hdi = read.csv("https://ericwfox.github.io/data/hdi2018.csv")
Variable descriptions: • hdi 2018: HDI for the year 2018 • median age: Median age (years) in 2015 • pctpop65: Percent of population 65 and older in 2018 • pct internet: Percent of population that uses the internet in 2017-2018 • pct labour: Percent of country’s working-age population that engages actively in the labour market, either by working or looking for work in 2018
head(hdi)
Exercise 1 (a) Fit a multiple linear regression model with hdi 2018 as the response, and the other four variables as predictors. Also, make a scatterplot matrix to visualize the relationships between the variables.
lm1<-lm(hdi_2018~ median_age + pctpop65 + pct_internet + pct_labour, data=hdi)
summary(lm1)
Call:
lm(formula = hdi_2018 ~ median_age + pctpop65 + pct_internet +
pct_labour, data = hdi)
Residuals:
Min 1Q Median 3Q Max
-0.194838 -0.034699 0.003272 0.031096 0.122529
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.3374494 0.0319098 10.575 < 2e-16 ***
median_age 0.0080796 0.0011337 7.127 2.7e-11 ***
pctpop65 -0.0697020 0.1022759 -0.682 0.496
pct_internet 0.0028967 0.0002451 11.817 < 2e-16 ***
pct_labour -0.0001738 0.0003809 -0.456 0.649
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.05193 on 172 degrees of freedom
Multiple R-squared: 0.8882, Adjusted R-squared: 0.8856
F-statistic: 341.5 on 4 and 172 DF, p-value: < 2.2e-16
pairs(hdi_2018 ~ median_age + pctpop65 + pct_internet + pct_labour, data=hdi)

- Using the model fit in (a), is there evidence of a relationship between hdi 2018 and at least one of the predictor variables? Write the null and alternative hypotheses, report the F-test statistic and p-value, and state your conclusion.
Yes, there is evidence of a relationship between hdi 2018 with median age and pct internet based on the p-value being less than 0.05.
H0 :β1 =β2 =β3 =β4 =0 HA :atleastone βj ̸=0
F-statistic: 341.5 on 4 and 172 DF p-value: < 2.2e-16
Based off the data, when all predictor variables are taken into consideration we can see a correlation between hdi 2018 with median age and pct internet meaning we reject our null.
- Using the model fit in (a), which predictor variables are statistically significant according to the individual t-tests?
The predictor variables that are statistically significant according to the individual t-test are median age and pct internet based on the p-values being extremely small.
- Fit a reduced model with median age and pct internet as predictors. Use the anova() function to conduct a partial F-test that compares this reduced model with the full model specified in (a). Make sure to write the null and alternative hypotheses, report the p-value, and state your conclusion.
H0 :β1 =β2 =β3 =β4 =0 HA :atleastoneβj ̸=0
lm_full<-lm(hdi_2018~ median_age + pctpop65 + pct_internet + pct_labour, data=hdi)
lm_2<-lm(hdi_2018~ median_age + pct_internet, data=hdi)
anova(lm_2, lm_full)
Analysis of Variance Table
Model 1: hdi_2018 ~ median_age + pct_internet
Model 2: hdi_2018 ~ median_age + pctpop65 + pct_internet + pct_labour
Res.Df RSS Df Sum of Sq F Pr(>F)
1 174 0.46552
2 172 0.46380 2 0.0017236 0.3196 0.7269
The p-value = 0.73 is large, so we do not reject the null hypothesis that H0 : β1 = β4 = 0. So we can remove both predictors, median_age and pct_internet, from the model.
- According to the adjusted-R2, how does the full model in (a) compare with the reduced model in (d)? Is this consistent with your conclusion for the partial F-test?
s1 <- summary(lm_full)
s2 <- summary(lm_3)
s1$adj.r.squared
s2$adj.r.squared
As we can see looking at the adjusted r squared for the full model we got a much higher value (.8855) compared to the reduced model (0.6859). This agrees with the conclusion of the F-test. So the adjusted-R2 also indicates that we can remove median_age and pct_internet.
