: writexl
## Loading required package: ppcor
## Loading required package: reshape2
##
## Attaching package: 'reshape2'
## The following objects are masked from 'package:data.table':
##
## dcast, melt
## The following object is masked from 'package:tidyr':
##
## smiths
## Loading required package: GGally
## Registered S3 method overwritten by 'GGally':
## method from
## +.gg ggplot2
##
## Attaching package: 'GGally'
## The following object is masked from 'package:explore':
##
## rescale01
## Loading required package: CCP
## Loading required package: Hmisc
## Loading required package: lattice
##
## Attaching package: 'lattice'
## The following object is masked from 'package:fda':
##
## melanoma
## Loading required package: survival
## Loading required package: Formula
##
## Attaching package: 'Hmisc'
## The following object is masked from 'package:fields':
##
## describe
## The following object is masked from 'package:explore':
##
## describe
## The following objects are masked from 'package:dplyr':
##
## src, summarize
## The following objects are masked from 'package:base':
##
## format.pval, units
## Loading required package: VIM
## Loading required package: colorspace
## VIM is ready to use.
## Suggestions and bug-reports can be submitted at: https://github.com/statistikat/VIM/issues
##
## Attaching package: 'VIM'
## The following object is masked from 'package:datasets':
##
## sleep
## Loading required package: philentropy
## Loading required package: haven
## Loading required package: mice
##
## Attaching package: 'mice'
## The following object is masked from 'package:CCA':
##
## cc
## The following objects are masked from 'package:spam':
##
## cbind, rbind
## The following object is masked from 'package:RCurl':
##
## complete
## The following object is masked from 'package:stats':
##
## filter
## The following objects are masked from 'package:base':
##
## cbind, rbind
## Loading required package: corrplot
## corrplot 0.84 loaded
## Loading required package: factoextra
## Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa
## Loading required package: dendextend
##
## ---------------------
## Welcome to dendextend version 1.14.0
## Type citation('dendextend') for how to cite the package.
##
## Type browseVignettes(package = 'dendextend') for the package vignette.
## The github page is: https://github.com/talgalili/dendextend/
##
## Suggestions and bug-reports can be submitted at: https://github.com/talgalili/dendextend/issues
## Or contact: <tal.galili@gmail.com>
##
## To suppress this message use: suppressPackageStartupMessages(library(dendextend))
## ---------------------
##
## Attaching package: 'dendextend'
## The following object is masked from 'package:data.table':
##
## set
## The following object is masked from 'package:ggpubr':
##
## rotate
## The following object is masked from 'package:stats':
##
## cutree
## Loading required package: correlation
##
## Attaching package: 'correlation'
## The following object is masked from 'package:spam':
##
## display
## Loading required package: mvtnorm
## Loading required package: MVN
## sROC 0.1-2 loaded
loading
## reactable crosstalk dplyr tibble tidyr ggplot2
## TRUE TRUE TRUE TRUE TRUE TRUE
## formattable ggthemes readr readxl ggpubr formattable
## TRUE TRUE TRUE TRUE TRUE TRUE
## ggstance stringr explore lubridate leaflet tidytext
## TRUE TRUE TRUE TRUE TRUE TRUE
## scales data.table CCA pastecs gtools rmarkdown
## TRUE TRUE TRUE TRUE TRUE TRUE
## knitr gtsummary writexl ppcor reshape2 GGally
## TRUE TRUE TRUE TRUE TRUE TRUE
## CCP Hmisc VIM philentropy haven mice
## TRUE TRUE TRUE TRUE TRUE TRUE
## corrplot factoextra dendextend correlation mvtnorm MVN
## TRUE TRUE TRUE TRUE TRUE TRUE
Kadın Sağlığı COVID-19 Sağlık Hizmetlerinde Kesinti Anketi 2020 (Premise Women’s Health COVID-19 Health Services Disruption Survey 2020)
Verinin Kaynağı: http://ghdx.healthdata.org/us-data
veri<-read_csv("IHME_PREM_WMN_HEALTH_2020_Y2020M11D05.csv")
