Introduction

Since the beginning of year 2020, the worldwide spread virus Covid-19 has resulted in economic fluctuation especially within the stock market. The stock market has experienced an increasing volatility. Covid-19 has impacted the global economy in an unprecedented way. In the United States, volatility levels in the middle of March 2020 rival or surpass those last seen in October 1987 and December 2008 and, before that, in late 1929 and the early 1930s (Scott Baker, Nicholas Bloom, Steven Davis, Kyle Kost, Marco Sammon, The Review of Asset Pricing Studies, Volume 10, Issue 4, December 2020, Pages 742-758).

President Trump has utilized the social media platform Twitter at a high frequency as the primary way for his public communication throughout the world. Some of the tweets published by Trump has mentioned description of his statements towards some specific industries or companies in different sectors. In a influential public role, the President of the United States holds a unique position with broad powers to influence policy relevant to companies such as government contracts, trade tariffs, and government bailouts (Ewalt, 2016 and Gibbs, 2017).

Based on the motivations and continuing impacts expected, our project is to utilize sentiment analysis method to study the impact on president’s tweets published during the pandemic period on the stock market price dataset. Prior study has shown that incorporation of the sentiment information from social media can help to improve the stock prediction(Nguyen and Shirai, 2015). Sentiment analysis has been applied to social media and online reviews area in order to detect and predict reactions on social media reviews. Nemes and Kiss has analyzed the sentiments and manifestations that inside the tweets by different users by utilizing Natural Language Processing and with Sentiment Classification using Recurrent Neural Network (L. Nemes and A. Kiss, 2020) Yin and Li found that different aspects of COVID-19 have been constantly discussed and show comparable sentiment polarities. Some topics like ``stay safe home" are dominated with positive sentiment (Hui Yin, Jianxin Li, 2020).

Research Question

Our research question is: Has the president tweets during the pandemic caused any impact on financial market? Our goal is to analyze the topics from President’s twitter and then find out if the market reacted to twitter themes we extracted. Based on the stock index correlation with the themes we extracted, we can study the impact of tweets data on the stock market price. Our next step is which type of tweets might influence the specific industries or companies’ stock price.

Method

The data consists of two datasets. We collected the president’s tweets data from Twitter published between 1-1-2020 to 30-09-2020. Regarding the stock market data, we collected the Wilshire index which represents all U.S. headquartered companies that are traded on US stock market.

We used PCA to identify themes that contained within the tweets. There are 5 themes we found. Then we used topic modeling to top ten tweet topics. Our analysis has shown the correlation between president’s tweets with the stock index.

PCA ANALYSIS(Principal component analysis) - is the process of computing the principal components and using them to perform a change of basis on the data, sometimes using only the first few principal components and ignoring the rest.

Topic modeling - is an unsupervised machine learning technique that’s capable of scanning a set of documents, detecting word and phrase patterns within them, and automatically clustering word groups and similar expressions that best characterize a set of documents.

Analysis

#Import r packages

library(readr)
library(dplyr)
library(ggplot2)
library(tidyr)
library(tm)
library(topicmodels)
library(tidyverse)
library(tidytext)
library(slam)
library(lubridate)
library(lsa)
library(LSAfun, quietly = T)
library(psych)
library(GPArotation)
library(paran)
library(qdapRegex)
library(ggpubr)
library(corrplot)

#Import and Format datasets

wilshire <- read_csv("WILL5000PRFC.csv")
willshire <- wilshire
pandemic_stock_index <-
  wilshire %>% filter(DATE > '2020-01-01' & DATE < '2020-10-01')
pandemic_stock_index <-
  pandemic_stock_index[order(pandemic_stock_index$DATE), ]
pandemic_stock_index <- na.omit(pandemic_stock_index)
plot(WILL5000PRFC ~ DATE,
     pandemic_stock_index,
     xaxt = "n",
     type = "l")
axis(1,
     pandemic_stock_index$DATE,
     format(pandemic_stock_index$DATE, "%b %d"),
     cex.axis = .7)

A plot on the willshire share index is made to show how the stock prices have fluctuated between jan’2020 to sep’2020. As we can see the stock prices have reached their lowest during march’2020 at the peak of the pandemic and has increased thereafter.

willshire$DATE <- ymd(willshire$DATE)
willshire$WILL5000PRFC <-
  as.numeric(as.character(willshire$WILL5000PRFC), na.rm = TRUE)
willshirejantosep <-
  subset(willshire, DATE > "2020-01-01" & DATE < "2020-10-01")
willshirets <-
  ts(
    willshirejantosep,
    start = c(2020, 1),
    end = c(2020, 10),
    freq = 12
  )
plot(willshirets)

A time-series plot is made on the stock market price to see how the stock market price has increased or decreased over time. It could be seen that there were dips in stock prices during the first 3 months of 2020 as soon as the pandemic started and the stock prices started increasing thereafter.

tweets <-  read_csv("tweets_11-06-2020.csv")
trump_tweets <-
  tweets %>% filter(
    date > as.POSIXct('2020-01-01 00:00:00', tz = "GMT") &
      date < as.POSIXct('2020-10-01 00:00:00', tz = "GMT")
  )
trump_tweets <- trump_tweets[order(as.Date(trump_tweets$date)), ]
trump_tweets = subset(trump_tweets,
                      select = -c(id, isRetweet, isDeleted, device, favorites, retweets))
trump_tweets$date <- as.Date(trump_tweets$date)
trump_tweets$date <- as.factor(trump_tweets$date)
dates = levels(trump_tweets$date)
resultString = rep.int("", length(dates))
for (i in 1:length(dates))
{
  for (j in 1:length(trump_tweets$text))
  {
    if (trump_tweets$date[j] == dates[i])
    {
      resultString[i] = paste0(resultString[i], trump_tweets$text[j])
    }
  }
}
result = data.frame(date = dates, text = resultString)
trump_tweets <- result
trump_tweets_subset <- trump_tweets %>% slice_head(n = 3000)
trump_tweets_subset_spring <-
  tweets %>% filter(
    date > as.POSIXct('2020-01-01 00:00:00', tz = "GMT") &
      date < as.POSIXct('2020-05-31 00:00:00', tz = "GMT")
  )
trump_tweets_subset_summer <-
  tweets %>% filter(
    date > as.POSIXct('2020-06-01 00:00:00', tz = "GMT") &
      date < as.POSIXct('2020-10-01 00:00:00', tz = "GMT")
  )
names(trump_tweets)[names(trump_tweets) == "date"] <- "DATE"
trump_tweets$DATE <- as.Date(trump_tweets$DATE)

The data set on tweets contains multiple entries on each day for every single tweet made by President Trump. Hence as the tweets made on a single day are combined together. The tweets between the time period 01/01/2020 to 10/01/2020 are considered for the project

tweets_index <-
  merge(x = willshirejantosep,
        y = trump_tweets,
        by = "DATE")
tweets_index <-  tweets_index %>% drop_na(WILL5000PRFC)
tweets_index$text <- gsub("[^\x01-\x7F]", "", tweets_index$text)
tweets_index$text <- rm_url(tweets_index$text)
tweets_index$text <- rm_twitter_url(tweets_index$text)
write.csv(tweets_index, "tweets_index.csv", row.names = FALSE)

Since the tweets and stock price index are sorted by date, both the tweets and stock price index are combined together by date.

pca_data <- read.csv("PCA_Analysis_Tweets.csv")
names(pca_data)[names(pca_data) == "ï..Filename"] <- "DATE"

Using Meaning Extractor Software(MEH), the tweets data set is given as input to get a count on the tokens. This data set will be used for doing PCA Analysis.

paran(pca_data[,5:ncol(pca_data)], iterations = 100, centile = 95)
## 
## Using eigendecomposition of correlation matrix.
## Computing: 10%  20%  30%  40%  50%  60%  70%  80%  90%  100%
## 
## 
## Results of Horn's Parallel Analysis for component retention
## 100 iterations, using the 95 centile estimate
## 
## -------------------------------------------------- 
## Component   Adjusted    Unadjusted    Estimated 
##             Eigenvalue  Eigenvalue    Bias 
## -------------------------------------------------- 
## 1          34.900786   44.347026      9.446239
## 2           9.327022   18.489189      9.162167
## 3           8.524859   17.488269      8.963410
## 4           6.665918   15.456872      8.790953
## 5           5.472154   14.140964      8.668810
## 6           4.809794   13.367849      8.558055
## 7           4.356543   12.788638      8.432094
## 8           3.887288   12.223081      8.335793
## 9           3.529891   11.751694      8.221802
## 10          3.166051   11.319787      8.153735
## 11          3.077800   11.104575      8.026775
## 12          2.913080   10.840313      7.927232
## 13          2.552343   10.385111      7.832768
## 14          2.452496   10.195589      7.743092
## 15          2.376106   10.037739      7.661632
## 16          2.332720   9.931892      7.599171
## 17          2.088436   9.595528      7.507091
## 18          2.064378    9.486343      7.421964
## 19          1.982658    9.337831      7.355173
## 20          1.909567    9.213020      7.303452
## 21          1.858088    9.067587      7.209498
## 22          1.875021    9.001486      7.126465
## 23          1.747985    8.802617      7.054631
## 24          1.666602    8.655775      6.989172
## 25          1.523687    8.449255      6.925567
## 26          1.493443    8.356739      6.863295
## 27          1.490638    8.281381      6.790743
## 28          1.393164    8.117773      6.724608
## 29          1.340084    8.017576      6.677492
## 30          1.372000    7.983279      6.611279
## 31          1.313846    7.864069      6.550222
## 32          1.301966    7.790374      6.488407
## 33          1.282839    7.730119      6.447279
## 34          1.234238    7.601428      6.367189
## 35          1.234400    7.553715      6.319314
## 36          1.179502    7.449272      6.269769
## 37          1.187638    7.386493      6.198854
## 38          1.112562    7.260267      6.147704
## 39          1.145332    7.231609      6.086276
## -------------------------------------------------- 
## 
## Adjusted eigenvalues > 1 indicate dimensions to retain.
## (39 components retained)
components = principal(pca_data[,5:ncol(pca_data)], nfactors = 5, rotate = 'oblimin')
## The determinant of the smoothed correlation was zero.
## This means the objective function is not defined.
## Chi square is based upon observed residuals.
## The determinant of the smoothed correlation was zero.
## This means the objective function is not defined for the null model either.
## The Chi square is thus based upon observed correlations.
plot(components$values[1:20], type="b")

From the PCA analysis,there are 39 components which has eigen values >1. Also the elbow plot shows a bend around 20. hence it becomes neceassary to look for the best themes from the PCA.