LS0tCnRpdGxlOiAnUmVncmVzc2lvbiBvbiBIREkgMjAxOCcKb3V0cHV0OgogIGh0bWxfbm90ZWJvb2s6IGRlZmF1bHQKICB3b3JkX2RvY3VtZW50OiBkZWZhdWx0CiAgcGRmX2RvY3VtZW50OiBkZWZhdWx0Ci0tLQoKYGBge3J9CmhkaSA9IHJlYWQuY3N2KCJodHRwczovL2VyaWN3Zm94LmdpdGh1Yi5pby9kYXRhL2hkaTIwMTguY3N2IikKYGBgCgpWYXJpYWJsZSBkZXNjcmlwdGlvbnM6CuKAoiBoZGkgMjAxODogSERJIGZvciB0aGUgeWVhciAyMDE4CuKAoiBtZWRpYW4gYWdlOiBNZWRpYW4gYWdlICh5ZWFycykgaW4gMjAxNQrigKIgcGN0cG9wNjU6IFBlcmNlbnQgb2YgcG9wdWxhdGlvbiA2NSBhbmQgb2xkZXIgaW4gMjAxOArigKIgcGN0IGludGVybmV0OiBQZXJjZW50IG9mIHBvcHVsYXRpb24gdGhhdCB1c2VzIHRoZSBpbnRlcm5ldCBpbiAyMDE3LTIwMTgK4oCiIHBjdCBsYWJvdXI6IFBlcmNlbnQgb2YgY291bnRyeeKAmXMgd29ya2luZy1hZ2UgcG9wdWxhdGlvbiB0aGF0IGVuZ2FnZXMgYWN0aXZlbHkgaW4gdGhlIGxhYm91ciBtYXJrZXQsIGVpdGhlciBieSB3b3JraW5nIG9yIGxvb2tpbmcgZm9yIHdvcmsgaW4gMjAxOAoKYGBge3J9CmhlYWQoaGRpKQpgYGAKCgpFeGVyY2lzZSAxCihhKSBGaXQgYSBtdWx0aXBsZSBsaW5lYXIgcmVncmVzc2lvbiBtb2RlbCB3aXRoIGhkaSAyMDE4IGFzIHRoZSByZXNwb25zZSwgYW5kIHRoZSBvdGhlciBmb3VyIHZhcmlhYmxlcyBhcyBwcmVkaWN0b3JzLiBBbHNvLCBtYWtlIGEgc2NhdHRlcnBsb3QgbWF0cml4IHRvIHZpc3VhbGl6ZSB0aGUgcmVsYXRpb25zaGlwcyBiZXR3ZWVuIHRoZSB2YXJpYWJsZXMuCgpgYGB7cn0KbG0xPC1sbShoZGlfMjAxOH4gbWVkaWFuX2FnZSAgKyBwY3Rwb3A2NSArIHBjdF9pbnRlcm5ldCArIHBjdF9sYWJvdXIsIGRhdGE9aGRpKQpzdW1tYXJ5KGxtMSkKYGBgCgoKYGBge3J9CnBhaXJzKGhkaV8yMDE4IH4gbWVkaWFuX2FnZSAgKyBwY3Rwb3A2NSArIHBjdF9pbnRlcm5ldCArIHBjdF9sYWJvdXIsIGRhdGE9aGRpKQpgYGAKCgooYikgVXNpbmcgdGhlIG1vZGVsIGZpdCBpbiAoYSksIGlzIHRoZXJlIGV2aWRlbmNlIG9mIGEgcmVsYXRpb25zaGlwIGJldHdlZW4gaGRpIDIwMTggYW5kIGF0IGxlYXN0IG9uZSBvZiB0aGUgcHJlZGljdG9yIHZhcmlhYmxlcz8gV3JpdGUgdGhlIG51bGwgYW5kIGFsdGVybmF0aXZlIGh5cG90aGVzZXMsIHJlcG9ydCB0aGUgRi10ZXN0IHN0YXRpc3RpYyBhbmQgcC12YWx1ZSwgYW5kIHN0YXRlIHlvdXIgY29uY2x1c2lvbi4KClllcywgdGhlcmUgaXMgZXZpZGVuY2Ugb2YgYSByZWxhdGlvbnNoaXAgYmV0d2VlbiBoZGkgMjAxOCB3aXRoIG1lZGlhbiBhZ2UgYW5kIHBjdCBpbnRlcm5ldCBiYXNlZCBvbiB0aGUgcC12YWx1ZSBiZWluZyBsZXNzIHRoYW4gMC4wNS4KCkgwIDrOsjEgPc6yMiA9zrIzID3OsjQgPTAgCkhBIDphdGxlYXN0b25lIM6yaiDMuD0wCgpGLXN0YXRpc3RpYzogMzQxLjUgb24gNCBhbmQgMTcyIERGCnAtdmFsdWU6IDwgMi4yZS0xNgoKQmFzZWQgb2ZmIHRoZSBkYXRhLCB3aGVuIGFsbCBwcmVkaWN0b3IgdmFyaWFibGVzIGFyZSB0YWtlbiBpbnRvIGNvbnNpZGVyYXRpb24gd2UgY2FuIHNlZSBhIGNvcnJlbGF0aW9uIGJldHdlZW4gaGRpIDIwMTggd2l0aCBtZWRpYW4gYWdlIGFuZCBwY3QgaW50ZXJuZXQgbWVhbmluZyB3ZSByZWplY3Qgb3VyIG51bGwuCgoKKGMpIFVzaW5nIHRoZSBtb2RlbCBmaXQgaW4gKGEpLCB3aGljaCBwcmVkaWN0b3IgdmFyaWFibGVzIGFyZSBzdGF0aXN0aWNhbGx5IHNpZ25pZmljYW50IGFjY29yZGluZyB0byB0aGUgaW5kaXZpZHVhbCB0LXRlc3RzPwoKVGhlIHByZWRpY3RvciB2YXJpYWJsZXMgdGhhdCBhcmUgc3RhdGlzdGljYWxseSBzaWduaWZpY2FudCBhY2NvcmRpbmcgdG8gdGhlIGluZGl2aWR1YWwgdC10ZXN0IGFyZSBtZWRpYW4gYWdlIGFuZCBwY3QgaW50ZXJuZXQgYmFzZWQgb24gdGhlIHAtdmFsdWVzIGJlaW5nIGV4dHJlbWVseSBzbWFsbC4KCihkKSBGaXQgYSByZWR1Y2VkIG1vZGVsIHdpdGggbWVkaWFuIGFnZSBhbmQgcGN0IGludGVybmV0IGFzIHByZWRpY3RvcnMuIFVzZSB0aGUgYW5vdmEoKSBmdW5jdGlvbiB0byBjb25kdWN0IGEgcGFydGlhbCBGLXRlc3QgdGhhdCBjb21wYXJlcyB0aGlzIHJlZHVjZWQgbW9kZWwgd2l0aCB0aGUgZnVsbCBtb2RlbCBzcGVjaWZpZWQgaW4gKGEpLiBNYWtlIHN1cmUgdG8gd3JpdGUgdGhlIG51bGwgYW5kIGFsdGVybmF0aXZlIGh5cG90aGVzZXMsIHJlcG9ydCB0aGUgcC12YWx1ZSwgYW5kIHN0YXRlIHlvdXIgY29uY2x1c2lvbi4KCkgwIDrOsjEgPc6yMiA9zrIzID3OsjQgPTAgCkhBIDphdGxlYXN0b25lzrJqIMy4PTAKCmBgYHtyfQpsbV9mdWxsPC1sbShoZGlfMjAxOH4gbWVkaWFuX2FnZSAgKyBwY3Rwb3A2NSArIHBjdF9pbnRlcm5ldCArIHBjdF9sYWJvdXIsIGRhdGE9aGRpKQpsbV8zPC1sbShoZGlfMjAxOH4gbWVkaWFuX2FnZSArIHBjdF9pbnRlcm5ldCwgZGF0YT1oZGkpCmBgYAoKYGBge3J9CmFub3ZhKGxtXzMsIGxtX2Z1bGwpCmBgYAoKVGhlIHAtdmFsdWUgPSAwLjczIGlzIGxhcmdlLCBzbyB3ZSBkbyBub3QgcmVqZWN0IHRoZSBudWxsIGh5cG90aGVzaXMgdGhhdCBIMCA6IM6yMSA9IM6yNCA9IDAuIFNvIHdlIGNhbiByZW1vdmUgYm90aCBwcmVkaWN0b3JzLCBtZWRpYW5fYWdlIGFuZCBwY3RfaW50ZXJuZXQsIGZyb20gdGhlIG1vZGVsLgoKKGUpIEFjY29yZGluZyB0byB0aGUgYWRqdXN0ZWQtUjIsIGhvdyBkb2VzIHRoZSBmdWxsIG1vZGVsIGluIChhKSBjb21wYXJlIHdpdGggdGhlIHJlZHVjZWQgbW9kZWwgaW4gKGQpPyBJcyB0aGlzIGNvbnNpc3RlbnQgd2l0aCB5b3VyIGNvbmNsdXNpb24gZm9yIHRoZSBwYXJ0aWFsIEYtdGVzdD8KCmBgYHtyfQpzMSA8LSBzdW1tYXJ5KGxtX2Z1bGwpCnMyIDwtIHN1bW1hcnkobG1fMykKYGBgCgoKYGBge3J9CnMxJGFkai5yLnNxdWFyZWQKczIkYWRqLnIuc3F1YXJlZApgYGAKCkFzIHdlIGNhbiBzZWUgbG9va2luZyBhdCB0aGUgYWRqdXN0ZWQgciBzcXVhcmVkIGZvciB0aGUgZnVsbCBtb2RlbCB3ZSBnb3QgYSBtdWNoIGhpZ2hlciB2YWx1ZSAoLjg4NTUpIGNvbXBhcmVkIHRvIHRoZSByZWR1Y2VkIG1vZGVsICgwLjY4NTkpLiBUaGlzIGFncmVlcyB3aXRoIHRoZSBjb25jbHVzaW9uIG9mIHRoZSBGLXRlc3QuIFNvIHRoZSBhZGp1c3RlZC1SMiBhbHNvIGluZGljYXRlcyB0aGF0IHdlIGNhbiByZW1vdmUgbWVkaWFuX2FnZSBhbmQgcGN0X2ludGVybmV0Lgo=