##
## -- Column specification --------------------------------------------------------
## cols(
## .default = col_character(),
## wmn_pre_injectable_missed = col_double(),
## wmn_pre_iud_missed = col_double(),
## wmn_post_injectable_missed = col_double(),
## wmn_post_iud_missed = col_double()
## )
## i Use `spec()` for the full column specifications.
#write_xlsx(veri, "kadinsaglik.xlsx")
Veri setinin yapısı
**Veri seti 12354 gözlem ve 45 değişkenden oluşmaktadır.
glimpse(veri)
## Rows: 12,354
## Columns: 45
## $ observation_id <chr> "wmn_6722233235144704", "wmn_5366769...
## $ submitted_time <chr> "2020-07-13 17:40:28.037 UTC", "2020...
## $ gender <chr> "Female", "Female", "Female", "Femal...
## $ age <chr> "36 to 45 years old", "36 to 45 year...
## $ geography <chr> "City center or metropolitan area", ...
## $ financial_situation <chr> "I can afford food and regular expen...
## $ education <chr> "College or university", "Post gradu...
## $ employment_status <chr> "Employed part-time", "Student and w...
## $ ethnicity <chr> "South Asian", "South Asian", "Arab ...
## $ religion <chr> "Muslim (Sunni)", "Christianity", "M...
## $ wmn_hh <chr> "4", "6", "1", "1", "4", "6", "6", "...
## $ wmn_pregnancy_desire <chr> "I want to have a/another child late...
## $ wmn_pregnancy_change <chr> "No", "No", NA, "No", "No", "No", "Y...
## $ wmn_pregnancy_change_how <chr> NA, NA, NA, NA, NA, NA, "I want to h...
## $ wmn_con <chr> "No", "Yes", "Yes", "Yes", "Yes", "Y...
## $ wmn_con_type <chr> NA, "Male Condom", "Male Condom", "F...
## $ wmn_pre_con_access_difficulty <chr> NA, "No", "No", NA, "No", "No", NA, ...
## $ wmn_pre_missed_dose_pills <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, ...
## $ wmn_pre_con_needed <chr> NA, "7 or more", "2", NA, "0", "1", ...
## $ wmn_pre_con_accessed <chr> NA, "7 or more", "0", NA, "0", NA, N...
## $ wmn_pre_injectable_missed <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, ...
## $ wmn_pre_iud_missed <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, ...
## $ wmn_pre_con_missed_why <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, ...
## $ wmn_pre_con_missed_why_other <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, ...
## $ wmn_post_con_access_difficulty <chr> NA, "No", "No", NA, "No", "No", NA, ...
## $ wmn_post_missed_dose_pills <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, ...
## $ wmn_post_con_needed <chr> NA, "7 or more", "0", NA, "0", "1", ...
## $ wmn_post_con_accessed <chr> NA, "7 or more", "0", NA, "0", NA, N...
## $ wmn_post_injectable_missed <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, ...
## $ wmn_post_iud_missed <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, ...
## $ wmn_post_con_missed_why <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, ...
## $ wmn_post_con_missed_why_other <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, ...
## $ wmn_alone <chr> "No", "Yes", "Yes", "Yes", "Yes", "Y...
## $ wmn_how_safe <chr> "Very safe", NA, NA, NA, NA, NA, "Ve...
## $ wmn_safe_change <chr> "Less safe", NA, NA, NA, NA, NA, "Mo...
## $ wmn_safe_place <chr> "Yes", NA, NA, NA, NA, NA, "Yes", NA...
## $ wmn_pre_safe_place <chr> "Never", NA, NA, NA, NA, NA, "Don't ...
## $ wmn_post_safe_place <chr> "Never", NA, NA, NA, NA, NA, "Don't ...
## $ wmn_safe_place_no_access <chr> "No", NA, NA, NA, NA, NA, "Yes", NA,...
## $ wmn_safe_place_no_access_why <chr> NA, NA, NA, NA, NA, NA, "Unable to a...
## $ wmn_pre_help <chr> "No", NA, NA, NA, NA, NA, "No", NA, ...
## $ wmn_post_help <chr> "No", NA, NA, NA, NA, NA, "No", NA, ...
## $ wmn_post_no_help <chr> "No", NA, NA, NA, NA, NA, "Don't kno...
## $ wmn_no_help_why <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, ...
## $ country <chr> "United Arab Emirates", "United Arab...
Analiz için seçilen değişkenler