dim(components$loadings)
## [1] 923   5
components$loadings
## 
## Loadings:
##                   TC1    TC2    TC5    TC4    TC3   
## city               0.494                            
## state                     0.177  0.215  0.229       
## question           0.238  0.394                     
## federal            0.178                       0.253
## government                                     0.231
## consider          -0.105  0.112  0.159              
## involve            0.187               -0.138  0.123
## order              0.439                            
## poorly                                  0.113       
## democrat           0.136  0.288                     
## great              0.102                0.230       
## situation         -0.120                0.203       
## party                            0.153  0.241 -0.109
## nation             0.200                       0.194
## local              0.281                       0.176
## problem            0.200         0.115              
## congress                  0.251         0.384       
## amp                              0.189  0.128  0.105
## president                 0.125  0.193  0.143  0.113
## time                      0.120  0.120         0.153
## energy             0.137                0.255       
## total                                   0.475       
## partisan          -0.225  0.474  0.153 -0.110 -0.105
## impeachment       -0.319  0.574               -0.272
## hoax                      0.259  0.335        -0.176
## important          0.153  0.167                0.303
## matter             0.194  0.254  0.345 -0.184       
## republican         0.121  0.213         0.264       
## house                     0.303                0.145
## vote               0.191  0.158  0.111  0.297       
## dem                       0.364         0.150 -0.154
## witch             -0.171  0.314  0.261        -0.201
## hunt              -0.171  0.314  0.261        -0.201
## start             -0.110  0.149  0.191              
## win                0.187  0.211  0.150  0.174       
## election           0.173  0.151  0.255  0.116       
## end                0.134  0.100                     
## quickly                                             
## read               0.241  0.237  0.225        -0.190
## transcript        -0.179  0.273               -0.188
## see                       0.184  0.177  0.110       
## strong                                  0.394  0.170
## statement                 0.235                     
## game               0.143  0.216                     
## reason                                         0.159
## send               0.293                            
## article                   0.484               -0.151
## senate                    0.504                     
## weak               0.269  0.189               -0.116
## pathetic           0.108  0.104  0.154              
## X.lindseygrahamsc         0.416               -0.103
## scam                             0.327  0.121       
## continue                  0.155  0.120         0.176
## spend              0.163  0.226                     
## political                 0.324         0.169       
## history                   0.205  0.240        -0.117
## sad                0.228         0.196 -0.122       
## rt                               0.232         0.164
## thank                            0.207  0.198  0.124
## X.realdonaldtrump  0.137         0.132  0.137       
## deliver                   0.173                     
## X2020                     0.294  0.143              
## tire               0.142         0.115              
## job                              0.174  0.305  0.200
## X.cnn                            0.130  0.227       
## rating             0.183         0.113              
## watch              0.251  0.257                     
## change                    0.189         0.122  0.113
## love                                    0.458       
## hampshire                                     -0.186
## fine               0.243         0.135              
## military           0.105         0.140  0.433       
## year               0.283  0.268         0.143 -0.162
## investigation      0.153         0.487              
## play               0.281  0.285                     
## base               0.312                            
## X.foxnew           0.297                0.181 -0.200
## hurt               0.397         0.190              
## country                          0.167  0.221       
## badly              0.218                0.172       
## bring              0.294  0.130                     
## york               0.219 -0.167  0.170  0.173       
## post                                           0.122
## trump                     0.184  0.266  0.130       
## campaign                  0.125  0.469        -0.160
## raise              0.390  0.125  0.125              
## day                       0.118         0.246  0.244
## shot               0.291         0.131              
## set                0.146         0.337 -0.114       
## process                   0.404                     
## lead               0.301         0.126              
## X.danscavino              0.239  0.117  0.106 -0.105
## list                      0.237  0.131         0.121
## show               0.132         0.272         0.119
## result                    0.315                     
## promise                   0.314                     
## X.maga                           0.106  0.385 -0.214
## happen             0.212         0.221  0.122       
## presidential                                        
## candidate          0.101  0.120         0.103       
## long                      0.173  0.186         0.109
## jail               0.169         0.281        -0.107
## crime                                   0.372 -0.110
## big                0.173         0.154  0.236       
## people             0.145                0.174  0.128
## small                    -0.126         0.231  0.284
## group              0.395         0.101              
## politician                0.192               -0.138
## official                  0.114  0.161  0.117  0.171
## illegally                        0.229        -0.183
## spy                0.107         0.318        -0.120
## ukraine           -0.194  0.488  0.120              
## X.gopchairwoman           0.110         0.157       
## advance            0.102                       0.154
## fall               0.337                            
## obama              0.176  0.191  0.366              
## X.teamtrump        0.322                            
## look               0.108  0.203  0.214  0.150       
## fantastic                        0.121  0.133       
## american                  0.231         0.112  0.209
## speaker           -0.106  0.332  0.112              
## pelosi                    0.289                     
## call               0.229                            
## historic           0.350  0.185 -0.191              
## tax                0.101                0.445       
## cut                                     0.315       
## business                                0.233  0.385
## worker                    0.169         0.262  0.227
## under              0.183  0.262  0.139              
## unemployment              0.221               -0.110
## plan                      0.294                0.146
## attack             0.151  0.329  0.168              
## gun                0.235                0.156       
## reporter                         0.182              
## led                0.232  0.138                0.109
## troop              0.314  0.135                0.145
## combat             0.134                       0.307
## god                0.113                            
## single                           0.187              
## high                      0.186                0.129
## commit             0.132  0.275        -0.116       
## protester          0.600                            
## kill               0.341  0.175         0.107       
## urge                      0.257                0.145
## force                    -0.112                0.394
## tonight            0.123  0.296 -0.147  0.197  0.104
## family             0.154         0.114         0.227
## news                     -0.113  0.254  0.128  0.262
## closely           -0.109         0.190         0.101
## X.whitehouse             -0.103                0.290
## action             0.147  0.171        -0.158  0.255
## protect            0.133                0.447  0.166
## citizen            0.146         0.130         0.169
## hospital                         0.122 -0.173  0.359
## young              0.127        -0.133         0.121
## man                0.197         0.233              
## chance                                  0.159 -0.115
## amaze                     0.204         0.281  0.238
## told               0.150         0.347 -0.140       
## accept             0.132  0.210         0.129       
## head                      0.185                     
## forget             0.210  0.151         0.127  0.137
## person             0.108  0.241  0.174        -0.145
## washington         0.311                            
## street             0.275               -0.117       
## freedom                   0.148  0.126  0.114       
## general                          0.264  0.265  0.101
## book               0.116  0.129         0.151       
## control            0.258  0.213                     
## happy              0.209                            
## usa                       0.101         0.149       
## paid                                                
## dollar                                              
## top                                            0.113
## iran                      0.310         0.125       
## choice             0.279                0.121       
## gain               0.153  0.165 -0.165              
## admit              0.126  0.138  0.320              
## hate               0.110  0.106                     
## leader             0.100  0.236         0.206       
## senior                                              
## nothing                   0.149  0.159  0.114  0.120
## email             -0.134         0.469         0.112
## white                     0.137         0.116  0.151
## figure                                  0.153       
## aid               -0.185  0.213                0.115
## number                                  0.116       
## joe                0.338 -0.136  0.233  0.200  0.101
## biden              0.409         0.137              
## approve                   0.104  0.122 -0.140       
## middle             0.141  0.181                0.151
## east                      0.156         0.173       
## policy             0.144  0.307                     
## X.foxandfriend                                      
## caught                           0.343              
## death              0.119         0.104 -0.109  0.154
## large                            0.147         0.136
## week                      0.292         0.200  0.147
## senator                   0.295 -0.100  0.335       
## said                      0.236  0.113              
## trial                     0.492                     
## brought                   0.206         0.255       
## place              0.126         0.233              
## thought            0.190         0.234              
## staff                    -0.118                     
## push                      0.282         0.114       
## stop               0.283                       0.115
## money                     0.100  0.104  0.132       
## legal                     0.380                     
## decision                         0.132         0.242
## war                       0.121         0.124       
## lost                     -0.140  0.161              
## hand                      0.171                0.203
## produce                   0.194        -0.163       
## corrupt                   0.112  0.216        -0.110
## schiff            -0.276  0.498  0.154 -0.107 -0.178
## joke                      0.102         0.106 -0.108
## X.senatemajldr            0.535                0.253
## authority          0.103  0.122                     
## security                  0.206 -0.119  0.205  0.104
## give               0.103  0.174         0.144  0.211
## answer             0.208  0.216         0.105       
## media              0.135         0.375  0.102       
## fact                      0.252  0.222              
## X.scavino45       -0.160  0.232        -0.163       
## unite                     0.163  0.145              
## allow                     0.207                     
## X.potus                   0.342                0.241
## X.ivankatrump             0.219                     
## blue               0.157  0.139 -0.124              
## boom              -0.113  0.108                     
## talk                      0.278  0.153              
## point              0.104  0.186                     
## X.mike_pence              0.126                     
## join               0.124  0.321                0.129
## night              0.205                       0.109
## report             0.111  0.121  0.343              
## launch                    0.138  0.165         0.122
## vice                                                
## rest                                                
## easy                                    0.198       
## leadership         0.176         0.121              
## national           0.252                       0.121
## law                0.404         0.119  0.213       
## enforcement        0.348                0.174       
## market             0.125         0.155              
## wrong                            0.223  0.161       
## ohio                      0.299                     
## rally                     0.295         0.197 -0.227
## tremendous                              0.592       
## crowd                     0.218                     
## X95                       0.103                     
## approval                                0.157  0.161
## rate                            -0.101  0.323       
## smart                                   0.176 -0.109
## fully                                   0.262       
## agree                     0.270         0.118       
## black              0.412         0.148              
## support            0.114                0.293  0.182
## low                       0.167         0.172       
## record             0.248  0.195               -0.102
## court                     0.247  0.144              
## lower              0.172        -0.156  0.148  0.108
## build              0.100                0.151       
## southern                                            
## border                                  0.482  0.198
## wall                                    0.156       
## entire                    0.302                     
## ready              0.158  0.211 -0.127              
## hope                      0.261         0.112       
## crazy                                         -0.167
## nancy                     0.188                     
## power              0.111  0.266  0.124  0.124  0.110
## resolution                0.302               -0.166
## remember           0.204  0.152  0.202              
## fraud                            0.231              
## clear                     0.137  0.280  0.125       
## november           0.251                0.242 -0.231
## liberal            0.405  0.127  0.228        -0.124
## absolutely                0.185  0.122              
## right              0.199  0.269  0.166              
## stock                            0.122        -0.127
## team               0.230  0.117  0.144              
## meeting           -0.128                            
## discuss                   0.152                0.156
## trade                     0.278         0.121 -0.126
## price              0.148                            
## interview                 0.162                     
## X.gopleader       -0.153  0.309                     
## interest                  0.211                     
## prevent                   0.146                0.373
## oppose                                              
## speak                                               
## sit               -0.105  0.299                     
## majority           0.379                            
## late                      0.135                0.161
## short              0.147  0.174                     
## blame                            0.285 -0.115       
## sign                      0.111                0.230
## demand                    0.330                     
## executive                -0.155                0.108
## word               0.227                      -0.151
## attempt                          0.291              
## work                      0.137  0.105  0.242  0.206
## follow                    0.177                0.152
## significant       -0.126  0.264                0.330
## X.tomfitton               0.128  0.315 -0.212  0.133
## carry              0.141                      -0.155
## mess               0.201  0.207               -0.102
## clean                     0.270        -0.102  0.159
## terrible           0.142                0.109 -0.136
## X2016                     0.168  0.261  0.155       
## secretary          0.208                       0.170
## john                      0.139  0.216  0.248       
## coup                             0.293              
## update             0.168  0.231                0.100
## X.loudobb                 0.146  0.350 -0.108       
## corruption        -0.257  0.444  0.191              
## document           0.140         0.459              
## expose                           0.212 -0.103       
## department         0.181 -0.124                     
## X.jim_jordan              0.106  0.108  0.193       
## best                      0.178  0.130  0.203       
## X.senategop               0.497 -0.135         0.160
## finally            0.197  0.141         0.123       
## safe                                           0.182
## turn                      0.124  0.174  0.162       
## evidence                  0.383  0.214              
## mike              -0.108         0.109  0.416       
## appreciate                                     0.189
## honor              0.101  0.140         0.180       
## intelligence                     0.182              
## community                               0.170  0.227
## response          -0.124                       0.552
## information        0.154  0.101 -0.180         0.169
## medicare           0.141                       0.164
## pay                0.123                0.192  0.106
## advocate           0.160                0.383  0.145
## land               0.341                0.210       
## water                     0.353         0.163       
## glad               0.376        -0.120         0.137
## meet               0.150        -0.107         0.160
## today                     0.137  0.113  0.128  0.285
## georgia                                 0.253       
## learn              0.140  0.229  0.154         0.245
## deserve                                       -0.110
## live                     -0.133                0.361
## open                             0.253              
## dream              0.164  0.270                     
## X.kag2020         -0.205  0.242         0.224       
## rebuild            0.139  0.172                0.103
## america            0.215  0.101         0.190  0.132
## officer            0.362         0.159         0.114
## hit                              0.115  0.119       
## add                0.145  0.222 -0.135         0.124
## agreement                 0.372         0.113       
## receive                          0.120  0.199  0.218
## full                      0.372         0.113       
## X.ingrahamangle    0.121  0.102                     
## enjoy              0.139        -0.191              
## successful                0.270 -0.104  0.164  0.135
## fund               0.129                       0.189
## address                   0.179                0.111
## ensure             0.115                       0.322
## event                     0.240                0.115
## prove                     0.186  0.122  0.108       
## morning                          0.259              
## adam              -0.271  0.399  0.125              
## broke              0.135         0.130              
## economy                   0.237         0.164  0.116
## met               -0.148  0.212  0.139              
## robert             0.188         0.264              
## phase                     0.196 -0.147         0.411
## china                            0.139  0.170  0.115
## representative                                      
## early                     0.128         0.219  0.264
## develop                          0.134         0.159
## murder             0.206         0.133  0.187       
## innocent                  0.189                0.107
## arm                0.342  0.208                0.177
## mexico                    0.185                0.130
## administration            0.134  0.156  0.143  0.110
## americas                  0.322                0.265
## enemy                            0.153  0.186  0.281
## defend                                  0.354  0.124
## defeat            -0.109  0.298                     
## radical            0.374                      -0.175
## increase           0.235  0.100                0.218
## production        -0.128                       0.192
## company           -0.156                0.263  0.150
## colorado                  0.171 -0.183  0.243  0.177
## fight                     0.107         0.427  0.100
## horrible                                0.152       
## chief                     0.124  0.160              
## delay                     0.108                0.208
## abuse                     0.396  0.235              
## month              0.208  0.166         0.248       
## threat                    0.151                     
## wisconsin                -0.108         0.172  0.182
## donald                           0.124              
## announce                  0.125         0.166  0.170
## issue              0.125  0.193        -0.126  0.246
## refuse             0.284                      -0.176
## phone                            0.133              
## drug               0.262 -0.135        -0.110       
## violent            0.497        -0.112         0.132
## criminal           0.213                            
## step                                    0.202  0.290
## chuck             -0.146  0.190         0.157       
## schumer           -0.131  0.233         0.157       
## fair                      0.139               -0.132
## true               0.142         0.288              
## unfair                    0.218                     
## basement           0.247                      -0.144
## hear               0.193  0.268  0.106              
## tomorrow                                0.136       
## better             0.142         0.108         0.176
## break.                           