Visitors.Diff1 <- diff(Visitors, differences = 1)
# Plot hasil differencing
ts.plot(Visitors.Diff1, col= "darkgreen", main="Time Series Plot")# Transformasi
Visitors.Log.Diff1 <- diff(log(Visitors), diff=1)
ts.plot(Visitors.Log.Diff1, col="darkgreen", main="Time Series Plot")Terlihat transformasi log dari data sebelum dilakukan difference, variansi data relatif stabil namun terdapat 1 outlier.
# Identifikasi
par(mfrow=c(1,2))
acf(Visitors.Log.Diff1,
lag.max = 33,
type = c("correlation","covariance","partial"),
plot = TRUE,
na.action = na.pass)
pacf(Visitors.Log.Diff1,
lag.max = 33,
na.action = na.pass)Dapat dilihat diatas kalau fungsi ACF signifikan pada Lag 1 dan 2, dan PACF signifikan pada lag 1.
Visitors.log <- log(Visitors)
arimamodel1 <- arima(Visitors.log,
order = c(1,1,1),
seasonal = list(order = c(0,0,0), period = NA),
include.mean = FALSE)
summary(arimamodel1)##
## Call:
## arima(x = Visitors.log, order = c(1, 1, 1), seasonal = list(order = c(0, 0,
## 0), period = NA), include.mean = FALSE)
##
## Coefficients:
## ar1 ma1
## 0.4826 -0.0578
## s.e. 0.2918 0.3212
##
## sigma^2 estimated as 0.0475: log likelihood = 3.24, aic = -0.48
##
## Training set error measures:
## ME RMSE MAE MPE MAPE MASE
## Training set -0.03342497 0.2146271 0.1312295 -0.2620017 0.9962399 1.029327
## ACF1
## Training set -0.01460957