df<-veri[, c("age","education","financial_situation", "employment_status", "wmn_pregnancy_change_how","wmn_post_con_needed")]
head(df, 10)%>% kable() #ilk 10 gözlem
age
|
education
|
financial_situation
|
employment_status
|
wmn_pregnancy_change_how
|
wmn_post_con_needed
|
36 to 45 years old
|
College or university
|
I can afford food and regular expenses, and buy new clothes once a year, but nothing else
|
Employed part-time
|
NA
|
NA
|
36 to 45 years old
|
Post graduate
|
I can comfortably afford food, clothes, and furniture, and I have savings
|
Student and work part-time
|
NA
|
7 or more
|
26 to 35 years old
|
College or university
|
I can afford food, but nothing else
|
Self-employed
|
NA
|
0
|
16 to 25 years old
|
Technical school
|
I can afford food and regular expenses, but nothing else
|
Employed part-time
|
NA
|
NA
|
26 to 35 years old
|
Technical school
|
I can afford food and regular expenses, but nothing else
|
Self-employed
|
NA
|
0
|
26 to 35 years old
|
Secondary/high school
|
I can afford food and regular expenses, but nothing else
|
Self-employed
|
NA
|
1
|
26 to 35 years old
|
Post graduate
|
I can afford food and regular expenses, and buy new clothes once a year, but nothing else
|
Student
|
I want to have a/another child but later than I did before
|
NA
|
16 to 25 years old
|
Post graduate
|
I can afford food and regular expenses, but nothing else
|
Unemployed
|
NA
|
NA
|
26 to 35 years old
|
College or university
|
I cannot afford enough food for my family
|
Employed part-time
|
NA
|
NA
|
16 to 25 years old
|
Secondary/high school
|
I cannot afford enough food for my family
|
Unemployed
|
NA
|
7 or more
|
#Veri setinin recode edilmesi
# "Yaş" değişkeninin recode edilmesi
df1<- df %>% as_tibble() %>% mutate(age=recode_factor(age, "Under 16"=1, "16 to 25 years old"=2,"26 to 35 years old"=3, "36 to 45 years old"=4, "Over 45 years old"=5, "Not available"=99))
## Warning: Problem with `mutate()` input `age`.
## i Unreplaced values treated as NA as .x is not compatible. Please specify replacements exhaustively or supply .default
## i Input `age` is `recode_factor(...)`.
## Warning: Unreplaced values treated as NA as .x is not compatible. Please specify
## replacements exhaustively or supply .default
# "Eğitim" değişkeninin recode edilmesi
df1= df1 %>% mutate(education=recode_factor(education, "No formal education"=1, "Primary school"=2,"26 to 35 years old"=3, "Secondary/high school"=4, "Technical school"=5, "College or university"=6, "Post graduate"=7, "Prefer not to answer"=8, "Not available"=99))
## Warning: Problem with `mutate()` input `education`.
## i Unreplaced values treated as NA as .x is not compatible. Please specify replacements exhaustively or supply .default
## i Input `education` is `recode_factor(...)`.
## Warning: Unreplaced values treated as NA as .x is not compatible. Please specify replacements exhaustively or supply .default
# "Finansal durum" değişkeninin recode edilmesi
df1= df1 %>% mutate(financial_situation=recode_factor(financial_situation, "I can afford food and regular expenses, and buy new clothes once a year, but nothing else"=1, "I can afford food and regular expenses, but nothing else"=2,"I can afford food, but nothing else"=3, "I can comfortably afford food, clothes, and furniture, and I have savings"=4, "I cannot afford enough food for my family"=5, "Not available"=99))