0.419              
## poll                      0.246         0.151       
## drop                             0.201  0.122       
## primary            0.130         0.152  0.170 -0.142
## race               0.185         0.137  0.272 -0.127
## concern            0.137         0.185 -0.158       
## fairness                  0.300  0.129              
## witness                   0.486  0.104        -0.151
## lawyer             0.103         0.320  0.105 -0.181
## bloomberg         -0.125  0.139         0.282 -0.173
## false                            0.160  0.114       
## save               0.128                0.190  0.269
## healthcare                              0.114       
## individual                0.107                0.151
## rep                                     0.154       
## angry                     0.124  0.166  0.112       
## protest            0.400                            
## lie                0.239  0.122  0.295              
## real                             0.123  0.188       
## sander                    0.267               -0.110
## elizabeth                        0.163  0.225 -0.118
## warren             0.109         0.140  0.166       
## dead                            -0.114        -0.173
## potential                                           
## voter              0.215  0.213  0.143              
## leave                            0.133  0.156       
## fast               0.107 -0.138  0.156              
## bernie            -0.137  0.191  0.117  0.248 -0.145
## fake                     -0.141  0.272  0.152       
## partner                          0.109         0.210
## hard                             0.277  0.248  0.203
## determine          0.104  0.346                     
## future            -0.123  0.213         0.251       
## terrorist          0.320  0.125         0.161       
## past                      0.247                0.104
## wonderful          0.181                0.103       
## guy                       0.152  0.193              
## left               0.396 -0.119  0.181        -0.102
## flag               0.163                            
## progress                  0.194         0.176       
## name               0.151                0.104       
## protestor          0.495               -0.115  0.118
## attorney                         0.404  0.140       
## barr              -0.105 -0.109  0.178  0.162 -0.113
## close                     0.133                0.254
## stand              0.178                0.302       
## potus                                          0.173
## care                      0.159                0.354
## hardworking               0.137         0.236       
## socialist                 0.337               -0.145
## agenda                                  0.435       
## brilliant         -0.102               -0.110  0.192
## move               0.134                0.104  0.181
## massive            0.220  0.107        -0.123  0.108
## patriot                                 0.158       
## thert              0.294  0.356        -0.132  0.190
## deal               0.119  0.177         0.134       
## claim              0.102  0.285  0.144         0.171
## reach                                               
## simple             0.135  0.195         0.122  0.238
## case                      0.156  0.398              
## spent                     0.296                     
## justice                   0.216  0.111              
## opportunity        0.183  0.319                     
## safety             0.162        -0.159  0.105  0.203
## idea               0.208  0.120         0.160 -0.107
## light                            0.233         0.294
## trt                       0.293         0.201  0.173
## vet                      -0.146         0.671       
## minister                                            
## X.dailycaller                    0.210  0.124  0.103
## held                             0.109  0.125       
## daily                     0.262                0.184
## abolish            0.278                            
## private                   0.215  0.255 -0.141  0.181
## health                                  0.184  0.353
## ban                0.273         0.211              
## X.trumpwarroom     0.196                            
## key                              0.114  0.162  0.132
## air                0.153  0.196                     
## sen                0.109  0.443                0.208
## hrt                0.362  0.234  0.204 -0.138       
## blow                      0.254                     
## russian                          0.320         0.146
## X.sentedcruz              0.617        -0.107       
## seeing                          -0.150  0.164  0.177
## clinton                   0.138  0.272              
## provide                   0.108                0.390
## respect            0.140                0.107 -0.132
## debate                                  0.209       
## judge                     0.172  0.318         0.120
## supreme                   0.188                     
## major              0.119  0.101  0.101         0.104
## bless                                          0.121
## beat                             0.298              
## impeach           -0.182  0.498               -0.100
## correct                   0.238  0.131         0.128
## X.marshablackburn         0.455  0.102 -0.121       
## trust                     0.226                0.117
## farmer                    0.108         0.434       
## tough              0.128 -0.136         0.317       
## term               0.122                            
## opponent                         0.163  0.106       
## expect             0.180         0.202              
## russia                           0.431              
## serious            0.173               -0.103       
## create             0.103         0.172         0.118
## reject             0.132  0.146               -0.131
## minute                           0.276              
## politics          -0.118  0.135         0.124       
## disgrace                         0.160              
## michigan                 -0.119  0.180              
## strongly                                0.327       
## X.mzhemingway      0.372  0.219  0.203              
## comey                            0.397              
## leak              -0.138         0.344              
## pray                                    0.144  0.212
## public             0.131  0.147                0.104
## school             0.317                            
## press                                          0.417
## begin                            0.102  0.154  0.141
## florida            0.109         0.142  0.188       
## pass               0.132  0.178                0.301
## football           0.210                0.140  0.132
## X.kayleighmcenany                                   
## thrt                      0.358  0.155              
## incredible                              0.487       
## shut                                                
## rig                       0.145  0.176  0.133       
## iowa                      0.436         0.142       
## sleep              0.174         0.115  0.243  0.111
## X2nd                                                
## amendment                               0.592       
## virginia                                0.338       
## so.called          0.214         0.152 -0.170       
## careful                                             
## champion           0.114                0.269 -0.112
## excite                    0.169                0.204
## ad                 0.181                            
## project            0.199         0.167         0.158
## regulation         0.117                0.155       
## hispanic                                            
## mean                             0.131  0.130  0.138
## additional                                     0.176
## X.seanhannity             0.189                     
## special            0.160 -0.132  0.142  0.131       
## life               0.149         0.121  0.311       
## together                                       0.309
## video                     0.173  0.289        -0.161
## available                        0.135              
## chinese                  -0.150  0.191         0.244
## foreign                   0.248  0.181              
## swamp             -0.187  0.137         0.282 -0.112
## texas                                               
## roger                            0.161  0.265 -0.135
## represent                        0.123  0.171       
## illegal                          0.322              
## immigration       -0.177 -0.121         0.236  0.160
## X.2a                                    0.544       
## complete                                0.578       
## endorsement                             0.658       
## supporter                               0.345       
## huge                      0.159  0.159  0.219       
## thanks                    0.108  0.159         0.192
## X.richardgrenell   0.154                0.140       
## spoke                                          0.346
## economic          -0.151         0.196         0.201
## find               0.107  0.129                     
## compare                          0.166              
## manager           -0.165  0.355  0.179              
## tuesday                                 0.153       
## story              0.186  0.135  0.198              
## info                      0.216  0.231              
## irt                0.351  0.290        -0.123  0.319
## charge                    0.197  0.208         0.107
## review                           0.181         0.205
## explain                          0.177              
## hunter                    0.107  0.201         0.115
## X.greggjarrett    -0.118         0.433 -0.162  0.207
## whistleblower     -0.181  0.277  0.250              
## sure               0.143         0.135              
## copy                                                
## cnn                       0.134  0.142              
## conversation                     0.141         0.197
## X.dbongino         0.103  0.161  0.317 -0.138       
## destroy            0.280  0.147  0.193        -0.115
## target                    0.126  0.263         0.117
## challenge          0.183               -0.137  0.263
## write              0.274         0.160              
## grow                      0.197                     
## X.senjohnbarrasso         0.614 -0.128         0.233
## office                           0.193  0.164  0.175
## cost               0.134  0.197                0.108
## friend                           0.111              
## text               0.194         0.137              
## message                                 0.101       
## fbi                              0.551              
## dossier            0.108         0.247 -0.107       
## source             0.229         0.195              
## page               0.105  0.346  0.175        -0.124
## treat              0.151                       0.199
## saturday                         0.167              
## elect              0.147  0.256         0.112       
## throw              0.172         0.182              
## jim                0.227                0.299       
## truth                     0.311  0.161         0.177
## yesterday          0.208  0.140                     
## coronavirus       -0.252 -0.116  0.101         0.527
## greatly                          0.104              
## effort            -0.195  0.173                0.183
## bolton                    0.135                     
## jame                             0.335              
## release           -0.136         0.308              
## schedule                         0.107              
## complain          -0.235  0.182  0.177              
## failing                                             
## deep                     -0.180  0.152  0.144       
## ny                -0.101         0.244         0.230
## virus                    -0.123  0.196 -0.105  0.286
## extraordinary                    0.162         0.165
## prt                0.169                       0.280
## affect                          -0.157         0.397
## visit                     0.318                0.216
## outbreak                  0.164 -0.179         0.376
## X2a                              0.232  0.157       
## rule               0.157  0.229         0.152  0.215
## protection                      -0.185         0.325
## chairman          -0.109  0.498 -0.202  0.122  0.174
## infrastructure                   0.106  0.166  0.244
## owner              0.145                            
## congressman              -0.140         0.456       
## X.breitbartnew                                      
## mention                                             
## admin                            0.184         0.126
## finish            -0.119  0.133         0.111       
## probe              0.112         0.110  0.187  0.108
## friday                    0.260  0.158              
## chris                                   0.296       
## msdnc                            0.246  0.177       
## fox                              0.199  0.119       
## die                                            0.131
## social                           0.180         0.254
## politically               0.202                0.101
## standard                  0.248                0.191
## focus                     0.223                0.177
## peace              0.150  0.110         0.107  0.117
## israel             0.159                            
## homeland           0.163  0.163 -0.223         0.156
## johnson                                 0.250       
## vaccine            0.129                       0.183
## jersey            -0.116                            
## serve                            0.188  0.442       
## phony              0.189  0.233  0.178  0.236 -0.175
## incompetent               0.242         0.112       
## disaster                  0.131                0.118
## stay                      0.108  0.105 -0.122  0.210
## bill                                    0.103  0.323
## recovery                         0.235         0.102
## ly                        0.141  0.267  0.113       
## fraudulent                                          
## dangerous                                           
## hold               0.206                0.134       
## highly                                  0.202       
## sick               0.135  0.145                0.158
## X.donaldjtrumpjr   0.186         0.225              
## earth                     0.248                     
## double                    0.109  0.258              
## listen             0.216  0.282                0.101
## north              0.216         0.128  0.187       
## carolina           0.188         0.111  0.221 -0.111
## tort               0.112  0.280                0.307
## return                                              
## eastern                                             
## honest                    0.126                     
## buy                                     0.179       
## decade                    0.162                     
## handle                           0.178  0.140  0.333
## understand                                          
## celebrate          0.122  0.253 -0.117              
## X.thehill                 0.116  0.168              
## view               0.191  0.176                0.222
## inrt                      0.289                0.238
## cover                            0.310              
## conservative              0.166  0.208  0.211       
## worse                            0.210         0.212
## gop                       0.251  0.229 -0.146       
## loser                                   0.220       
## nomination        -0.115  0.251         0.201 -0.122
## opening            0.116  0.161        -0.100       
## face                      0.140                0.172
## speech             0.194  0.205                     
## imagine            0.251  0.209  0.111              
## fail                             0.214         0.103
## comment           -0.164  0.105  0.345         0.158
## industry                  0.145                0.220
## terrific                  0.156 -0.112  0.460       
## X3rd               0.281                0.188 -0.162
## surge              0.197  0.262 -0.128              
## hillary                          0.310  0.109       
## wait                      0.278                     
## collusion                 0.136  0.543              
## muel              -0.168  0.156  0.380  0.128       
## wrt                0.257  0.259                0.385
## central                   0.183         0.137       
## manufacturing      0.117                            
## side                      0.181         0.103       
## damage             0.358                       0.187
## congressional                    0.149              
## silent             0.364         0.159        -0.161
## lose               0.106         0.105              
## prime                                               
## alabama                                 0.315       
## nice               0.117                            
## alone                            0.179         0.223
## development                             0.101  0.153
## california                       0.344  0.168       
## defense            0.198  0.147                0.231
## mark                                    0.152       
## secure                                  0.285       
## birthday                                            
## car                0.107         0.123         0.150
## building                         0.199         0.124
## expand                                         0.314
## remark             0.116                            
## block                                               
## positive                                            
## form                            -0.144  0.161       
## X.coronavirus                           0.153  0.430
## task              -0.213 -0.185                0.430
## request            0.149                            
## child              0.173                       0.114
## victory            0.206                      -0.153
## drain             -0.177                0.265       
## quick                                   0.154       
## mistake            0.237                      -0.134
## fire               0.249         0.124  0.203       
## level                            0.201              
## super                            0.170  0.228 -0.112
## prison             0.245         0.131        -0.113
## veteran            0.181        -0.107  0.397       
## congratulation                                      
## free               0.126         0.173         0.179
## woman              0.380                            
## restore            0.187                            
## data                                   -0.138  0.142
## dnc                              0.130              
## south                                   0.174       
## hero                             0.183         0.267
## rip                0.240                            
## trend              0.350         0.203 -0.176       
## system                                         0.151
## failure            0.131        -0.147  0.153  0.123
## X.nytime                 -0.135  0.143  0.134       
## barack             0.134         0.216  0.129 -0.131
## arizona            0.139         0.178              
## safely                           0.166         0.244
## traffic           -0.111         0.101         0.242
## train                                               
## X.saracarterdc                   0.364              
## chaos              0.288                            
## X.erictrump        0.144         0.214              
## pack               0.104  0.145                     
## winner                    0.101         0.147       
## success            0.161         0.150 -0.143       
## reveal                           0.348              
## X1.2                                    