x <- c(5.6, 6.3, 7, 7.7, 8.4)
y <- c(8.8, 12.4, 14.8, 18.2, 20.8)
df <- data.frame(x,y)
df_lm <- lm(data = df , y~x)
summary(df_lm)
##
## Call:
## lm(formula = y ~ x, data = df)
##
## Residuals:
## 1 2 3 4 5
## -0.24 0.38 -0.20 0.22 -0.16
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -14.8000 1.0365 -14.28 0.000744 ***
## x 4.2571 0.1466 29.04 8.97e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3246 on 3 degrees of freedom
## Multiple R-squared: 0.9965, Adjusted R-squared: 0.9953
## F-statistic: 843.1 on 1 and 3 DF, p-value: 8.971e-05
y = 4.26x - 14.8
\[ f(x,y) = 24x-6xy^2-8y^3 \]
\[ fx = 24−6y^2 \] \[ fy =−12xy−24y^2 \]
24−6y^2 = 0 y^2 = 4 y = + / - 2
-12xy - 24*4 = 0 xy = 8
x = - / + 4
critical points = (-4,2),(4,-2)
R(x,y) = x(81 - 21x + 17y) + y(40 + 11x - 23y)
81x - 21x^2 + 17yx + 40y + 11xy - 23y^2
-21x^2 + 28xy + 81x + 40y - 23y^2
x = 2.3
y = 4.1
(-21)*x^2 + 28*x*y + 81*x + 40*y - 23*y^2
## [1] 116.62
We know the total cost can be found by:
c(x,y) = (1/6)x^2 + (1/6)*y^2 + 7x + 25y + 700
and that
x + y = 96
x = 96 - y
c(y) = (1/6)(96-y)^2 + (1/6)*y^2 + 7(96 - y) + 25y + 700
c(y) = (1/3)y^2−14y+2908
c’(y) = (2/3)y-14
c’(y) = 0 y = 21 (units produced in denver)
x = 75 (units produced in LA)