## Warning: Problem with `mutate()` input `financial_situation`.
## i Unreplaced values treated as NA as .x is not compatible. Please specify replacements exhaustively or supply .default
## i Input `financial_situation` is `recode_factor(...)`.
## Warning: Unreplaced values treated as NA as .x is not compatible. Please specify replacements exhaustively or supply .default
# "İstihdam durumu" değişkeninin recode edilmesi
df1<- df1 %>% mutate(employment_status=recode_factor(employment_status, "Employed full-time"=1, "Employed part-time"=2,"Self-employed"=3, "Student and work part-time"=4, "Student"=5, "Retired"=6, "Unemployed"=7,"Not available"=99))
## Warning: Problem with `mutate()` input `employment_status`.
## i Unreplaced values treated as NA as .x is not compatible. Please specify replacements exhaustively or supply .default
## i Input `employment_status` is `recode_factor(...)`.
## Warning: Unreplaced values treated as NA as .x is not compatible. Please specify replacements exhaustively or supply .default
# "2020 Mart ayından bu yana çocuk yapma isteğinin değişimi hakkındaki değişkenin" recode edilmesi
df1<- df1 %>% mutate(wmn_pregnancy_change_how=recode_factor(wmn_pregnancy_change_how, "I no longer want a/another child"=1, "I am now undecided"=2,"I now want a/another child"=3, "I want to have a/another child but later than I did before"=4, "I want to have a/another child but sooner than I did before"=5, "Decline to respond"=88))
# "Mart ayından bu yana haftalık ortalama doğum kontrölüne ihtiyaç duyulma sıklığı" değişkeninin recode edilmesi
df1<- df1 %>% mutate(wmn_post_con_needed=recode_factor(wmn_post_con_needed, "0"=0, "1"=1,"2"=2, "3"=3, "4"=4, "5"=5, "6"=6, "7 or more"=7))
# kodlanan verideki ilk 10 gözlem
head(df1, 10)%>% kable() #ilk 10 gözlem
age
|
education
|
financial_situation
|
employment_status
|
wmn_pregnancy_change_how
|
wmn_post_con_needed
|
4
|
6
|
1
|
2
|
NA
|
NA
|
4
|
7
|
4
|
4
|
NA
|
7
|
3
|
6
|
3
|
3
|
NA
|
0
|
2
|
5
|
2
|
2
|
NA
|
NA
|
3
|
5
|
2
|
3
|
NA
|
0
|
3
|
4
|
2
|
3
|
NA
|
1
|
3
|
7
|
1
|
5
|
4
|
NA
|
2
|
7
|
2
|
7
|
NA
|
NA
|
3
|
6
|
5
|
2
|
NA
|
NA
|
2
|
4
|
5
|
7
|
NA
|
7
|
#Eksik veri yapısının incelenmesi 1
explore_all(df1[,1:3])
#Eksik veri yapısının incelenmesi 2
explore_all(df1[,4:6])

Tanımlayıcı istatistikler
summary(df1)
## age education financial_situation employment_status
## 1 : 154 6 :5726 1 :2442 5 :2969
## 2 :5672 4 :3707 2 :3305 1 :2897
## 3 :4356 5 :1526 3 :2884 7 :2576
## 4 :1850 7 : 774 4 :1237 3 :1835
## 5 : 309 2 : 344 5 :2478 2 :1465
## NA's: 13 (Other): 269 NA's: 8 (Other): 604
## NA's : 8 NA's : 8
## wmn_pregnancy_change_how wmn_post_con_needed
## 1 : 676 7 : 636
## 2 : 874 1 : 632
## 3 : 456 0 : 554
## 4 : 550 2 : 453
## 5 : 157 3 : 396
## 88 : 317 (Other): 462
## NA's:9324 NA's :9221
Eksik veriye değer atanması
Rastgele Orman Algortiması (RF) Kullanılarak Eksik Veri Ataması Yapma
eksikveri<-df1
rfdf1 <- mice(eksikveri, meth = "rf", ntree = 3, seed = 61)#ntree yetiştirilecek ağaç sayısını göstermektedir.