0.107       
## professional                            0.233  0.216
## longer             0.241         0.151 -0.169  0.169
## governor           0.229 -0.238         0.107       
## cuomo              0.180 -0.112  0.146         0.152
## scandal                          0.312 -0.115       
## andraw                           0.168              
## count                            0.113              
## st                 0.307 -0.109  0.197              
## director                         0.243         0.299
## puppet                           0.197              
## surprise                                            
## west                             0.149  0.243       
## operation                              -0.181  0.180
## warrior                          0.144              
## fisa                             0.388              
## twitter            0.334         0.289 -0.157       
## brave                                   0.315       
## food               0.107         0.105         0.249
## straight           0.229         0.297  0.173       
## member             0.113         0.192         0.113
## ballot             0.115 -0.162  0.280  0.110       
## bore                                    0.107       
## cold                     -0.120  0.323        -0.111
## beautiful          0.257         0.108  0.152       
## ship              -0.105                       0.205
## X.flotus           0.132 -0.109         0.187       
## service            0.243                0.123  0.143
## student                                 0.128  0.177
## fighter                  -0.181         0.557       
## tom                      -0.187  0.233  0.271       
## india             -0.120         0.237              
## destruction        0.294 -0.107         0.142       
## worst                            0.308              
## shortly            0.260                0.171       
## supply            -0.173                       0.408
## built                    -0.121                     
## prepare            0.151                            
## crook                    -0.106  0.306  0.106       
## arrive             0.198                0.102  0.126
## field                                   0.209 -0.156
## doj                      -0.101  0.444  0.133       
## violence           0.421        -0.151 -0.158  0.100
## treatment                       -0.111         0.364
## nevada             0.228         0.151              
## enthusiasm         0.314                            
## convention         0.145                      -0.109
## ridiculous         0.195         0.200              
## mayor              0.462                0.197       
## spread            -0.251 -0.107  0.219         0.384
## accord             0.119         0.209              
## medical                                        0.270
## patient                  -0.111                0.107
## michael                          0.388              
## flynn                    -0.178  0.480         0.115
## ort                0.198         0.100         0.232
## mile                     -0.117  0.175              
## extreme            0.259               -0.160       
## difference         0.148                            
## sanctuary                               0.170       
## pennsylvania       0.105         0.196  0.157       
## dr                       -0.146                0.230
## doctor             0.105        -0.105         0.311
## travel            -0.172                0.122  0.259
## X.cdcgov                        -0.108         0.436
## arrest             0.351 -0.103                     
## impact                                         0.190
## X9.00                                               
## inform             0.164                            
## minnesota          0.111                0.220       
## area                     -0.175  0.125  0.135  0.117
## conference               -0.141 -0.173         0.324
## swine                                               
## flu                                     0.122       
## communist                -0.155  0.253         0.242
## david              0.119                0.267  0.126
## test                     -0.222  0.191         0.372
## tennessee                       -0.138  0.208       
## pandemic                 -0.111  0.149         0.489
## faucus                                              
## X.covid19         -0.140                       0.567
## nyc                0.276 -0.102                     
## risk               0.102                       0.248
## maga                                    0.187       
## cure               0.155                       0.297
## reduce             0.179                0.306  0.140
## crisis                                         0.401
## slow                                           0.296
## nurse              0.154                       0.388
## prevail           -0.116                       0.289
## oval              -0.117         0.146 -0.103  0.190
## confirm                          0.155  0.140       
## covid              0.115 -0.162  0.132         0.349
## easily                                              
## oklahoma                 -0.149         0.227       
## participate        0.299        -0.120         0.255
## biden.s            0.263         0.129              
## plant                    -0.130  0.188  0.105       
## emergency                              -0.186  0.374
## paycheck                        -0.150         0.444
## program                         -0.138         0.398
## player             0.235                            
## employee           0.253  0.113                0.212
## study              0.107 -0.105                0.139
## resource           0.168                       0.292
## seattle            0.261                            
## distance           0.188               -0.134  0.274
## critical           0.117 -0.117  0.287 -0.180  0.347
## voice              0.298         0.140         0.134
## police             0.651 -0.121               -0.111
## ventilator        -0.289 -0.241  0.162         0.313
## X5.30             -0.134 -0.120                0.162
## X.thebradfordfile  0.288         0.259              
## navy               0.108 -0.108         0.367  0.236
## X.chuckgrassley                         0.102       
## endorse            0.185         0.204              
## psycho            -0.165 -0.189  0.378              
## mask                     -0.130  0.178              
## center                                         0.258
## lamestream               -0.234  0.234              
## mail.in            0.138 -0.154  0.175              
## declassify         0.115         0.468         0.221
## guard              0.338        -0.173  0.114  0.101
## X.joebiden         0.273                       0.109
## X96                      -0.167         0.173       
## mob                0.423                            
## portland           0.390               -0.195       
## absentee           0.111                            
## monument           0.439 -0.102                     
## antifa             0.463               -0.136       
## minneapolis        0.346        -0.128  0.148       
## anarchist          0.664 -0.105                     
## agitator           0.473                      -0.105
## church             0.365 -0.155  0.168              
## rioter             0.500                            
## peaceful           0.612                            
## burn               0.482               -0.122       
## thug               0.438 -0.111               -0.114
## looter             0.447 -0.114               -0.228
## statue             0.390                            
## defund             0.271 -0.138               -0.151
## 
##                   TC1    TC2    TC5    TC4    TC3
## SS loadings    23.545 23.145 19.907 19.001 18.981
## Proportion Var  0.026  0.025  0.022  0.021  0.021
## Cumulative Var  0.026  0.051  0.072  0.093  0.113
loadings5 = as.data.frame(components$loadings[1:923, 1:5])
theme1_loadings5 = subset(loadings5[order(loadings5$TC1, decreasing = T),], TC1 >= 0.15, select = c(TC1))
theme2_loadings5 = subset(loadings5[order(loadings5$TC2, decreasing = T),], TC2 >= 0.15, select = c(TC2))
theme3_loadings5 = subset(loadings5[order(loadings5$TC3, decreasing = T),], TC3 >= 0.15, select = c(TC3))
theme4_loadings5 = subset(loadings5[order(loadings5$TC4, decreasing = T),], TC4 >= 0.15, select = c(TC4))
theme5_loadings5 = subset(loadings5[order(loadings5$TC5, decreasing = T),], TC5 >= 0.15, select = c(TC5))
print(theme1_loadings5)
##                         TC1
## anarchist         0.6638672
## police            0.6511708
## peaceful          0.6117521
## protester         0.5998266
## rioter            0.4998983
## violent           0.4971795
## protestor         0.4954145
## city              0.4941912
## burn              0.4823503
## agitator          0.4729674
## antifa            0.4625706
## mayor             0.4615375
## looter            0.4468648
## order             0.4391768
## monument          0.4389484
## thug              0.4382296
## mob               0.4226555
## violence          0.4212080
## black             0.4119240
## biden             0.4090240
## liberal           0.4047845
## law               0.4038209
## protest           0.3995261
## hurt              0.3967933
## left              0.3959992
## group             0.3950958
## statue            0.3901931
## raise             0.3899849
## portland          0.3896927
## woman             0.3800026
## majority          0.3786825
## glad              0.3757408
## radical           0.3735338
## X.mzhemingway     0.3721846
## church            0.3646761
## silent            0.3642987
## hrt               0.3618690
## officer           0.3618298
## damage            0.3578197
## irt               0.3510382
## arrest            0.3509483
## trend             0.3499956
## historic          0.3498998
## enforcement       0.3476044
## minneapolis       0.3463035
## arm               0.3422827
## land              0.3411224
## kill              0.3405034
## guard             0.3380027
## joe               0.3375496
## fall              0.3371242
## twitter           0.3335551
## X.teamtrump       0.3218568
## terrorist         0.3197262
## school            0.3169886
## enthusiasm        0.3137511
## troop             0.3137286
## base              0.3123738
## washington        0.3105556
## st                0.3068329
## lead              0.3006635
## participate       0.2994526
## voice             0.2981189
## X.foxnew          0.2971173
## bring             0.2941061
## thert             0.2935330
## destruction       0.2935141
## send              0.2925347
## shot              0.2910707
## X.thebradfordfile 0.2880119
## chaos             0.2877038
## refuse            0.2838061
## year              0.2831284
## stop              0.2826070
## X3rd              0.2808827
## local             0.2806871
## play              0.2806025
## destroy           0.2799176
## choice            0.2787797
## abolish           0.2782086
## nyc               0.2756288
## street            0.2754817
## write             0.2741055
## ban               0.2727723
## X.joebiden        0.2727186
## defund            0.2713544
## weak              0.2690568
## biden.s           0.2625103
## drug              0.2615467
## seattle           0.2611747
## shortly           0.2599002
## extreme           0.2589973
## control           0.2583702
## wrt               0.2569129
## beautiful         0.2568904
## employee          0.2531219
## national          0.2520747
## november          0.2512448
## imagine           0.2510998
## watch             0.2507057
## fire              0.2489450
## record            0.2475848
## basement          0.2472013
## prison            0.2452268
## fine              0.2434405
## service           0.2428401
## longer            0.2409712
## read              0.2406486
## rip               0.2402953
## lie               0.2394425
## question          0.2381896
## mistake           0.2371746
## increase          0.2354960
## player            0.2350699
## gun               0.2345772
## led               0.2323461
## team              0.2303610
## straight          0.2294427
## source            0.2290597
## call              0.2290246
## governor          0.2288283
## sad               0.2284144
## nevada            0.2283331
## jim               0.2273135
## word              0.2266148
## massive           0.2200190
## york              0.2187403
## badly             0.2178938
## north             0.2163771
## listen            0.2155610
## voter             0.2151568
## america           0.2146307
## so.called         0.2135837
## criminal          0.2130248
## happen            0.2115403
## forget            0.2104891
## football          0.2096678
## happy             0.2087895
## idea              0.2084349
## yesterday         0.2084337
## secretary         0.2077712
## answer            0.2077201
## month             0.2075177
## hold              0.2062979
## victory           0.2059732
## murder            0.2057602
## night             0.2053848
## remember          0.2040008
## mess              0.2010517
## nation            0.2004719
## problem           0.1996344
## project           0.1988997
## right             0.1987983
## ort               0.1982523
## arrive            0.1977114
## defense           0.1976348
## man               0.1972419
## finally           0.1966095
## surge             0.1965416
## X.trumpwarroom    0.1956469
## ridiculous        0.1945760
## text              0.1943213
## matter            0.1940753
## speech            0.1936251
## hear              0.1930304
## vote              0.1910881
## view              0.1909877
## thought           0.1898201
## phony             0.1889910
## robert            0.1884206
## carolina          0.1883662
## distance          0.1876813
## win               0.1874099
## involve           0.1870034
## restore           0.1869568
## story             0.1864366
## X.donaldjtrumpjr  0.1856419
## race              0.1850186
## endorse           0.1848121
## opportunity       0.1829615
## under             0.1828937
## rating            0.1827546
## challenge         0.1826256
## veteran           0.1814507
## wonderful         0.1814096
## department        0.1813633
## ad                0.1808135
## cuomo             0.1796438
## expect            0.1796124
## reduce            0.1788675
## federal           0.1781370
## stand             0.1778823
## leadership        0.1759405
## obama             0.1759355
## sleep             0.1742686
## child             0.1733060
## election          0.1731823
## big               0.1728362
## serious           0.1727037
## throw             0.1718866
## lower             0.1718319
## jail              0.1690495
## prt               0.1689266
## update            0.1677189
## resource          0.1675410
## dream             0.1643291
## inform            0.1641096
## homeland          0.1631630
## spend             0.1630565
## flag              0.1625446
## safety            0.1621888
## success           0.1608995
## special           0.1599208
## advocate          0.1596608
## israel            0.1589992
## ready             0.1584395
## blue              0.1569029
## rule              0.1566643
## cure              0.1554646
## family            0.1544528
## information       0.1544421
## nurse             0.1536237
## X.richardgrenell  0.1536153
## investigation     0.1533168
## important         0.1529468
## gain              0.1528390
## air               0.1525651
## name              0.1513642
## attack            0.1508573
## prepare           0.1507715
## treat             0.1505835
## peace             0.1502272
## told              0.1501528
## meet              0.1500162
print(theme2_loadings5)
##                         TC2
## X.sentedcruz      0.6165043
## X.senjohnbarrasso 0.6143922
## impeachment       0.5740680
## X.senatemajldr    0.5354780
## senate            0.5037341
## impeach           0.4984366
## schiff            0.4978518
## chairman          0.4975979
## X.senategop       0.4973258
## trial             0.4921904
## ukraine           0.4884535
## witness           0.4861340
## article           0.4839219
## partisan          0.4737873
## X.marshablackburn 0.4547089
## corruption        0.4440431
## sen               0.4426296
## iowa              0.4364921
## X.lindseygrahamsc 0.4158812
## process           0.4039619
## adam              0.3990796
## abuse             0.3955141
## question          0.3942537
## evidence          0.3834347
## legal             0.3804129
## full              0.3722750
## agreement         0.3720111
## dem               0.3639961
## thrt              0.3578568
## thert             0.3555261
## manager           0.3554749
## water             0.3528811
## determine         0.3464449
## page              0.3459796
## X.potus           0.3415665
## socialist         0.3366118
## speaker           0.3319289
## demand            0.3303520
## attack            0.3287627
## political         0.3243554
## americas          0.3216177
## join              0.3214789
## opportunity       0.3188101
## visit             0.3175938
## result            0.3151519
## witch             0.3142493
## hunt              0.3142493
## promise           0.3136124
## truth             0.3108721
## iran              0.3103399
## X.gopleader       0.3094337
## policy            0.3066011
## house             0.3029219
## entire            0.3023411
## resolution        0.3015770
## fairness          0.3003549
## ohio              0.2993412
## sit               0.2985053
## defeat            0.2982275
## spent             0.2960632
## tonight           0.2955216
## senator           0.2951595
## rally             0.2946252
## plan              0.2940449
## X2020             0.2938160
## trt               0.2933445
## week              0.2923914
## irt               0.2895562
## pelosi            0.2894413
## inrt              0.2892301
## democrat          0.2878613
## play              0.2847997
## claim             0.2847824
## listen            0.2819567
## push              0.2817403
## tort              0.2796954
## trade             0.2782586
## wait              0.2780350
## talk              0.2778706
## whistleblower     0.2771189
## commit            0.2751625
## transcript        0.2732169
## successful        0.2704863
## dream             0.2703668
## clean             0.2701941
## agree             0.2699599
## right             0.2685189
## hear              0.2683121
## year              0.2678223
## sander            0.2674015
## power             0.2657224
## significant       0.2640143
## daily             0.2621297
## under             0.2617876
## surge             0.2616280
## hope              0.2611494
## friday            0.2596233
## wrt               0.2591379
## hoax              0.2586550
## watch             0.2573419
## urge              0.2568530
## elect             0.2560640
## blow              0.2544515
## matter            0.2542948
## celebrate         0.2528970
## fact              0.2516182
## gop               0.2510753
## congress          0.2509022
## nomination        0.2505875
## standard          0.2484810
## foreign           0.2479445
## earth             0.2475834
## past              0.2465442
## court             0.2465266
## poll              0.2458661
## X.kag2020         0.2419656
## incompetent       0.2416508
## person            0.2409293
## event             0.2402463
## X.danscavino      0.2392826
## correct           0.2380204
## list              0.2372812
## economy           0.2368782
## read              0.2366419
## said              0.2361743
## leader            0.2356696
## statement         0.2350354
## hrt               0.2343408
## schumer           0.2334318
## phony             0.2326772
## X.scavino45       0.2323043
## update            0.2310650
## american          0.2308178
## learn             0.2293256
## rule              0.2293034
## trust             0.2259092
## spend             0.2258555
## focus             0.2231580
## add               0.2222545
## unemployment      0.2207047
## X.ivankatrump     0.2189000
## X.mzhemingway     0.2188411
## unfair            0.2184160
## crowd             0.2177412
## answer            0.2163352
## info              0.2161163
## game              0.2161086
## justice           0.2157125
## private           0.2150382
## voter             0.2134327
## republican        0.2130948
## aid               0.2130799
## future            0.2126602
## control           0.2126411
## met               0.2120094
## interest          0.2113917
## win               0.2111616
## ready             0.2107689
## accept            0.2097986
## imagine           0.2093966
## arm               0.2081178
## mess              0.2072735
## allow             0.2066570
## security          0.2057017
## brought           0.2056040
## history           0.2053507
## speech            0.2051483
## amaze             0.2039261
## look              0.2033582
## politically       0.2015669
## charge            0.1970074
## grow              0.1969719
## cost              0.1966618
## air               0.1962174
## phase             0.1958707
## simple            0.1952570
## record            0.1948938
## progress          0.1942641
## produce           0.1942556
## issue             0.1934882
## politician        0.1922445
## obama             0.1909843
## bernie            0.1908016
## chuck             0.1902356
## X.seanhannity     0.1893769
## innocent          0.1892101
## weak              0.1885152
## change            0.1885070
## nancy             0.1880381
## supreme           0.1878167
## high              0.1862705
## prove             0.1861606
## point             0.1860214
## historic          0.1850828
## mexico            0.1849021
## absolutely        0.1847281
## head              0.1845495
## see               0.1840975
## trump             0.1836479
## central           0.1833628
## complain          0.1817577
## side              0.1810619
## middle            0.1807674
## address           0.1790080
## best              0.1780624
## pass              0.1775840
## follow            0.1774210
## deal              0.1766608
## state             0.1766030
## view              0.1763697
## kill              0.1752125
## short             0.1742851
## give              0.1739373
## video             0.1734343
## deliver           0.1733728
## effort            0.1731901
## long              0.1727942
## rebuild           0.1716328
## judge             0.1715961
## colorado          0.1713195
## hand              0.1710791
## action            0.1706529
## excite            0.1689840
## worker            0.1687774
## X2016             0.1683333
## important         0.1673740
## low               0.1672522
## conservative      0.1664027
## month             0.1660033
## gain              0.1648312
## outbreak          0.1642486
## homeland          0.1632044
## unite             0.1626891
## decade            0.1622579
## interview         0.1618716
## X.dbongino        0.1609412
## opening           0.1606031
## care              0.1586525
## huge              0.1585044
## vote              0.1575439
## muel              0.1564443
## east              0.1563281
## case              0.1562318
## terrific          0.1559107
## continue          0.1552967
## remember          0.1524133
## guy               0.1523748
## discuss           0.1523578
## threat            0.1513183
## election          0.1512781
## forget            0.1506845
print(theme3_loadings5)
