Dari data yang kalian miliki dan sudah melakukan plot data serta uji stasioneritasnya, selanjutnya adalah a. Transformasi awal dan identifikasi model. (jika data kalian tidak stasioner) b. Estimasi parameter dari model yang memungkinkan.
library(readxl)
library(ggplot2)
library(tseries)
## Warning: package 'tseries' was built under R version 3.6.3
## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
library(forecast)
## Warning: package 'forecast' was built under R version 3.6.3
#Import Data
JPP <- read_xlsx("Jumlah Penumpang Pesawat.xlsx")
Data saya tidak bersifat stasioner maka saya melakukan proses differencing
#Diff
JPP_diff <- diff(JPP$Jumlah.Penumpang.Pesawat,
differences = 1)
ts.plot(JPP_diff,
col = "Blue",
xlab = "Time",
ylab = "Differencing",
main = "Time Series Plot (Differencing)")
Estimasi Parameter
AR(1)
JPP_log <- log(JPP$Jumlah.Penumpang.Pesawat)
AR1 <- arima(JPP_log,
order = c(1,2,0),
seasonal = list(order = c(0,0,0),
period = NA),
include.mean = F)
summary(AR1)
##
## Call:
## arima(x = JPP_log, order = c(1, 2, 0), seasonal = list(order = c(0, 0, 0), period = NA),
## include.mean = F)
##
## Coefficients:
## ar1
## -0.0410
## s.e. 0.1828
##
## sigma^2 estimated as 0.4056: log likelihood = -30, aic = 64
##
## Training set error measures:
## ME RMSE MAE MPE MAPE MASE
## Training set 0.01575419 0.6172644 0.3797839 0.6000282 4.892401 1.160034
## ACF1
## Training set -0.01756661
Dari summary(arima) terdapat bahwa nilai koefisien AR1 = -0.0410 dan s.e. = 0.1828 dan sigma^2 = 0.4056
MA(1)
MA1 <- arima(JPP_log,
order = c(0,2,1),
seasonal = list(order = c(0,0,0),
period = NA),
include.mean = F)
summary(MA1)
##
## Call:
## arima(x = JPP_log, order = c(0, 2, 1), seasonal = list(order = c(0, 0, 0), period = NA),
## include.mean = F)
##
## Coefficients:
## ma1
## -0.2535
## s.e. 0.4199
##
## sigma^2 estimated as 0.4012: log likelihood = -29.86, aic = 63.73
##
## Training set error measures:
## ME RMSE MAE MPE MAPE MASE
## Training set 0.01407424 0.6139113 0.3798848 0.5807833 4.900348 1.160342
## ACF1
## Training set 0.09823616
Dari summary(arima) terdapat bahwa nilai koefisien ma1 = -0.2535 dan s.e. = 0.4199 serta sigma^2 = 0.4199
ARMA(1,1)
ARMA1 <- arima(JPP_log,
order = c(1,2,1),
seasonal = list(order = c(0,0,0),
period = NA),
include.mean = F)
summary(ARMA1)
##
## Call:
## arima(x = JPP_log, order = c(1, 2, 1), seasonal = list(order = c(0, 0, 0), period = NA),
## include.mean = F)
##
## Coefficients:
## ar1 ma1
## 0.5203 -1.0000
## s.e. 0.1621 0.1233
##
## sigma^2 estimated as 0.3048: log likelihood = -26.76, aic = 59.52
##
## Training set error measures:
## ME RMSE MAE MPE MAPE MASE
## Training set -0.04073504 0.5351042 0.3156023 -0.3817704 3.905818 0.9639938
## ACF1
## Training set 0.1046594
Dari summary(arima) terdapat bahwa nilai koefisien AR1 = 0.5203, ma1 = -1 dan s.e.ar = 0.1621, s.e.ma = 0.1233 serta sigma^2 = 0.1233
AR(2)
AR2 <- arima(JPP_log,
order = c(2,2,0),
seasonal = list(order = c(0,0,0),
period = NA),
include.mean = F)
summary(AR2)
##
## Call:
## arima(x = JPP_log, order = c(2, 2, 0), seasonal = list(order = c(0, 0, 0), period = NA),
## include.mean = F)
##
## Coefficients:
## ar1 ar2
## -0.0347 -0.4254
## s.e. 0.1668 0.1641
##
## sigma^2 estimated as 0.331: log likelihood = -27.05, aic = 60.1
##
## Training set error measures:
## ME RMSE MAE MPE MAPE MASE
## Training set 0.02056356 0.557616 0.3405879 0.6770012 4.323875 1.040311
## ACF1
## Training set -0.0446033
Dari summary(arima) terdapat bahwa nilai koefisien AR1 = -0.0347, AR2 = -0.4254 dan s.e.1 = 0.1668, s.e.2 = 0.1641 serta sigma^2 = 0.331
Model MA(2)
MA2 <- arima(JPP_log,
order = c(0,2,2),
seasonal = list(order = c(0,0,0),
period = NA),
include.mean = F)
summary(MA2)
##
## Call:
## arima(x = JPP_log, order = c(0, 2, 2), seasonal = list(order = c(0, 0, 0), period = NA),
## include.mean = F)
##
## Coefficients:
## ma1 ma2
## -0.3773 -0.5517
## s.e. 0.1801 0.1745
##
## sigma^2 estimated as 0.2912: log likelihood = -25.82, aic = 57.64
##
## Training set error measures:
## ME RMSE MAE MPE MAPE MASE
## Training set -0.05082296 0.5230585 0.2931629 -0.5687564 3.597235 0.8954537
## ACF1
## Training set 0.06107055
Dari summary(arima) terdapat bahwa nilai koefisien MA1 = -0.3773, MA2 = -0.5517 dan s.e.1 = 0.1801, s.e.2 = 0.1745 serta sigma^2 = 0.2912
ARMA(2,2)
ARMA2 <- arima(JPP_log,
order = c(2,2,2),
seasonal = list(order = c(0,0,0),
period = NA),
include.mean = F)
summary(ARMA2)
##
## Call:
## arima(x = JPP_log, order = c(2, 2, 2), seasonal = list(order = c(0, 0, 0), period = NA),
## include.mean = F)
##
## Coefficients:
## ar1 ar2 ma1 ma2
## 0.3238 -0.1072 -0.6312 -0.3688
## s.e. 0.3689 0.2645 0.4294 0.3548
##
## sigma^2 estimated as 0.2748: log likelihood = -25.41, aic = 60.82
##
## Training set error measures:
## ME RMSE MAE MPE MAPE MASE
## Training set -0.04689238 0.5081291 0.2876889 -0.5236586 3.501176 0.8787336
## ACF1
## Training set -0.01872531
Dari summary(arima) didapatkan nilai koefisien AR1 = 0.3238, AR2 = -0.1072, MA1 = -0.6312, MA2 = -0.3688 dan s.e.AR1 = 0.3689, s.e.AR2 = 0.2645, s.e.MA1 = 0.4294, s.e.MA2 = 0.3548 serta sigma^2 = 0.2748