Libraries

require(fpp2)
## Loading required package: fpp2
## Warning: package 'fpp2' was built under R version 4.0.3
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo
## -- Attaching packages ---------------------------------------------- fpp2 2.4 --
## v ggplot2   3.3.2     v fma       2.4  
## v forecast  8.13      v expsmooth 2.3
## Warning: package 'fma' was built under R version 4.0.3
## Warning: package 'expsmooth' was built under R version 4.0.3
## 
require(forecast)
require(urca)
## Loading required package: urca
require(zoo)
## Loading required package: zoo
## 
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
require(vars)
## Loading required package: vars
## Warning: package 'vars' was built under R version 4.0.3
## Loading required package: MASS
## 
## Attaching package: 'MASS'
## The following objects are masked from 'package:fma':
## 
##     cement, housing, petrol
## Loading required package: strucchange
## Warning: package 'strucchange' was built under R version 4.0.3
## Loading required package: sandwich
## Warning: package 'sandwich' was built under R version 4.0.3
## Loading required package: lmtest
require(tidyverse)
## Loading required package: tidyverse
## Warning: package 'tidyverse' was built under R version 4.0.3
## -- Attaching packages --------------------------------------- tidyverse 1.3.0 --
## v tibble  3.0.3     v dplyr   1.0.2
## v tidyr   1.1.2     v stringr 1.4.0
## v readr   1.3.1     v forcats 0.5.0
## v purrr   0.3.4
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x stringr::boundary() masks strucchange::boundary()
## x dplyr::filter()     masks stats::filter()
## x dplyr::lag()        masks stats::lag()
## x dplyr::select()     masks MASS::select()
require(seasonal)
## Loading required package: seasonal
## Warning: package 'seasonal' was built under R version 4.0.3
## 
## Attaching package: 'seasonal'
## The following object is masked from 'package:tibble':
## 
##     view
require(corrplot)
## Loading required package: corrplot
## corrplot 0.84 loaded
require(psych)
## Loading required package: psych
## Warning: package 'psych' was built under R version 4.0.3
## 
## Attaching package: 'psych'
## The following object is masked from 'package:seasonal':
## 
##     outlier
## The following objects are masked from 'package:ggplot2':
## 
##     %+%, alpha
require(dplyr)
require(kableExtra)
## Loading required package: kableExtra
## Warning: package 'kableExtra' was built under R version 4.0.3
## 
## Attaching package: 'kableExtra'
## The following object is masked from 'package:dplyr':
## 
##     group_rows

Import Data

cases.train<-read.csv("C:/Users/jbiasi/OneDrive - CoStar Realty Information, Inc/Documents/Dengai/dengue_labels_train.csv")
features.train<-read.csv("C:/Users/jbiasi/OneDrive - CoStar Realty Information, Inc/Documents/Dengai/dengue_features_train.csv")
features.test<-read.csv("C:/Users/jbiasi/OneDrive - CoStar Realty Information, Inc/Documents/Dengai/dengue_features_test.csv")
submission_format <- read.csv("C:/Users/jbiasi/OneDrive - CoStar Realty Information, Inc/Documents/Dengai/submission_format.csv")

#Seperating Data
train.all <- left_join(x = features.train, y = cases.train, by = c("year", "weekofyear", "city"))
test <- left_join(x = features.test, y = submission_format, by = c("year", "weekofyear", "city"))

Looking At missing values

missing_values<-summarise_all(train.all,funs(sum(is.na(.))/n()))
## Warning: `funs()` is deprecated as of dplyr 0.8.0.
## Please use a list of either functions or lambdas: 
## 
##   # Simple named list: 
##   list(mean = mean, median = median)
## 
##   # Auto named with `tibble::lst()`: 
##   tibble::lst(mean, median)
## 
##   # Using lambdas
##   list(~ mean(., trim = .2), ~ median(., na.rm = TRUE))
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_warnings()` to see where this warning was generated.
missing_values<-gather(missing_values,key="Feature",value = "Missing_percentage")

g<-ggplot(data=missing_values)
g<-g+geom_bar(stat="identity",aes(x=reorder(Feature,-Missing_percentage),y=Missing_percentage))
g<-g+coord_flip()+ggtitle("Missing %-Features")+ylab("Features")+xlab("Missing Percentage")
g

