library(tidyverse)
## -- Attaching packages --------------------------------------- tidyverse 1.3.0 --
## v ggplot2 3.3.2 v purrr 0.3.4
## v tibble 3.0.4 v dplyr 1.0.2
## v tidyr 1.1.2 v stringr 1.4.0
## v readr 1.4.0 v forcats 0.5.0
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
view(diamonds)
#Discrete Variables
ggplot(data = diamonds) +
geom_bar(mapping = aes(x = cut))

Continuous Variables
ggplot(data = diamonds)+
geom_histogram(mapping = aes(x = carat ), binwidth = 0.5)

Changing bin sizes
(Smaller<-diamonds %>%
filter( carat <3))
## # A tibble: 53,900 x 10
## carat cut color clarity depth table price x y z
## <dbl> <ord> <ord> <ord> <dbl> <dbl> <int> <dbl> <dbl> <dbl>
## 1 0.23 Ideal E SI2 61.5 55 326 3.95 3.98 2.43
## 2 0.21 Premium E SI1 59.8 61 326 3.89 3.84 2.31
## 3 0.23 Good E VS1 56.9 65 327 4.05 4.07 2.31
## 4 0.290 Premium I VS2 62.4 58 334 4.2 4.23 2.63
## 5 0.31 Good J SI2 63.3 58 335 4.34 4.35 2.75
## 6 0.24 Very Good J VVS2 62.8 57 336 3.94 3.96 2.48
## 7 0.24 Very Good I VVS1 62.3 57 336 3.95 3.98 2.47
## 8 0.26 Very Good H SI1 61.9 55 337 4.07 4.11 2.53
## 9 0.22 Fair E VS2 65.1 61 337 3.87 3.78 2.49
## 10 0.23 Very Good H VS1 59.4 61 338 4 4.05 2.39
## # ... with 53,890 more rows
ggplot( data = Smaller, mapping =aes (x= carat))+
geom_histogram(binwidth = 0.1)

Overlaying different histograms
ggplot(data = Smaller, mapping = aes(x= carat, colour = cut))+
geom_freqpoly(binwidth = 0.1)

Questions after seeing a graph
ggplot(data = Smaller, mapping = aes(x = carat))+
geom_histogram(binwidth = 0.01)

Covariation
Continuous Variables
ggplot(data= diamonds , mapping= aes(x= price))+
geom_freqpoly(mapping = aes(colour= cut ), binwidth=500)

Adding density of count
ggplot(data= diamonds , mapping= aes(x= price , y= ..density..))+
geom_freqpoly(mapping = aes(colour= cut ), binwidth=500)

box plots

categorical values
ggplot( data = diamonds)+
geom_count(mapping = aes(x= cut , y =color ))

diamonds%>%
count(color, cut)%>%
ggplot(mapping = aes(x= color , y =cut))+
geom_tile(mapping = aes(fill=n))

2 Continuous Variables
ggplot( data = diamonds)+
geom_point(mapping = aes(x= carat , y= price ))

Tile
ggplot( data = Smaller)+
geom_bin2d(mapping= aes(x= carat , y= price))

ggplot( data = Smaller ,mapping= aes(x= carat , y= price))+
geom_boxplot(mapping = aes(group= cut_width(carat, 0.1)))