##
## iter imp variable
## 1 1 age education financial_situation employment_status wmn_pregnancy_change_how wmn_post_con_needed
## 1 2 age education financial_situation employment_status wmn_pregnancy_change_how wmn_post_con_needed
## 1 3 age education financial_situation employment_status wmn_pregnancy_change_how wmn_post_con_needed
## 1 4 age education financial_situation employment_status wmn_pregnancy_change_how wmn_post_con_needed
## 1 5 age education financial_situation employment_status wmn_pregnancy_change_how wmn_post_con_needed
## 2 1 age education financial_situation employment_status wmn_pregnancy_change_how wmn_post_con_needed
## 2 2 age education financial_situation employment_status wmn_pregnancy_change_how wmn_post_con_needed
## 2 3 age education financial_situation employment_status wmn_pregnancy_change_how wmn_post_con_needed
## 2 4 age education financial_situation employment_status wmn_pregnancy_change_how wmn_post_con_needed
## 2 5 age education financial_situation employment_status wmn_pregnancy_change_how wmn_post_con_needed
## 3 1 age education financial_situation employment_status wmn_pregnancy_change_how wmn_post_con_needed
## 3 2 age education financial_situation employment_status wmn_pregnancy_change_how wmn_post_con_needed
## 3 3 age education financial_situation employment_status wmn_pregnancy_change_how wmn_post_con_needed
## 3 4 age education financial_situation employment_status wmn_pregnancy_change_how wmn_post_con_needed
## 3 5 age education financial_situation employment_status wmn_pregnancy_change_how wmn_post_con_needed
## 4 1 age education financial_situation employment_status wmn_pregnancy_change_how wmn_post_con_needed
## 4 2 age education financial_situation employment_status wmn_pregnancy_change_how wmn_post_con_needed
## 4 3 age education financial_situation employment_status wmn_pregnancy_change_how wmn_post_con_needed
## 4 4 age education financial_situation employment_status wmn_pregnancy_change_how wmn_post_con_needed
## 4 5 age education financial_situation employment_status wmn_pregnancy_change_how wmn_post_con_needed
## 5 1 age education financial_situation employment_status wmn_pregnancy_change_how wmn_post_con_needed
## 5 2 age education financial_situation employment_status wmn_pregnancy_change_how wmn_post_con_needed
## 5 3 age education financial_situation employment_status wmn_pregnancy_change_how wmn_post_con_needed
## 5 4 age education financial_situation employment_status wmn_pregnancy_change_how wmn_post_con_needed
## 5 5 age education financial_situation employment_status wmn_pregnancy_change_how wmn_post_con_needed
tam_veri<-mice::complete(rfdf1,1)# Atama sonrası ilk 10 gözlem
#veri setinin excele yazdırılması
#write_xlsx(tam_veri, "tamveri_xlsx")
# kodlanan tam verideki ilk 10 gözlem
head(tam_veri, 10)%>% kable() #ilk 10 gözlem
age
|
education
|
financial_situation
|
employment_status
|
wmn_pregnancy_change_how
|
wmn_post_con_needed
|
4
|
6
|
1
|
2
|
2
|
7
|
4
|
7
|
4
|
4
|
2
|
7
|
3
|
6
|
3
|
3
|
88
|
0
|
2
|
5
|
2
|
2
|
1
|
1
|
3
|
5
|
2
|
3
|
1
|
0
|
3
|
4
|
2
|
3
|
1
|
1
|
3
|
7
|
1
|
5
|
4
|
3
|
2
|
7
|
2
|
7
|
2
|
0
|
3
|
6
|
5
|
2
|
4
|
7
|
2
|
4
|
5
|
7
|
3
|
7
|
Eksik verilerin olduğu veri seti üzerinde Polikorik Korelasyonun hesaplanması
# Veri setinden NA değerlerine karşılık gözlemlerin ve cevap vermeyi reddeden gözlemlerin çıkarılması
df11<-na.omit(df1, cols="99")
df11<-na.omit(df1, cols="88")
# Yaş ve eğitim arasındaki polikorik korelasyon
n<-cor_test(df11, "age", "education", method = "polychoric")