#replace missing values with mean
for(i in 5:24){
  train.all[,i]<-replace_na(train.all[,i],mean(train.all[,i],na.rm = T))
  test[,i]<-replace_na(features.test[,i],mean(features.test[,i],na.rm = T))
}

#split by city
train.sj <- train.all %>% filter(city == 'sj')
train.iq <- train.all %>% filter(city == 'iq')

test.sj <- train.all %>% filter(city == 'sj')
test.iq <- train.all %>% filter(city == 'iq')

Summarize Data

describe(cases.train[,4])
##    vars    n  mean   sd median trimmed   mad min max range skew kurtosis   se
## X1    1 1456 24.68 43.6     12   15.97 13.34   0 461   461 5.26    36.33 1.14
describe(features.train[,5:24])
##                                       vars    n   mean    sd median trimmed
## ndvi_ne                                  1 1262   0.14  0.14   0.13    0.14
## ndvi_nw                                  2 1404   0.13  0.12   0.12    0.13
## ndvi_se                                  3 1434   0.20  0.07   0.20    0.20
## ndvi_sw                                  4 1434   0.20  0.08   0.19    0.20
## precipitation_amt_mm                     5 1443  45.76 43.72  38.34   40.16
## reanalysis_air_temp_k                    6 1446 298.70  1.36 298.65  298.72
## reanalysis_avg_temp_k                    7 1446 299.23  1.26 299.29  299.25
## reanalysis_dew_point_temp_k              8 1446 295.25  1.53 295.64  295.37
## reanalysis_max_air_temp_k                9 1446 303.43  3.23 302.40  303.10
## reanalysis_min_air_temp_k               10 1446 295.72  2.57 296.20  295.93
## reanalysis_precip_amt_kg_per_m2         11 1446  40.15 43.43  27.24   32.38
## reanalysis_relative_humidity_percent    12 1446  82.16  7.15  80.30   81.69
## reanalysis_sat_precip_amt_mm            13 1443  45.76 43.72  38.34   40.16
## reanalysis_specific_humidity_g_per_kg   14 1446  16.75  1.54  17.09   16.85
## reanalysis_tdtr_k                       15 1446   4.90  3.55   2.86    4.36
## station_avg_temp_c                      16 1413  27.19  1.29  27.41   27.27
## station_diur_temp_rng_c                 17 1413   8.06  2.13   7.30    7.85
## station_max_temp_c                      18 1436  32.45  1.96  32.80   32.52
## station_min_temp_c                      19 1442  22.10  1.57  22.20   22.14
## station_precip_mm                       20 1434  39.33 47.46  23.85   30.46
##                                         mad    min    max  range  skew kurtosis
## ndvi_ne                                0.15  -0.41   0.51   0.91 -0.11    -0.14
## ndvi_nw                                0.12  -0.46   0.45   0.91 -0.01     0.05
## ndvi_se                                0.07  -0.02   0.54   0.55  0.57     0.56
## ndvi_sw                                0.07  -0.06   0.55   0.61  0.75     0.70
## precipitation_amt_mm                  44.23   0.00 390.60 390.60  1.73     6.74
## reanalysis_air_temp_k                  1.57 294.64 302.20   7.56 -0.08    -0.69
## reanalysis_avg_temp_k                  1.43 294.89 302.93   8.04 -0.19    -0.54
## reanalysis_dew_point_temp_k            1.52 289.64 298.45   8.81 -0.72    -0.12
## reanalysis_max_air_temp_k              2.67 297.80 314.00  16.20  0.85    -0.19
## reanalysis_min_air_temp_k              2.82 286.90 299.90  13.00 -0.67    -0.22
## reanalysis_precip_amt_kg_per_m2       25.12   0.00 570.50 570.50  3.38    22.12
## reanalysis_relative_humidity_percent   5.68  57.79  98.61  40.82  0.57    -0.40
## reanalysis_sat_precip_amt_mm          44.23   0.00 390.60 390.60  1.73     6.74
## reanalysis_specific_humidity_g_per_kg  1.63  11.72  20.46   8.75 -0.54    -0.49
## reanalysis_tdtr_k                      1.16   1.36  16.03  14.67  1.07    -0.21
## station_avg_temp_c                     1.28  21.40  30.80   9.40 -0.57    -0.16
## station_diur_temp_rng_c                1.63   4.53  15.80  11.27  0.84    -0.26
## station_max_temp_c                     1.63  26.70  42.20  15.50 -0.26     0.21
## station_min_temp_c                     1.63  14.70  25.60  10.90 -0.31     0.21
## station_precip_mm                     26.76   0.00 543.30 543.30  2.98    15.29
##                                         se
## ndvi_ne                               0.00
## ndvi_nw                               0.00
## ndvi_se                               0.00
## ndvi_sw                               0.00
## precipitation_amt_mm                  1.15
## reanalysis_air_temp_k                 0.04
## reanalysis_avg_temp_k                 0.03
## reanalysis_dew_point_temp_k           0.04
## reanalysis_max_air_temp_k             0.09
## reanalysis_min_air_temp_k             0.07
## reanalysis_precip_amt_kg_per_m2       1.14
## reanalysis_relative_humidity_percent  0.19
## reanalysis_sat_precip_amt_mm          1.15
## reanalysis_specific_humidity_g_per_kg 0.04
## reanalysis_tdtr_k                     0.09
## station_avg_temp_c                    0.03
## station_diur_temp_rng_c               0.06
## station_max_temp_c                    0.05
## station_min_temp_c                    0.04
## station_precip_mm                     1.25