##                         TC3
## X.covid19         0.5665733
## response          0.5522320
## coronavirus       0.5274439
## pandemic          0.4894479
## paycheck          0.4442089
## X.cdcgov          0.4363075
## X.coronavirus     0.4302816
## task              0.4298764
## press             0.4172032
## phase             0.4109203
## supply            0.4079173
## crisis            0.4005199
## program           0.3978751
## affect            0.3966436
## force             0.3936949
## provide           0.3901850
## nurse             0.3881040
## business          0.3849238
## wrt               0.3847320
## spread            0.3843703
## outbreak          0.3760948
## emergency         0.3743275
## prevent           0.3728965
## test              0.3722214
## treatment         0.3638938
## live              0.3613697
## hospital          0.3594379
## care              0.3541239
## health            0.3528744
## covid             0.3491704
## critical          0.3465853
## spoke             0.3462540
## handle            0.3327194
## significant       0.3303057
## protection        0.3249750
## conference        0.3239745
## bill              0.3234668
## ensure            0.3223007
## irt               0.3191471
## expand            0.3136638
## ventilator        0.3130080
## doctor            0.3107403
## together          0.3092505
## tort              0.3074234
## combat            0.3071307
## important         0.3030690
## pass              0.3012471
## director          0.2993381
## cure              0.2972534
## slow              0.2958564
## light             0.2935592
## resource          0.2916628
## X.whitehouse      0.2901955
## step              0.2895642
## prevail           0.2886242
## virus             0.2862774
## today             0.2849470
## small             0.2842194
## enemy             0.2810420
## prt               0.2804700
## distance          0.2744769
## medical           0.2700140
## save              0.2685844
## hero              0.2669459
## americas          0.2647729
## early             0.2640017
## challenge         0.2634862
## news              0.2619085
## travel            0.2589788
## center            0.2576540
## participate       0.2546769
## action            0.2546675
## social            0.2538954
## close             0.2535060
## federal           0.2528804
## X.senatemajldr    0.2527303
## food              0.2486509
## risk              0.2482967
## issue             0.2457944
## learn             0.2445392
## safely            0.2444176
## infrastructure    0.2444055
## chinese           0.2443396
## day               0.2440583
## traffic           0.2423483
## decision          0.2423295
## communist         0.2416284
## X.potus           0.2409691
## inrt              0.2383192
## simple            0.2380199
## amaze             0.2378546
## navy              0.2355892
## X.senjohnbarrasso 0.2334779
## ort               0.2323945
## defense           0.2314690
## government        0.2305161
## dr                0.2303053
## sign              0.2298193
## ny                0.2296023
## family            0.2274791
## worker            0.2270162
## community         0.2269191
## alone             0.2232552
## view              0.2219361
## declassify        0.2212569
## industry          0.2195697
## increase          0.2183406
## receive           0.2176079
## visit             0.2162137
## professional      0.2160477
## rule              0.2147791
## pray              0.2123290
## employee          0.2118685
## worse             0.2115232
## give              0.2109061
## stay              0.2104654
## partner           0.2097588
## american          0.2087973
## delay             0.2083448
## sen               0.2078179
## X.greggjarrett    0.2071772
## work              0.2056720
## ship              0.2051109
## review            0.2047727
## excite            0.2043699
## safety            0.2032852
## hard              0.2030400
## hand              0.2026298
## economic          0.2010423
## job               0.2001104
## treat             0.1988218
## border            0.1978797
## conversation      0.1967364
## nation            0.1938956
## production        0.1919445
## thanks            0.1919261
## brilliant         0.1917063
## standard          0.1905526
## impact            0.1901286
## oval              0.1900563
## thert             0.1895840
## appreciate        0.1892749
## fund              0.1885816
## damage            0.1872284
## daily             0.1838785
## effort            0.1834488
## vaccine           0.1825434
## support           0.1821665
## wisconsin         0.1817489
## safe              0.1816863
## private           0.1811688
## move              0.1808504
## operation         0.1800232
## free              0.1786654
## colorado          0.1774863
## truth             0.1773712
## focus             0.1773400
## arm               0.1771580
## student           0.1770582
## seeing            0.1769560
## better            0.1763047
## local             0.1761190
## continue          0.1759150
## additional        0.1756256
## office            0.1745507
## chairman          0.1739536
## potus             0.1732119
## trt               0.1728801
## face              0.1718740
## official          0.1711732
## claim             0.1709380
## announce          0.1704594
## secretary         0.1700037
## strong            0.1700036
## citizen           0.1690810
## longer            0.1687054
## information       0.1686327
## protect           0.1659109
## extraordinary     0.1654465
## rt                0.1643511
## medicare          0.1641623
## X5.30             0.1617640
## approval          0.1614127
## late              0.1606148
## immigration       0.1600945
## X.senategop       0.1597090
## meet              0.1596411
## develop           0.1591323
## clean             0.1587459
## reason            0.1585856
## sick              0.1578130
## comment           0.1576337
## project           0.1575005
## homeland          0.1564174
## discuss           0.1560652
## advance           0.1538819
## death             0.1535450
## development       0.1531740
## time              0.1531708
## follow            0.1524192
## cuomo             0.1518397
## white             0.1513634
## middle            0.1513107
## individual        0.1508194
## system            0.1506907
## company           0.1504849
## car               0.1501766
print(theme4_loadings5)
##                       TC4
## vet             0.6713032
## endorsement     0.6575174
## tremendous      0.5918333
## amendment       0.5917749
## complete        0.5780533
## fighter         0.5567108
## X.2a            0.5438529
## incredible      0.4873215
## border          0.4819859
## total           0.4748128
## terrific        0.4603618
## love            0.4580119
## congressman     0.4562220
## protect         0.4474540
## tax             0.4446789
## serve           0.4422043
## agenda          0.4345458
## farmer          0.4341152
## military        0.4333678
## fight           0.4270077
## mike            0.4163596
## veteran         0.3968842
## strong          0.3943396
## X.maga          0.3852084
## congress        0.3837741
## advocate        0.3830524
## crime           0.3718161
## navy            0.3669068
## defend          0.3540877
## supporter       0.3454290
## virginia        0.3375545
## senator         0.3354888
## strongly        0.3266832
## rate            0.3233828
## tough           0.3170621
## brave           0.3152919
## alabama         0.3150956
## cut             0.3146142
## life            0.3111848
## reduce          0.3060983
## job             0.3053264
## stand           0.3016905
## jim             0.2991583
## vote            0.2973313
## chris           0.2957059
## support         0.2932302
## secure          0.2854004
## swamp           0.2823420
## bloomberg       0.2819027
## amaze           0.2805209
## race            0.2724880
## tom             0.2708813
## champion        0.2693164
## david           0.2672120
## drain           0.2652120
## roger           0.2650512
## general         0.2649195
## republican      0.2638322
## company         0.2628921
## worker          0.2621477
## fully           0.2616165
## brought         0.2552979
## energy          0.2551186
## georgia         0.2530624
## future          0.2505549
## johnson         0.2501639
## hard            0.2481074
## month           0.2480044
## john            0.2479983
## bernie          0.2475076
## day             0.2457335
## west            0.2431800
## sleep           0.2430052
## colorado        0.2427549
## work            0.2421287
## november        0.2420507
## party           0.2412472
## hardworking     0.2362016
## phony           0.2360161
## big             0.2359682
## immigration     0.2357288
## business        0.2327157
## professional    0.2325989
## small           0.2309641
## great           0.2304406
## state           0.2291516
## super           0.2283976
## X.cnn           0.2272221
## oklahoma        0.2271838
## elizabeth       0.2253420
## X.kag2020       0.2236252
## country         0.2210873
## carolina        0.2207372
## minnesota       0.2204907
## loser           0.2200675
## huge            0.2193466
## early           0.2189417
## law             0.2132585
## conservative    0.2111584
## land            0.2103518
## debate          0.2094253
## field           0.2089974
## tennessee       0.2076311
## leader          0.2056971
## security        0.2047607
## situation       0.2033213
## fire            0.2032602
## best            0.2027098
## highly          0.2023938
## step            0.2016089
## trt             0.2013605
## nomination      0.2008953
## week            0.2002776
## joe             0.2000899
## receive         0.1988707
## thank           0.1978652
## easy            0.1976501
## tonight         0.1973247
## rally           0.1970230
## mayor           0.1965944
## X.jim_jordan    0.1931298
## pay             0.1920817
## save            0.1902040
## america         0.1900724
## X3rd            0.1882801
## florida         0.1881338
## real            0.1877108
## north           0.1874446
## maga            0.1874284
## probe           0.1871492
## murder          0.1867949
## X.flotus        0.1865949
## enemy           0.1859661
## health          0.1836530
## X.foxnew        0.1813094
## honor           0.1798058
## buy             0.1787961
## msdnc           0.1767355
## smart           0.1761288
## progress        0.1757059
## people          0.1743395
## win             0.1740434
## enforcement     0.1738743
## south           0.1738007
## east            0.1732931
## york            0.1732758
## X96             0.1731286
## straight        0.1725214
## wisconsin       0.1723487
## low             0.1723083
## badly           0.1717382
## represent       0.1712721
## shortly         0.1705038
## china           0.1701912
## sanctuary       0.1698087
## primary         0.1697099
## community       0.1695041
## political       0.1685694
## california      0.1681408
## warren          0.1662949
## announce        0.1656505
## infrastructure  0.1655404
## economy         0.1644727
## successful      0.1640958
## office          0.1638420
## seeing          0.1636081
## water           0.1632116
## barr            0.1622800
## key             0.1621741
## turn            0.1620833
## wrong           0.1614082
## form            0.1612226
## terrorist       0.1611174
## idea            0.1595346
## chance          0.1590155
## patriot         0.1576063
## X.gopchairwoman 0.1573938
## schumer         0.1572188
## approval        0.1572056
## pennsylvania    0.1569688
## X2a             0.1568336
## chuck           0.1567152
## wall            0.1563548
## gun             0.1561827
## leave           0.1558202
## regulation      0.1551800
## X2016           0.1545201
## rep             0.1539068
## begin           0.1538720
## quick           0.1535329
## X.coronavirus   0.1534012
## tuesday         0.1531069
## figure          0.1528257
## failure         0.1526992
## fake            0.1524566
## rule            0.1523806
## beautiful       0.1523035
## mark            0.1518551
## horrible        0.1517024
## book            0.1505420
## build           0.1505138
## poll            0.1505022
## dem             0.1502321
print(theme5_loadings5)
##                         TC5
## fbi               0.5512100
## collusion         0.5429883
## investigation     0.4870783
## flynn             0.4796643
## email             0.4694960
## campaign          0.4686701
## declassify        0.4679713
## document          0.4592193
## doj               0.4437258
## X.greggjarrett    0.4331005
## russia            0.4306469
## break.            0.4190140
## attorney          0.4044882
## case              0.3980881
## comey             0.3968340
## michael           0.3880913
## fisa              0.3875438
## muel              0.3800278
## psycho            0.3784314
## media             0.3746055
## obama             0.3656816
## X.saracarterdc    0.3641406
## X.loudobb         0.3501046
## reveal            0.3477518
## told              0.3468854
## comment           0.3452855
## matter            0.3446404
## leak              0.3444628
## california        0.3438632
## caught            0.3428359
## report            0.3427612
## set               0.3367005
## jame              0.3350282
## hoax              0.3348925
## scam              0.3274981
## cold              0.3226546
## illegal           0.3215534
## admit             0.3202024
## russian           0.3200454
## lawyer            0.3200157
## judge             0.3182812
## spy               0.3176329
## X.dbongino        0.3167719
## X.tomfitton       0.3149601
## scandal           0.3117249
## hillary           0.3102541
## cover             0.3099613
## worst             0.3082247
## release           0.3079864
## crook             0.3056699
## beat              0.2976782
## straight          0.2967539
## lie               0.2948685
## coup              0.2933001
## attempt           0.2905765
## twitter           0.2894697
## video             0.2885799
## true              0.2881598
## critical          0.2874413
## blame             0.2853766
## jail              0.2808814
## clear             0.2803320
## ballot            0.2796112
## hard              0.2765495
## minute            0.2762069
## clinton           0.2724346
## fake              0.2723631
## show              0.2720173
## ly                0.2668611
## trump             0.2659892
## robert            0.2644645
## general           0.2641129
## target            0.2628781
## witch             0.2613062
## hunt              0.2613062
## X2016             0.2609301
## morning           0.2587404
## X.thebradfordfile 0.2585390
## double            0.2576613
## election          0.2553520
## private           0.2546635
## news              0.2542139
## communist         0.2528224
## open              0.2526638
## whistleblower     0.2497380
## dossier           0.2470173
## msdnc             0.2464743
## ny                0.2436928
## director          0.2430244
## history           0.2397880
## india             0.2369866
## recovery          0.2353470
## abuse             0.2350217
## thought           0.2338928
## lamestream        0.2338056
## tom               0.2333909
## place             0.2328391
## man               0.2328151
## joe               0.2327652
## light             0.2327643
## rt                0.2321897
## X2a               0.2316597
## fraud             0.2313123
## info              0.2308610
## gop               0.2288177
## illegally         0.2285052
## liberal           0.2277485
## X.donaldjtrumpjr  0.2254349
## read              0.2245165
## wrong             0.2225292
## fact              0.2223920
## happen            0.2206692
## spread            0.2189262
## barack            0.2160175
## john              0.2157046
## corrupt           0.2155117
## state             0.2153746
## fail              0.2141236
## X.erictrump       0.2140478
## look              0.2139416
## evidence          0.2137708
## expose            0.2123815
## ban               0.2109276
## X.dailycaller     0.2104904
## worse             0.2104188
## accord            0.2085603
## charge            0.2081424
## conservative      0.2080491
## thank             0.2069071
## endorse           0.2041992
## hrt               0.2035833
## X.mzhemingway     0.2028437
## trend             0.2028007
## expect            0.2024871
## remember          0.2019373
## hunter            0.2013702
## drop              0.2009983
## level             0.2008940
## ridiculous        0.1995590
## fox               0.1993340
## building          0.1989661
## story             0.1976342
## puppet            0.1967776
## st                0.1967481
## pennsylvania      0.1958693
## virus             0.1958490
## sad               0.1955677
## economic          0.1955109
## source            0.1952791
## guy               0.1931741
## office            0.1928626
## destroy           0.1928272
## president         0.1927213
## member            0.1915755
## start             0.1914404
## corruption        0.1912018
## chinese           0.1909112
## test              0.1907633
## hurt              0.1904688
## closely           0.1900695
## amp               0.1886939
## plant             0.1883453
## serve             0.1878630
## single            0.1872995
## long              0.1862141
## concern           0.1847986
## admin             0.1841053
## hero              0.1828092
## intelligence      0.1817028
## throw             0.1815566
## reporter          0.1815402
## left              0.1812738
## review            0.1811896
## foreign           0.1807809
## michigan          0.1804113
## social            0.1801888
## alone             0.1791027
## manager           0.1786871
## handle            0.1782591
## arizona           0.1779817
## barr              0.1775694
## phony             0.1775655
## mask              0.1775279
## complain          0.1771399
## see               0.1767804
## explain           0.1767336
## rig               0.1763203
## mail.in           0.1750852
## mile              0.1750131
## page              0.1745296
## job               0.1740412
## turn              0.1739263
## person            0.1738221
## free              0.1727272
## create            0.1715608
## super             0.1703060
## york              0.1701200
## attack            0.1680797
## andraw            0.1676597
## church            0.1675922
## X.thehill         0.1675432
## country           0.1672137
## saturday          0.1671899
## project           0.1666639
## right             0.1663761
## safely            0.1663317
## angry             0.1659123
## compare           0.1655758
## launch            0.1652404
## opponent          0.1630206
## elizabeth         0.1628349
## extraordinary     0.1618745
## ventilator        0.1616379
## official          0.1613797
## lost              0.1608158
## roger             0.1605943
## truth             0.1605905
## write             0.1604844
## false             0.1598365
## disgrace          0.1598294
## chief             0.1598169
## consider          0.1594311
## silent            0.1594284
## officer           0.1590262
## thanks            0.1588573
## huge              0.1585514
## nothing           0.1585409
## friday            0.1579276
## administration    0.1562820
## fast              0.1555726
## confirm           0.1550349
## market            0.1549386
## thrt              0.1547024
## pathetic          0.1540757
## big               0.1537603
## schiff            0.1535923
## learn             0.1535722
## enemy             0.1530738
## talk              0.1530064
## party             0.1528791
## partisan          0.1528147
## deep              0.1522302
## so.called         0.1521956
## primary           0.1516144
## longer            0.1514363
## nevada            0.1506096
## win               0.1503497