## Warning in psych::polychoric(dat): The items do not have an equal number of
## response alternatives, global set to FALSE.
## Warning in matpLower(x, nvar, gminx, gmaxx, gminy, gmaxy): 1 cells were adjusted
## for 0 values using the correction for continuity. Examine your data carefully.
kable(n)
Parameter1
|
Parameter2
|
rho
|
CI_low
|
CI_high
|
t
|
df
|
p
|
Method
|
n_Obs
|
age
|
education
|
0.2040268
|
0.1439444
|
0.2626104
|
6.593817
|
1001
|
0
|
Polychoric
|
1003
|
# Finansal durum ve eğitim arasındaki polikorik korelasyon
n1<-cor_test(df11, "age", "financial_situation", method = "polychoric")
kable(n1)
Parameter1
|
Parameter2
|
rho
|
CI_low
|
CI_high
|
t
|
df
|
p
|
Method
|
n_Obs
|
age
|
financial_situation
|
-0.1325591
|
-0.1928768
|
-0.0712435
|
-4.231325
|
1001
|
2.54e-05
|
Polychoric
|
1003
|
# İstihdam durumu ve eğitim arasındaki polikorik korelasyon
n2<-cor_test(df11, "education", "financial_situation", method = "polychoric")
## Warning in psych::polychoric(dat): The items do not have an equal number of
## response alternatives, global set to FALSE.
## Warning in psych::polychoric(dat): 1 cells were adjusted for 0 values using the
## correction for continuity. Examine your data carefully.
kable(n2)
Parameter1
|
Parameter2
|
rho
|
CI_low
|
CI_high
|
t
|
df
|
p
|
Method
|
n_Obs
|
education
|
financial_situation
|
-0.1019905
|
-0.1628626
|
-0.040345
|
-3.243751
|
1001
|
0.0012187
|
Polychoric
|
1003
|
# Finansal durum ve çocuk yapma isteği arasındaki polikorik korelasyon
n3<-cor_test(df11, "wmn_pregnancy_change_how", "financial_situation", method = "polychoric")
## Warning in psych::polychoric(dat): The items do not have an equal number of
## response alternatives, global set to FALSE.
kable(n3)
Parameter1
|
Parameter2
|
rho
|
CI_low
|
CI_high
|
t
|
df
|
p
|
Method
|
n_Obs
|
wmn_pregnancy_change_how
|
financial_situation
|
0.0338512
|
-0.028108
|
0.0955512
|
1.071618
|
1001
|
0.2841498
|
Polychoric
|
1003
|
# Çocuk yapma isteği ve haftalık ortalama doğum kontrölüne ihtiyaç duyulma sıklığı arasındaki polikorik korelasyon
n4<-cor_test(df11, "wmn_pregnancy_change_how", "wmn_post_con_needed", method = "polychoric")