Seperate Cities

#features.test.sj <- features.test %>% filter(city == 'sj')
#features.test.iq <- features.test %>% filter(city == 'iq')


#Create TS objects
train.sj<-ts(train.sj, frequency = 365.25/7, start = c(1990, 4, 30))
train.iq<-ts(train.iq, frequency = 365.25/7, start = c(2000, 1, 8))

test.sj<-ts(test.sj, frequency = 365.25/7, start = c(2008, 4, 29))
test.iq<-ts(test.iq, frequency = 365.25/7, start = c(2010, 9, 3))

Summarize Data

describe(train.sj)
##                                       vars   n    mean     sd  median trimmed
## city                                     1 936    1.00   0.00    1.00    1.00
## year                                     2 936 1998.83   5.21 1999.00 1998.83
## weekofyear                               3 936   26.50  15.02   26.50   26.50
## week_start_date                          4 936  468.50 270.34  468.50  468.50
## ndvi_ne                                  5 936    0.08   0.10    0.09    0.08
## ndvi_nw                                  6 936    0.07   0.09    0.07    0.07
## ndvi_se                                  7 936    0.18   0.06    0.18    0.18
## ndvi_sw                                  8 936    0.17   0.06    0.17    0.17
## precipitation_amt_mm                     9 936   35.57  44.40   21.44   27.69
## reanalysis_air_temp_k                   10 936  299.16   1.23  299.24  299.19
## reanalysis_avg_temp_k                   11 936  299.28   1.21  299.38  299.31
## reanalysis_dew_point_temp_k             12 936  295.11   1.56  295.45  295.23
## reanalysis_max_air_temp_k               13 936  301.41   1.27  301.50  301.44
## reanalysis_min_air_temp_k               14 936  297.29   1.30  297.50  297.37
## reanalysis_precip_amt_kg_per_m2         15 936   30.53  35.52   21.41   24.42
## reanalysis_relative_humidity_percent    16 936   78.59   3.39   78.68   78.65
## reanalysis_sat_precip_amt_mm            17 936   35.57  44.40   21.44   27.69
## reanalysis_specific_humidity_g_per_kg   18 936   16.55   1.56   16.83   16.64
## reanalysis_tdtr_k                       19 936    2.53   0.53    2.46    2.49
## station_avg_temp_c                      20 936   27.01   1.41   27.21   27.06
## station_diur_temp_rng_c                 21 936    6.77   0.84    6.76    6.76
## station_max_temp_c                      22 936   31.61   1.71   31.70   31.70
## station_min_temp_c                      23 936   22.60   1.50   22.80   22.67
## station_precip_mm                       24 936   26.87  29.25   17.95   21.80
## total_cases                             25 936   34.18  51.38   19.00   23.84
##                                          mad     min     max  range  skew
## city                                    0.00    1.00    1.00   0.00   NaN
## year                                    6.67 1990.00 2008.00  18.00  0.00
## weekofyear                             19.27    1.00   53.00  52.00  0.00
## week_start_date                       346.93    1.00  936.00 935.00  0.00
## ndvi_ne                                 0.08   -0.41    0.49   0.90 -0.41
## ndvi_nw                                 0.08   -0.46    0.44   0.89 -0.18
## ndvi_se                                 0.05   -0.02    0.39   0.41  0.19
## ndvi_sw                                 0.05   -0.06    0.38   0.44  0.11
## precipitation_amt_mm                   