A 5 theme solution is made. Theme 1 talks about Protests and riots related to “Black Lives Matter” protest that started in August 2020. Theme 2 is about impeachment, senate. Theme 3 is about covid 19 pandemic, theme 4 and theme 5 are more about the investigations that white house People were inovlved in and about “Make America Great”.

components_3_theme = principal(pca_data[,5:ncol(pca_data)], nfactors = 3, rotate = 'oblimin')
dim(components_3_theme$loadings)
## [1] 923   3
loadings3 = as.data.frame(components_3_theme$loadings[1:923, 1:3])
theme1_loadings3 = subset(loadings3[order(loadings3$TC1, decreasing = T), ], TC1 >= 0.15, select = c(TC1))
theme2_loadings3 = subset(loadings3[order(loadings3$TC2, decreasing = T), ], TC2 >= 0.15, select = c(TC2))
theme3_loadings3 = subset(loadings3[order(loadings3$TC3, decreasing = T), ], TC3 >= 0.15, select = c(TC3))
print(theme1_loadings3)
##                         TC1
## police            0.5951028
## peaceful          0.5710970
## anarchist         0.5612035
## mayor             0.5149146
## protester         0.5013599
## law               0.5013380
## joe               0.4856708
## thug              0.4651359
## liberal           0.4618479
## order             0.4600502
## rioter            0.4562856
## black             0.4519964
## left              0.4514106
## biden             0.4494006
## silent            0.4465008
## X.mzhemingway     0.4372709
## city              0.4368367
## hurt              0.4332901
## looter            0.4315993
## raise             0.4297059
## monument          0.4225903
## church            0.4178955
## group             0.4162269
## protestor         0.4002960
## enforcement       0.3989945
## straight          0.3926842
## st                0.3899803
## violent           0.3895345
## X.thebradfordfile 0.3879791
## protest           0.3768352
## burn              0.3760508
## X.foxnew          0.3741148
## agitator          0.3723066
## radical           0.3700638
## destruction       0.3697823
## fire              0.3648812
## fall              0.3641185
## arrest            0.3602137
## mob               0.3590653
## land              0.3586773
## lie               0.3569966
## race              0.3568699
## military          0.3555940
## officer           0.3546205
## vote              0.3534519
## X3rd              0.3527558
## woman             0.3511875
## phony             0.3509657
## york              0.3485758
## november          0.3466141
## antifa            0.3452984
## shortly           0.3439078
## terrorist         0.3432804
## investigation     0.3396131
## kill              0.3389511
## beautiful         0.3376820
## majority          0.3340621
## north             0.3334481
## twitter           0.3334102
## year              0.3328074
## murder            0.3301413
## minneapolis       0.3297964
## happen            0.3287306
## big               0.3284937
## gun               0.3232012
## fighter           0.3231862
## life              0.3228352
## protect           0.3227589
## hrt               0.3223888
## jim               0.3212474
## carolina          0.3194541
## tax               0.3181629
## media             0.3174682
## vet               0.3153240
## X.maga            0.3144179
## bring             0.3128661
## ban               0.3125505
## endorsement       0.3119280
## X.joebiden        0.3110067
## election          0.3098729
## sleep             0.3090832
## nyc               0.3086651
## month             0.3063533
## trend             0.3062902
## write             0.3057993
## destroy           0.3025030
## veteran           0.3020877
## win               0.3010289
## lead              0.3000309
## serve             0.2997777
## service           0.2982267
## voice             0.2977854
## shot              0.2969605
## stand             0.2955552
## thought           0.2937407
## complete          0.2924916
## robert            0.2919763
## base              0.2911504
## choice            0.2893504
## refuse            0.2889552
## washington        0.2883020
## glad              0.2863295
## man               0.2859439
## statue            0.2845219
## governor          0.2841701
## document          0.2838447
## campaign          0.2830220
## fine              0.2830015
## chaos             0.2828438
## advocate          0.2819968
## idea              0.2809334
## ballot            0.2800253
## prison            0.2792776
## stop              0.2792621
## declassify        0.2790213
## abolish           0.2785181
## lawyer            0.2785128
## guard             0.2784721
## endorse           0.2775575
## basement          0.2768744
## barack            0.2762061
## enthusiasm        0.2727562
## amendment         0.2699515
## damage            0.2696767
## crime             0.2689937
## biden.s           0.2687647
## school            0.2684003
## rip               0.2680843
## team              0.2680492
## total             0.2679655
## true              0.2672083
## primary           0.2669106
## obama             0.2665390
## tough             0.2657659
## special           0.2642099
## portland          0.2635446
## jail              0.2632678
## america           0.2630903
## badly             0.2611366
## reduce            0.2603285
## fbi               0.2584113
## nevada            0.2583093
## read              0.2569397
## doj               0.2568794
## source            0.2560545
## imagine           0.2559862
## remember          0.2553372
## X.teamtrump       0.2547010
## place             0.2534049
## X2016             0.2525453
## job               0.2506032
## word              0.2505259
## right             0.2503267
## spy               0.2497036
## send              0.2493360
## pennsylvania      0.2491103
## michael           0.2477041
## text              0.2476189
## arm               0.2472543
## finally           0.2452545
## david             0.2445356
## voter             0.2442567
## fake              0.2433238
## play              0.2418393
## record            0.2411562
## trump             0.2410502
## X.richardgrenell  0.2408122
## X.flotus          0.2406605
## hold              0.2400399
## republican        0.2399596
## local             0.2399237
## under             0.2398625
## florida           0.2396098
## story             0.2389142
## rating            0.2387378
## project           0.2376121
## crook             0.2375673
## warren            0.2365931
## control           0.2363049
## criminal          0.2359255
## look              0.2347827
## X.trumpwarroom    0.2345072
## expect            0.2338509
## ridiculous        0.2333668
## defund            0.2320507
## admit             0.2319682
## country           0.2317536
## X.realdonaldtrump 0.2310483
## sad               0.2302585
## night             0.2295067
## player            0.2289137
## navy              0.2287170
## irt               0.2266891
## watch             0.2264760
## violence          0.2257368
## national          0.2246001
## X.donaldjtrumpjr  0.2244835
## illegal           0.2243296
## energy            0.2229823
## hillary           0.2223878
## wonderful         0.2217533
## great             0.2205915
## probe             0.2194810
## support           0.2180100
## happy             0.2177169
## people            0.2174182
## hard              0.2162507
## victory           0.2153603
## arizona           0.2152573
## elizabeth         0.2136945
## caught            0.2136230
## member            0.2126715
## arrive            0.2125339
## weak              0.2108212
## minnesota         0.2108077
## set               0.2106676
## answer            0.2100456
## speech            0.2099822
## matter            0.2095175
## mess              0.2092464
## football          0.2090339
## told              0.2089716
## historic          0.2077588
## book              0.2077401
## call              0.2071920
## chris             0.2070739
## clear             0.2068040
## pay               0.2064617
## show              0.2056672
## brave             0.2053706
## mistake           0.2051417
## forget            0.2042001
## collusion         0.2038917
## family            0.2038880
## participate       0.2033760
## lamestream        0.2032191
## yesterday         0.2022770
## troop             0.2013100
## problem           0.2012772
## seattle           0.2008905
## fully             0.2008814
## throw             0.2008108
## worst             0.2001320
## secretary         0.1986139
## cuomo             0.1984187
## report            0.1983035
## fight             0.1982077
## real              0.1974979
## champion          0.1966276
## ly                0.1958761
## citizen           0.1945768
## break.            0.1941349
## super             0.1937067
## hear              0.1936307
## respect           0.1933840
## history           0.1931016
## video             0.1926094
## create            0.1919227
## attorney          0.1916816
## X.saracarterdc    0.1915883
## restore           0.1912889
## news              0.1906734
## increase          0.1900486
## wrong             0.1899577
## X.erictrump       0.1898430
## regulation        0.1893947
## move              0.1892611
## single            0.1879786
## free              0.1875768
## cold              0.1870074
## X.2a              0.1866237
## save              0.1862966
## see               0.1860342
## power             0.1854714
## employee          0.1852648
## defend            0.1849598
## view              0.1844050
## charge            0.1842970
## mail.in           0.1833264
## ad                0.1832625
## leadership        0.1824337
## X2a               0.1813269
## department        0.1804337
## longer            0.1804038
## led               0.1802342
## honor             0.1798181
## confirm           0.1797036
## term              0.1792324
## mean              0.1791370
## official          0.1784004
## john              0.1783435
## huge              0.1782200
## nation            0.1782148
## question          0.1781893
## israel            0.1778370
## loser             0.1777464
## tremendous        0.1773007
## buy               0.1772770
## opportunity       0.1766365
## conservative      0.1765100
## terrible          0.1759697
## jame              0.1759639
## god               0.1755614
## accord            0.1753165
## elect             0.1750648
## give              0.1742742
## reporter          0.1728178
## love              0.1718627
## incredible        0.1716529
## page              0.1710652
## rig               0.1709222
## prt               0.1697105
## deal              0.1697005
## carry             0.1692509
## scam              0.1692100
## street            0.1687720
## inform            0.1684743
## candidate         0.1683154
## tom               0.1673248
## pray              0.1673146
## so.called         0.1670941
## broke             0.1667209
## congressman       0.1656620
## sure              0.1655828
## difference        0.1647731
## fund              0.1644335
## amp               0.1637653
## plant             0.1627963
## flynn             0.1627776
## border            0.1625847
## democrat          0.1621776
## corrupt           0.1617253
## thrt              0.1616231
## learn             0.1613203
## friend            0.1610192
## today             0.1609391
## healthcare        0.1607861
## wrt               0.1606088
## highly            0.1596765
## general           0.1596672
## drug              0.1595040
## drop              0.1594684
## california        0.1594185
## mask              0.1592604
## office            0.1591301
## announce          0.1589490
## chance            0.1588331
## peace             0.1582463
## russia            0.1578343
## president         0.1574810
## tire              0.1570138
## secure            0.1567169
## attack            0.1563390
## evidence          0.1560810
## state             0.1558129
## morning           0.1553758
## maga              0.1549755
## day               0.1538330
## X.cnn             0.1538311
## fast              0.1534594
## lost              0.1534210
## fail              0.1526436
## dream             0.1525609
## reject            0.1523152
## horrible          0.1520611
## low               0.1520352
## rule              0.1519677
## minute            0.1517738
## ort               0.1512245
## leave             0.1508790
## opponent          0.1506492
print(theme2_loadings3)
##                         TC2
## impeachment       0.6417395
## schiff            0.5654651
## corruption        0.5334089
## ukraine           0.5264763
## partisan          0.5210461
## impeach           0.5021365
## X.sentedcruz      0.4990421
## witness           0.4849789
## witch             0.4742660
## hunt              0.4742660
## trial             0.4662868
## adam              0.4662102
## article           0.4516895
## senate            0.4482913
## abuse             0.4412663
## manager           0.4310619
## hoax              0.4291698
## X.senjohnbarrasso 0.4169183
## evidence          0.4143922
## iowa              0.4062484
## X.marshablackburn 0.4032025
## dem               0.3938067
## process           0.3911760
## whistleblower     0.3883367
## page              0.3830013
## X.senatemajldr    0.3827990
## muel              0.3725060
## sen               0.3710121
## X.lindseygrahamsc 0.3703281
## thrt              0.3678798
## chairman          0.3657605
## speaker           0.3609731
## campaign          0.3513889
## X.senategop       0.3431392
## political         0.3415853
## fairness          0.3369965
## collusion         0.3338815
## case              0.3336608
## X2020             0.3324591
## legal             0.3323649
## fact              0.3322267
## X.kag2020         0.3287357
## full              0.3272008
## bernie            0.3247522
## phony             0.3191960
## foreign           0.3191887
## rally             0.3160542
## attack            0.3134906
## determine         0.3107072
## socialist         0.3094179
## spent             0.3075155
## transcript        0.3059844
## X.gopleader       0.3033778
## defeat            0.3033191
## X.danscavino      0.3032518
## history           0.3026269
## agreement         0.3008278
## talk              0.3005153
## pelosi            0.2990206
## resolution        0.2984691
## X.potus           0.2979717
## sander            0.2974924
## conservative      0.2965161
## congress          0.2946830
## friday            0.2945360
## matter            0.2933327
## info              0.2920318
## state             0.2913017
## push              0.2909962
## met               0.2886391
## X2016             0.2842920
## gop               0.2842036
## video             0.2838226
## sit               0.2833073
## john              0.2820894
## chuck             0.2820508
## wait              0.2816547
## truth             0.2807938
## nomination        0.2806848
## visit             0.2806210
## water             0.2802205
## promise           0.2799150
## schumer           0.2796284
## trump             0.2793690
## obama             0.2792845
## future            0.2786519
## question          0.2778049
## court             0.2761719
## comment           0.2737876
## entire            0.2736197
## right             0.2735582
## senator           0.2732671
## fbi               0.2727179
## power             0.2726558
## investigation     0.2721320
## iran              0.2715541
## trt               0.2706959
## poll              0.2703793
## complain          0.2694834
## judge             0.2692656
## look              0.2677447
## under             0.2665831
## ly                0.2661195
## person            0.2649169
## democrat          0.2648449
## brought           0.2635598
## clinton           0.2621840
## read              0.2610011
## agree             0.2598968
## said              0.2587011
## trade             0.2583108
## start             0.2575293
## clear             0.2567122
## win               0.2555276
## swamp             0.2530169
## claim             0.2517085
## plan              0.2496329
## election          0.2486261
## X.loudobb         0.2467650
## year              0.2460790
## huge              0.2451362
## event             0.2449434
## prove             0.2448902
## result            0.2446672
## charge            0.2438998
## private           0.2434753
## ohio              0.2428573
## lawyer            0.2428030
## week              0.2427584
## republican        0.2419740
## admit             0.2419570
## opportunity       0.2416407
## best              0.2415142
## rig               0.2403580
## hope              0.2400084
## earth             0.2364411
## hear              0.2341909
## justice           0.2340065
## scam              0.2334966
## see               0.2328459
## unemployment      0.2314651
## turn              0.2300963
## demand            0.2292674
## guy               0.2289266
## crowd             0.2268098
## nothing           0.2266661
## economy           0.2261491
## X.dbongino        0.2258371
## urge              0.2256877
## vote              0.2254666
## long              0.2248336
## angry             0.2248276
## report            0.2234208
## house             0.2232428
## tort              0.2218708
## correct           0.2206874
## elect             0.2206405
## military          0.2203385
## cover             0.2202431
## list              0.2197745
## interest          0.2193457
## X.mzhemingway     0.2176317
## corrupt           0.2148781
## policy            0.2147108
## freedom           0.2136752
## document          0.2131113
## american          0.2120926
## grow              0.2119298
## fight             0.2115326
## break.            0.2108854
## comey             0.2083437
## deliver           0.2073917
## dream             0.2073040
## lie               0.2072385
## trust             0.2068210
## voter             0.2063636
## fisa              0.2057747
## general           0.2047931
## aid               0.2036922
## mike              0.2034075
## learn             0.2030854
## side              0.2029055
## president         0.2024997
## X.scavino45       0.2022359
## X.jim_jordan      0.2021861
## attempt           0.2019819
## hillary           0.2016856
## americas          0.2015862
## allow             0.2010220
## absolutely        0.2007680
## administration    0.2004901
## statement         0.2002962
## incompetent       0.1998774
## inrt              0.1995513
## consider          0.1988957
## progress          0.1983696
## bloomberg         0.1981361
## nancy             0.1974702
## low               0.1957322
## serve             0.1946585
## leader            0.1942778
## join              0.1937820
## X.thehill         0.1935131
## straight          0.1928939
## terrific          0.1926122
## successful        0.1922973
## significant       0.1918712
## tonight           0.1914620
## intelligence      0.1911490
## russia            0.1907145
## effort            0.1906412
## interview         0.1906052
## chief             0.1905975
## commit            0.1904565
## amaze             0.1903736
## target            0.1898757
## party             0.1896958
## central           0.1896322
## X.ivankatrump     0.1890943
## daily             0.1888762
## work              0.1876468
## double            0.1856716
## mess              0.1855867
## economic          0.1851776
## leak              0.1850998
## supreme           0.1850807
## past              0.1843987
## X.dailycaller     0.1842258
## hunter            0.1841991
## clean             0.1840587
## wrong             0.1838591
## hrt               0.1838513
## release           0.1834579
## cnn               0.1833067
## unite             0.1814505
## fair              0.1786858
## spend             0.1785801
## remember          0.1782903
## attorney          0.1780503
## country           0.1771039
## speech            0.1765570
## russian           0.1763311
## politician        0.1761813
## continue          0.1736075
## finish            0.1730043
## imagine           0.1724774
## give              0.1719640
## innocent          0.1715753
## focus             0.1713868
## book              0.1712589
## launch            0.1710693
## watch             0.1710526
## beat              0.1700939
## story             0.1696084
## thank             0.1688545
## standard          0.1688162
## thert             0.1684060
## X.tomfitton       0.1682712
## play              0.1679621
## deal              0.1671099
## month             0.1654761
## discuss           0.1651021
## blow              0.1650527
## high              0.1637372
## key               0.1636984
## control           0.1630487
## X95               0.1624834
## X.maga            0.1624443
## air               0.1608870
## donald            0.1607871
## follow            0.1606917
## happen            0.1606778
## destroy           0.1605520
## farmer            0.1601334
## point             0.1596745
## unfair            0.1587386
## california        0.1580653
## time              0.1580207
## coup              0.1579137
## company           0.1573129
## job               0.1569502
## money             0.1562242
## reject            0.1553195
## crime             0.1537768
## official          0.1525611
## honor             0.1522476
## pack              0.1513943
## cost              0.1513655
print(theme3_loadings3)
##                         TC3
## response          0.5367477
## X.covid19         0.5327683
## wrt               0.4712666
## coronavirus       0.4659893
## paycheck          0.4609516
## pandemic          0.4587124
## phase             0.4558031
## irt               0.4297031
## X.cdcgov          0.4278067
## X.coronavirus     0.4142961
## prevent           0.4120023
## affect            0.4119099
## program           0.4112932
## provide           0.4031372
## outbreak          0.4025528
## nurse             0.4002914
## press             0.3976058
## treatment         0.3927744
## emergency         0.3903641
## crisis            0.3824425
## X.senjohnbarrasso 0.3754613
## X.senatemajldr    0.3737710
## care              0.3727720
## supply            0.3721361
## tort              0.3679031
## significant       0.3657742
## force             0.3623996
## task              0.3606412
## business          0.3534380
## important         0.3493054
## spoke             0.3478920
## hospital          0.3474918
## pass              0.3455944
## expand            0.3405548
## protection        0.3398143
## critical          0.3386448
## americas          0.3323840
## ensure            0.3298577
## health            0.3268248
## spread            0.3252512
## live              0.3243099
## handle            0.3224103
## together          0.3222457
## covid             0.3212187
## bill              0.3204152
## resource          0.3198828
## action            0.3165779
## issue             0.3124332
## thert             0.3116815
## challenge         0.3112530
## test              0.3110196
## cure              0.3109469
## inrt              0.3104323
## sen               0.3086543
## today             0.3074061
## doctor            0.3069157
## combat            0.3042857
## conference        0.3016325
## learn             0.3012993
## X.potus           0.2979184
## distance          0.2944987
## participate       0.2928940
## prt               0.2922202
## defense           0.2878296
## simple            0.2859351
## light             0.2842307
## close             0.2817464
## food              0.2802920
## federal           0.2784854
## X.whitehouse      0.2754934
## director          0.2752062
## view              0.2745490
## visit             0.2741797
## slow              0.2702887
## hero              0.2698014
## ort               0.2697831
## rule              0.2695642
## X.senategop       0.2688338
## step              0.2666802
## employee          0.2666075
## prevail           0.2660497
## arm               0.2642552
## save              0.2634016
## increase          0.2633193
## medical           0.2614529
## industry          0.2612275
## chairman          0.2603963
## early             0.2599350
## social            0.2571516
## amaze             0.2564307
## american          0.2532360
## truth             0.2522683
## excite            0.2521937
## virus             0.2505136
## day               0.2486793
## standard          0.2459238
## sign              0.2455809
## decision          0.2440389
## center            0.2429972
## give              0.2421668
## stay              0.2418685
## damage            0.2416736
## claim             0.2416592
## risk              0.2400142
## daily             0.2386166
## government        0.2359908
## worker            0.2358933
## enemy             0.2356049
## hand              0.2345185
## small             0.2337270
## nation            0.2331328
## delay             0.2315716
## worse             0.2313373
## safety            0.2309195
## treat             0.2283894
## private           0.2278488
## focus             0.2263702
## traffic           0.2254043
## clean             0.2248565
## pray              0.2237100
## review            0.2236037
## safely            0.2216278
## family            0.2215357
## news              0.2212577
## local             0.2206106
## appreciate        0.2205154
## community         0.2204010
## troop             0.2193718
## join              0.2193424
## trt               0.2176309
## infrastructure    0.2172854
## ventilator        0.2151048
## travel            0.2143147
## plan              0.2124356
## house             0.2116993
## fund              0.2112695
## information       0.2103712
## homeland          0.2097219
## sick              0.2087558
## work              0.2082125
## thanks            0.2079884
## longer            0.2066145
## alone             0.2057516
## declassify        0.2055290
## brilliant         0.2048101
## middle            0.2046781
## better            0.2044935
## chinese           0.2041857
## operation         0.2026621
## protestor         0.2017858
## professional      0.2005981
## colorado          0.2005427
## dr                0.1990055
## week              0.1983176
## continue          0.1963803
## seeing            0.1958403
## vaccine           0.1956190
## listen            0.1948561
## glad              0.1948231
## ny                0.1940483
## navy              0.1940338
## secretary         0.1938953
## violent           0.1932895
## partner           0.1930957
## meet              0.1920909
## effort            0.1916732
## free              0.1914899
## urge              0.1908783
## announce          0.1906281
## face              0.1894403
## economic          0.1894147
## official          0.1883101
## add               0.1882770
## conversation      0.1881066
## receive           0.1872664
## support           0.1872213
## citizen           0.1870711
## communist         0.1867058
## successful        0.1863662
## additional        0.1861027
## job               0.1860892
## follow            0.1856691
## forget            0.1841601
## correct           0.1839980
## surge             0.1839604
## move              0.1824713
## late              0.1806969
## reason            0.1803904
## potus             0.1802982
## ship              0.1802450
## X.greggjarrett    0.1802336
## violence          0.1802269
## list              0.1793564
## impact            0.1788416
## update            0.1776652
## medicare          0.1771480
## X.tomfitton       0.1761901
## individual        0.1748254
## voice             0.1746821
## advance           0.1734429
## white             0.1732533
## project           0.1731007
## safe              0.1725627
## high              0.1703741
## involve           0.1700236
## death             0.1699651
## mexico            0.1699104
## car               0.1688950
## discuss           0.1680351
## tonight           0.1679117
## student           0.1670444
## led               0.1665595
## office            0.1649178
## oval              0.1649133
## massive           0.1648328
## officer           0.1641278
## cost              0.1639213
## trust             0.1635021
## time              0.1634742
## production        0.1633566
## power             0.1633506
## football          0.1626089
## stop              0.1618586
## america           0.1618484
## young             0.1610273
## develop           0.1608991
## past              0.1602385
## hard              0.1600549
## opportunity       0.1599122
## protect           0.1596612
## rt                0.1584985
## commit            0.1583657
## service           0.1577408
## extraordinary     0.1574500
## economy           0.1569730
## blow              0.1560121
## rebuild           0.1555798
## answer            0.1553650
## address           0.1538267
## change            0.1519387
## event             0.1501058

