Jiameng Yu
12 December 2020
## To illustrate this calculation, as step 1, we will simulate 100 randomly generated variables.
## These variables represent the value the length of adjacent in a given isosceles triangle.
set.seed(334)
A<- abs(rnorm(100))*100
A
[1] 209.180064 224.736911 77.512501 21.402371 173.937322 7.039009
[7] 54.011380 16.114620 62.348414 2.441922 365.851263 7.573599
[13] 22.799801 14.986772 88.000886 31.847398 292.232168 93.874567
[19] 20.282984 62.103405 12.441802 170.700591 112.766212 134.304934
[25] 102.337633 38.637671 62.349468 94.427483 0.891956 16.256333
[31] 82.942672 57.887488 60.671981 144.284501 174.006160 8.776321
[37] 20.116704 147.795872 56.179959 4.168746 101.452963 21.354251
[43] 112.630126 59.588547 213.866944 71.804761 101.548238 191.480806
[49] 42.750739 150.374616 100.979499 177.501336 120.578037 88.700710
[55] 122.466125 13.930217 146.816875 145.492686 2.309504 60.796158
[61] 99.237112 112.635074 12.558355 170.671150 37.085561 34.420688
[67] 51.336430 145.156705 85.384122 63.018247 65.317000 95.224150
[73] 59.180132 120.384320 44.156422 122.477733 112.603763 7.231103
[79] 53.922051 67.989820 168.893836 214.659354 11.603609 26.532377
[85] 93.859308 100.810368 52.921468 155.477107 71.565082 41.434192
[91] 41.863913 43.900135 119.609473 7.909671 17.215913 128.709738
[97] 63.748559 40.913114 82.156425 112.004621
## We then calculate the length of hypotenuse of each triangle.
C<- (A^2)^(1/2)
C
[1] 209.180064 224.736911 77.512501 21.402371 173.937322 7.039009
[7] 54.011380 16.114620 62.348414 2.441922 365.851263 7.573599
[13] 22.799801 14.986772 88.000886 31.847398 292.232168 93.874567
[19] 20.282984 62.103405 12.441802 170.700591 112.766212 134.304934
[25] 102.337633 38.637671 62.349468 94.427483 0.891956 16.256333
[31] 82.942672 57.887488 60.671981 144.284501 174.006160 8.776321
[37] 20.116704 147.795872 56.179959 4.168746 101.452963 21.354251
[43] 112.630126 59.588547 213.866944 71.804761 101.548238 191.480806
[49] 42.750739 150.374616 100.979499 177.501336 120.578037 88.700710
[55] 122.466125 13.930217 146.816875 145.492686 2.309504 60.796158
[61] 99.237112 112.635074 12.558355 170.671150 37.085561 34.420688
[67] 51.336430 145.156705 85.384122 63.018247 65.317000 95.224150
[73] 59.180132 120.384320 44.156422 122.477733 112.603763 7.231103
[79] 53.922051 67.989820 168.893836 214.659354 11.603609 26.532377
[85] 93.859308 100.810368 52.921468 155.477107 71.565082 41.434192
[91] 41.863913 43.900135 119.609473 7.909671 17.215913 128.709738
[97] 63.748559 40.913114 82.156425 112.004621