## Warning in psych::polychoric(dat): The items do not have an equal number of
## response alternatives, global set to FALSE.
## Warning in psych::polychoric(dat): 1 cells were adjusted for 0 values using the
## correction for continuity. Examine your data carefully.
kable(n4)
Parameter1
|
Parameter2
|
rho
|
CI_low
|
CI_high
|
t
|
df
|
p
|
Method
|
n_Obs
|
wmn_pregnancy_change_how
|
wmn_post_con_needed
|
-0.0042951
|
-0.0661778
|
0.0576205
|
-0.135892
|
1001
|
0.891934
|
Polychoric
|
1003
|
# Eğitim ve istihdam durumu arasındaki polikorik korelasyon
n4<-cor_test(df11, "education", "employment_status", method = "polychoric")
kable(n4)
Parameter1
|
Parameter2
|
rho
|
CI_low
|
CI_high
|
t
|
df
|
p
|
Method
|
n_Obs
|
education
|
employment_status
|
-0.1194528
|
-0.180022
|
-0.0579813
|
-3.806574
|
1001
|
0.0001495
|
Polychoric
|
1003
|
Eksik Gözlemlerin Olduğu Veri Setine Göre Polikorik Korelasyon Matrisi
library(psych)
##
## Attaching package: 'psych'
## The following objects are masked from 'package:philentropy':
##
## manhattan, minkowski
## The following object is masked from 'package:Hmisc':
##
## describe
## The following object is masked from 'package:gtools':
##
## logit
## The following object is masked from 'package:fields':
##
## describe
## The following objects are masked from 'package:scales':
##
## alpha, rescale
## The following object is masked from 'package:explore':
##
## describe
## The following objects are masked from 'package:ggplot2':
##
## %+%, alpha
pole<-df11[,1:4]
polychor<-polychoric(pole)
## Converted non-numeric input to numeric
## Warning in polychoric(pole): The items do not have an equal number of response
## alternatives, global set to FALSE.
## Warning in matpLower(x, nvar, gminx, gmaxx, gminy, gmaxy): 6 cells were adjusted
## for 0 values using the correction for continuity. Examine your data carefully.
polymat<-polychor$rho
colnames(polymat)<-as.vector(names(df11[,1:4]))
rownames(polymat)<-as.vector(names(df11[,1:4]))
polymat
## age education financial_situation employment_status
## age 1.0000000 0.2040268 -0.1289301 -0.2236585
## education 0.2040268 1.0000000 -0.1019905 -0.1155518
## financial_situation -0.1289301 -0.1019905 1.0000000 0.1806012
## employment_status -0.2236585 -0.1155518 0.1806012 1.0000000
kable(polymat)
|
age
|
education
|
financial_situation
|
employment_status
|
age
|
1.0000000
|
0.2040268
|
-0.1289301
|
-0.2236585
|
education
|
0.2040268
|
1.0000000
|
-0.1019905
|
-0.1155518
|
financial_situation
|
-0.1289301
|
-0.1019905
|
1.0000000
|
0.1806012
|
employment_status
|
-0.2236585
|
-0.1155518
|
0.1806012
|
1.0000000
|
corrplot(polymat,type = "lower", order = "hclust", tl.col = "black", tl.srt = 45, method = "number")

#Tam veri setindeki gözlemlere göre
df12<-na.omit(tam_veri, cols="99")
df12<-na.omit(tam_veri, cols="88")
pole1<-df12[,1:4]
polychor<-polychoric(pole1)
## Converted non-numeric input to numeric
## Warning in polychoric(pole1): The items do not have an equal number of response
## alternatives, global set to FALSE.
## Warning in matpLower(x, nvar, gminx, gmaxx, gminy, gmaxy): 1 cells were adjusted
## for 0 values using the correction for continuity. Examine your data carefully.
polymat<-polychor$rho
colnames(polymat)<-as.vector(names(df11[,1:4]))
rownames(polymat)<-as.vector(names(df11[,1:4]))
kable(polymat)
|
age
|
education
|
financial_situation
|
employment_status
|
age
|
1.0000000
|
0.1583211
|
-0.1707702
|
-0.1830035
|
education
|
0.1583211
|
1.0000000
|
-0.1244100
|
-0.1583163
|
financial_situation
|
-0.1707702
|
-0.1244100
|
1.0000000
|
0.1999861
|
employment_status
|
-0.1830035
|
-0.1583163
|
0.1999861
|
1.0000000
|
corrplot(polymat,type = "lower", order = "hclust", tl.col = "black", tl.srt = 45, method = "number")

Tam veri setinde değişkenlerin dağılım yapısının incelenmesi
df13<-df12 %>% mutate_if(is.factor, as.numeric)
v1<-ggplot(df13, aes(x=age)) +
geom_histogram(fill="brown")
v2<-ggplot(df13, aes(x=education)) +
geom_histogram(fill="blue")
f<-ggplot(df13, aes(x=financial_situation)) +
geom_histogram(fill="red")
g<-ggplot(df13, aes(x=employment_status)) +
geom_histogram(fill="green")
ggarrange(v1,v2,f,g)
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