A 3 theme solution is made to compare which of the two models-5 theme or 3 theme would best suit.

fa.stats(pca_data[,5:ncol(pca_data)], f = components)$rms
## [1] 0.07331245
fa.stats(pca_data[,5:ncol(pca_data)], f = components_3_theme)$rms
## [1] 0.07566455
fa.stats(pca_data[,5:ncol(pca_data)], f = components)$RMSEA
##      RMSEA      lower      upper confidence 
##       0.00       0.00       0.00       0.95
fa.stats(pca_data[,5:ncol(pca_data)], f = components_3_theme)$RMSEA
##      RMSEA      lower      upper confidence 
##       0.00       0.00       0.00       0.95
fa.stats(pca_data[,5:ncol(pca_data)], f = components)$TLI
## [1] 0.2427993
fa.stats(pca_data[,5:ncol(pca_data)], f = components_3_theme)$TLI
## [1] 0.2139612

5 Themed solutions seems to be a better solution as the Tucker Lewis Index is closer to 1

pca_data$Theme1_loadings5 = apply(pca_data[, row.names(theme1_loadings5)], MARGIN = 1, sum)
pca_data$Theme2_loadings5 = apply(pca_data[, row.names(theme2_loadings5)], MARGIN = 1, sum)
pca_data$Theme3_loadings5 = apply(pca_data[, row.names(theme3_loadings5)], MARGIN = 1, sum)
pca_data$Theme4_loadings5 = apply(pca_data[, row.names(theme4_loadings5)], MARGIN = 1, sum)
pca_data$Theme5_loadings5 = apply(pca_data[, row.names(theme5_loadings5)], MARGIN = 1, sum)
pca_data$Theme1_loadings3 = apply(pca_data[, row.names(theme1_loadings3)], MARGIN = 1, sum)
pca_data$Theme2_loadings3 = apply(pca_data[, row.names(theme2_loadings3)], MARGIN = 1, sum)
pca_data$Theme3_loadings3 = apply(pca_data[, row.names(theme3_loadings3)], MARGIN = 1, sum)
summary(pca_data$Theme1_loadings5)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    6.00   19.00   29.00   34.19   40.50  129.00
summary(pca_data$Theme2_loadings5)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    7.00   22.00   35.00   39.42   48.00  210.00
summary(pca_data$Theme3_loadings5)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##     1.0    19.0    30.0    32.3    39.0   151.0
summary(pca_data$Theme4_loadings5)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    4.00   22.00   35.00   39.66   50.00  113.00
summary(pca_data$Theme5_loadings5)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    3.00   24.00   36.00   40.26   50.00  122.00
summary(pca_data$Theme1_loadings3)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   14.00   41.50   60.00   67.11   84.00  202.00
summary(pca_data$Theme2_loadings3)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##     5.0    29.0    46.0    50.1    65.0   225.0
summary(pca_data$Theme3_loadings3)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    3.00   20.50   32.00   36.51   46.00  187.00

Correlate tweets themes data with stock index data to for each of the themes.

pca_data$DATE <- as.Date(pca_data$DATE)
tweets_index$DATE <- as.Date(tweets_index$DATE)
tweets_index_themeScore <-
  merge(x = pca_data,
        y = tweets_index,
        by = "DATE")
correlation <- cor.test(tweets_index_themeScore$WILL5000PRFC, tweets_index_themeScore$Theme1_loadings5)
correlation
## 
##  Pearson's product-moment correlation
## 
## data:  tweets_index_themeScore$WILL5000PRFC and tweets_index_themeScore$Theme1_loadings5
## t = 4.3585, df = 185, p-value = 2.169e-05
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.1690660 0.4298283
## sample estimates:
##       cor 
## 0.3051563
cor.test(tweets_index_themeScore$WILL5000PRFC, tweets_index_themeScore$Theme2_loadings5)
## 
##  Pearson's product-moment correlation
## 
## data:  tweets_index_themeScore$WILL5000PRFC and tweets_index_themeScore$Theme2_loadings5
## t = 3.3663, df = 185, p-value = 0.0009264
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.1002098 0.3709534
## sample estimates:
##       cor 
## 0.2402484
cor.test(tweets_index_themeScore$WILL5000PRFC, tweets_index_themeScore$Theme3_loadings5)
## 
##  Pearson's product-moment correlation
## 
## data:  tweets_index_themeScore$WILL5000PRFC and tweets_index_themeScore$Theme3_loadings5
## t = -5.1586, df = 185, p-value = 6.371e-07
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.4739923 -0.2224442
## sample estimates:
##        cor 
## -0.3546183
cor.test(tweets_index_themeScore$WILL5000PRFC, tweets_index_themeScore$Theme4_loadings5)
## 
##  Pearson's product-moment correlation
## 
## data:  tweets_index_themeScore$WILL5000PRFC and tweets_index_themeScore$Theme4_loadings5
## t = 2.0144, df = 185, p-value = 0.04542
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.003072662 0.284023844
## sample estimates:
##       cor 
## 0.1465013
cor.test(tweets_index_themeScore$WILL5000PRFC, tweets_index_themeScore$Theme5_loadings5)
## 
##  Pearson's product-moment correlation
## 
## data:  tweets_index_themeScore$WILL5000PRFC and tweets_index_themeScore$Theme5_loadings5
## t = 1.5244, df = 185, p-value = 0.1291
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.03263741  0.25086147
## sample estimates:
##       cor 
## 0.1113775
cor.test(tweets_index_themeScore$WILL5000PRFC, tweets_index_themeScore$Theme1_loadings3)
## 
##  Pearson's product-moment correlation
## 
## data:  tweets_index_themeScore$WILL5000PRFC and tweets_index_themeScore$Theme1_loadings3
## t = 3.7478, df = 185, p-value = 0.0002383
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.1269924 0.3941152
## sample estimates:
##      cor 
## 0.265645
cor.test(tweets_index_themeScore$WILL5000PRFC, tweets_index_themeScore$Theme2_loadings3)
## 
##  Pearson's product-moment correlation
## 
## data:  tweets_index_themeScore$WILL5000PRFC and tweets_index_themeScore$Theme2_loadings3
## t = 3.3133, df = 185, p-value = 0.001109
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.09645951 0.36768303
## sample estimates:
##       cor 
## 0.2366768
cor.test(tweets_index_themeScore$WILL5000PRFC, tweets_index_themeScore$Theme3_loadings3)
## 
##  Pearson's product-moment correlation
## 
## data:  tweets_index_themeScore$WILL5000PRFC and tweets_index_themeScore$Theme3_loadings3
## t = -3.6686, df = 185, p-value = 0.0003188
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.3893563 -0.1214576
## sample estimates:
##        cor 
## -0.2604123

A cor test is made to check the correlation between the pca themes and stock price. There exists a weak positive correlation between Theme1 and stock prices and a weak negative correlation between Theme 3 and stock price. Theme1 is about Black Lives Matter protests and Theme 3 is about COVID. Hence it can be seen that president’s tweets about Black Lives Matter has had a positive impact on stock market price and at the same time, tweets about COVID had had a negative impact on stock market price.

correlation$p.value
## [1] 2.169362e-05
correlation$estimate
##       cor 
## 0.3051563
ggscatter(tweets_index_themeScore, y ="WILL5000PRFC", x="Theme1_loadings5", add="reg.line",conf.int = TRUE, cor.coef = TRUE, cor.method = "pearson", xlab="Tweets", ylab="Stock market index")
## `geom_smooth()` using formula 'y ~ x'

A correlation plot is made between the PCA themes and stock market price. A p value <0.05 indicates that there exists a correlation between president’s tweets and stock market price.

Topic modeling

tweet_corpus = Corpus(VectorSource(tweets_index$text))
tweet_matrix = DocumentTermMatrix(
  tweet_corpus,
  control = list(
    stemming = TRUE,
    stopwords = TRUE,
    minWordLength = 3,
    removeNumbers = TRUE,
    removePunctuation = TRUE
  )
)
tweet_weight = tapply(tweet_matrix$v / row_sums(tweet_matrix)[tweet_matrix$i],
                      tweet_matrix$j,
                      mean) * log2(nDocs(tweet_matrix) / col_sums(tweet_matrix > 0))
tweet_matrix = tweet_matrix[row_sums(tweet_matrix) > 0, ]
K = 10

SEED = 42

LDA_fit = LDA(tweet_matrix, k = K,
              control = list(seed = SEED))

LDA_fixed = LDA(tweet_matrix,
                k = K,
                control = list(estimate.alpha = FALSE, seed = SEED))

LDA_gibbs = LDA(
  tweet_matrix,
  k = K,
  method = "Gibbs",
  control = list(
    seed = SEED,
    burnin = 1000,
    thin = 100,
    iter = 1000
  )
)

CTM_fit = CTM(tweet_matrix,
              k = K,
              control = list(
                seed = SEED,
                var = list(tol = 10 ^ -4),
                em = list(tol = 10 ^ -3)
              ))
terms(LDA_fit, K)
##       Topic 1           Topic 2           Topic 3           Topic 4          
##  [1,] "will"            "will"            "realdonaldtrump" "realdonaldtrump"
##  [2,] "realdonaldtrump" "coronavirus"     "presid"          "presid"         
##  [3,] "presid"          "amp"             "amp"             "will"           
##  [4,] "great"           "american"        "great"           "great"          
##  [5,] "amp"             "whitehous"       "will"            "peopl"          
##  [6,] "biden"           "realdonaldtrump" "peopl"           "trump"          
##  [7,] "joe"             "covid"           "trump"           "democrat"       
##  [8,] "peopl"           "work"            "whitehous"       "amp"            
##  [9,] "whitehous"       "presid"          "american"        "just"           
## [10,] "american"        "today"           "support"         "biden"          
##       Topic 5           Topic 6           Topic 7           Topic 8          
##  [1,] "will"            "realdonaldtrump" "will"            "will"           
##  [2,] "amp"             "will"            "total"           "amp"            
##  [3,] "presid"          "presid"          "complet"         "great"          
##  [4,] "realdonaldtrump" "biden"           "great"           "democrat"       
##  [5,] "trump"           "joe"             "endors"          "presid"         
##  [6,] "great"           "trump"           "realdonaldtrump" "peopl"          
##  [7,] "state"           "great"           "amp"             "now"            
##  [8,] "nation"          "amp"             "strong"          "realdonaldtrump"
##  [9,] "new"             "peopl"           "amend"           "state"          
## [10,] "get"             "democrat"        "second"          "thank"          
##       Topic 9           Topic 10         
##  [1,] "will"            "democrat"       
##  [2,] "trump"           "presid"         
##  [3,] "presid"          "impeach"        
##  [4,] "amp"             "realdonaldtrump"
##  [5,] "great"           "trump"          
##  [6,] "realdonaldtrump" "senat"          
##  [7,] "news"            "will"           
##  [8,] "just"            "amp"            
##  [9,] "biden"           "american"       
## [10,] "state"           "hous"
terms(LDA_fixed, K)
##       Topic 1           Topic 2       Topic 3           Topic 4          
##  [1,] "will"            "will"        "realdonaldtrump" "realdonaldtrump"
##  [2,] "realdonaldtrump" "coronavirus" "presid"          "presid"         
##  [3,] "presid"          "whitehous"   "amp"             "will"           
##  [4,] "great"           "american"    "great"           "great"          
##  [5,] "biden"           "covid"       "peopl"           "trump"          
##  [6,] "joe"             "amp"         "will"            "whitehous"      
##  [7,] "amp"             "work"        "whitehous"       "peopl"          
##  [8,] "peopl"           "nation"      "america"         "news"           
##  [9,] "rate"            "today"       "support"         "fund"           
## [10,] "whitehous"       "help"        "american"        "just"           
##       Topic 5  Topic 6           Topic 7   Topic 8    Topic 9 
##  [1,] "will"   "realdonaldtrump" "total"   "will"     "will"  
##  [2,] "amp"    "presid"          "complet" "amp"      "trump" 
##  [3,] "presid" "will"            "will"    "great"    "presid"
##  [4,] "trump"  "joe"             "endors"  "democrat" "amp"   
##  [5,] "state"  "biden"           "great"   "want"     "news"  
##  [6,] "great"  "trump"           "strong"  "now"      "just"  
##  [7,] "court"  "great"           "amp"     "thank"    "great" 
##  [8,] "new"    "amp"             "support" "peopl"    "now"   
##  [9,] "vote"   "teamtrump"       "amend"   "state"    "biden" 
## [10,] "suprem" "peopl"           "second"  "never"    "fake"  
##       Topic 10         
##  [1,] "democrat"       
##  [2,] "impeach"        
##  [3,] "presid"         
##  [4,] "realdonaldtrump"
##  [5,] "senat"          
##  [6,] "trump"          
##  [7,] "hous"           
##  [8,] "schiff"         
##  [9,] "american"       
## [10,] "will"
terms(LDA_gibbs, K)
##       Topic 1    Topic 2       Topic 3   Topic 4    Topic 5      Topic 6   
##  [1,] "total"    "coronavirus" "will"    "democrat" "citi"       "trump"   
##  [2,] "great"    "will"        "peopl"   "senat"    "nation"     "year"    
##  [3,] "complet"  "work"        "feder"   "hous"     "polic"      "obama"   
##  [4,] "amp"      "covid"       "fund"    "impeach"  "left"       "break"   
##  [5,] "strong"   "help"        "state"   "presid"   "law"        "fbi"     
##  [6,] "endors"   "american"    "done"    "american" "biden"      "flynn"   
##  [7,] "support"  "whitehous"   "one"     "schiff"   "radic"      "general" 
##  [8,] "will"     "today"       "million" "gop"      "must"       "know"    
##  [9,] "border"   "get"         "great"   "dem"      "now"        "campaign"
## [10,] "militari" "act"         "move"    "case"     "washington" "get"     
##       Topic 7 Topic 8      Topic 9    Topic 10         
##  [1,] "news"  "biden"      "will"     "realdonaldtrump"
##  [2,] "peopl" "trump"      "amp"      "presid"         
##  [3,] "fake"  "joe"        "state"    "whitehous"      
##  [4,] "want"  "elect"      "dont"     "american"       
##  [5,] "amp"   "vote"       "thank"    "great"          
##  [6,] "just"  "will"       "want"     "america"        
##  [7,] "new"   "ballot"     "way"      "teamtrump"      
##  [8,] "media" "just"       "noth"     "live"           
##  [9,] "never" "republican" "democrat" "countri"        
## [10,] "like"  "order"      "happen"   "will"
terms(CTM_fit, K)
##       Topic 1           Topic 2           Topic 3           Topic 4          
##  [1,] "impeach"         "presid"          "realdonaldtrump" "realdonaldtrump"
##  [2,] "democrat"        "realdonaldtrump" "presid"          "presid"         
##  [3,] "presid"          "will"            "will"            "amp"            
##  [4,] "realdonaldtrump" "biden"           "trump"           "will"           
##  [5,] "senat"           "joe"             "great"           "peopl"          
##  [6,] "hous"            "amp"             "state"           "state"          
##  [7,] "schiff"          "american"        "whitehous"       "new"            
##  [8,] "amp"             "ballot"          "flynn"           "american"       
##  [9,] "will"            "peopl"           "peopl"           "want"           
## [10,] "american"        "vote"            "new"             "great"          
##       Topic 5           Topic 6           Topic 7           Topic 8          
##  [1,] "presid"          "will"            "amp"             "will"           
##  [2,] "amp"             "coronavirus"     "will"            "trump"          
##  [3,] "realdonaldtrump" "realdonaldtrump" "biden"           "presid"         
##  [4,] "will"            "amp"             "trump"           "biden"          
##  [5,] "trump"           "whitehous"       "job"             "peopl"          
##  [6,] "news"            "presid"          "realdonaldtrump" "realdonaldtrump"
##  [7,] "great"           "american"        "great"           "usdot"          
##  [8,] "year"            "work"            "american"        "state"          
##  [9,] "just"            "great"           "presid"          "now"            
## [10,] "peopl"           "peopl"           "now"             "feder"          
##       Topic 9    Topic 10         
##  [1,] "will"     "great"          
##  [2,] "nation"   "will"           
##  [3,] "great"    "realdonaldtrump"
##  [4,] "amp"      "amp"            
##  [5,] "senat"    "presid"         
##  [6,] "feder"    "democrat"       
##  [7,] "american" "thank"          
##  [8,] "presid"   "peopl"          
##  [9,] "today"    "republican"     
## [10,] "job"      "whitehous"

Based on the topics it could be seen that the president tweets were predominantly based on “Make America great” followed by “The Pandemic”.

Discussion

We have been able to analyze if president’s tweets against influence stock market using topics and wilshire. Our result reflected that the correlation between themes extract against stock price trends is relatively significant. As Covid-19 is expected to be on-going and unpredictable, being able to analysis and predict the impact of tweets sentiment against stock market trend will help investors understand stock trends and make long-term investment decisions. The future steps of our study will be to analyze if the tweets influence a specific type of stocks.Theme 1 from 5 theme solution seems to cover black lives matter protests. Black lives matter related tweets by the US president seems to have weak positive correlation with stock market index. However, Presidential tweets between January 1st till the end of day September 30th are mostly about make America great again and white house, don’t seem to have stronger influence on stock market. Covid related tweets are negatively correlated with the stock market index.

Credit Guidelines

If working in a group, specify what each member of the group did. For each of the steps below, specify who did the work. If more than one member worked on the step, put names of everyone who worked on it.

  • Developed Research Question: Anvesh
  • Acquired Data: Anvesh
  • Analyzed Data: Anvesh, Janani
  • Researched Related Work: Anvesh, Janani, Xinyi
  • Wrote Introduction: Xinyi
  • Wrote Method: Xinyi
  • Wrote Analysis/Results: Anvesh, Janani, Xinyi
  • Wrote Discussion: Xinyi, Anvesh, Janani
  • Revisions/Edits: Anvesh, Janani, Xinyi

References

Staines, J. (2015). Mining Text and Time Series Data with Applications in Finance (Doctoral dissertation, UCL (University College London)).

Nguyen, T. H., & Shirai, K. (2015, July). Topic modeling based sentiment analysis on social media for stock market prediction. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers) (pp. 1354-1364).

Rao, Y., Li, Q., Mao, X., & Wenyin, L. (2014). Sentiment topic models for social emotion mining. Information Sciences, 266, 90-100.

Zainuddin, N., Selamat, A., & Ibrahim, R. (2018). Hybrid sentiment classification on twitter aspect-based sentiment analysis. Applied Intelligence, 48(5), 1218-1232.

Vinodhini, G., & Chandrasekaran, R. M. (2013). Effect of feature reduction in sentiment analysis of online reviews. International Journal of Advanced Research in Computer Engineering & Technology (IJARCET), 2(6), 2165-2172.

Balahur, A. (2013, June). Sentiment analysis in social media texts. In Proceedings of the 4th workshop on computational approaches to subjectivity, sentiment and social media analysis (pp. 120-128).

Paltoglou, G. (2014). Sentiment analysis in social media. In Online Collective Action (pp. 3-17). Springer, Vienna.

Sarlan, A., Nadam, C., & Basri, S. (2014, November). Twitter sentiment analysis. In Proceedings of the 6th International conference on Information Technology and Multimedia (pp. 212-216). IEEE.

Nemes, L., & Kiss, A. (2020). Social media sentiment analysis based on COVID-19. Journal of Information and Telecommunication, 1-15.

Yin, H., Yang, S., & Li, J. (2020). Detecting topic and sentiment dynamics due to COVID-19 pandemic using social media. arXiv preprint arXiv:2007.02304.