31.78    0.00  390.60 390.60  2.61
## reanalysis_air_temp_k                   1.45  295.94  302.20   6.26 -0.21
## reanalysis_avg_temp_k                   1.40  296.11  302.16   6.05 -0.22
## reanalysis_dew_point_temp_k             1.71  289.64  297.80   8.15 -0.63
## reanalysis_max_air_temp_k               1.48  297.80  304.30   6.50 -0.16
## reanalysis_min_air_temp_k               1.48  292.60  299.90   7.30 -0.52
## reanalysis_precip_amt_kg_per_m2        18.39    0.00  570.50 570.50  5.56
## reanalysis_relative_humidity_percent    3.53   66.74   87.58  20.84 -0.20
## reanalysis_sat_precip_amt_mm           31.78    0.00  390.60 390.60  2.61
## reanalysis_specific_humidity_g_per_kg   1.79   11.72   19.44   7.72 -0.47
## reanalysis_tdtr_k                       0.49    1.36    4.90   3.55  1.05
## station_avg_temp_c                      1.67   22.84   30.07   7.23 -0.31
## station_diur_temp_rng_c                 0.80    4.53    9.91   5.39  0.10
## station_max_temp_c                      1.63   26.70   35.60   8.90 -0.45
## station_min_temp_c                      1.63   17.80   25.60   7.80 -0.39
## station_precip_mm                      18.90    0.00  305.90 305.90  2.62
## total_cases                            17.79    0.00  461.00 461.00  4.46
##                                       kurtosis   se
## city                                       NaN 0.00
## year                                     -1.19 0.17
## weekofyear                               -1.20 0.49
## week_start_date                          -1.20 8.84
## ndvi_ne                                   2.16 0.00
## ndvi_nw                                   2.07 0.00
## ndvi_se                                   0.45 0.00
## ndvi_sw                                   0.64 0.00
## precipitation_amt_mm                     11.80 1.45
## reanalysis_air_temp_k                    -0.87 0.04
## reanalysis_avg_temp_k                    -0.81 0.04
## reanalysis_dew_point_temp_k              -0.39 0.05
## reanalysis_max_air_temp_k                -0.80 0.04
## reanalysis_min_air_temp_k                -0.34 0.04
## reanalysis_precip_amt_kg_per_m2          62.57 1.16
## reanalysis_relative_humidity_percent     -0.09 0.11
## reanalysis_sat_precip_amt_mm             11.80 1.45
## reanalysis_specific_humidity_g_per_kg    -0.72 0.05
## reanalysis_tdtr_k                         2.04 0.02
## station_avg_temp_c                       -0.89 0.05
## station_diur_temp_rng_c                   0.41 0.03
## station_max_temp_c                       -0.52 0.06
## station_min_temp_c                       -0.47 0.05
## station_precip_mm                        12.71 0.96
## total_cases                              25.17 1.68
describe(train.iq)
##                                       vars   n    mean     sd  median trimmed
## city                                     1 520    1.00   0.00    1.00    1.00
## year                                     2 520 2005.00   2.92 2005.00 2005.00
## weekofyear                               3 520   26.50  15.03   26.50   26.50
## week_start_date                          4 520  260.50 150.26  260.50  260.50
## ndvi_ne                                  5 520    0.26   0.08    0.26    0.26
## ndvi_nw                                  6 520    0.24   0.08    0.23    0.24
## ndvi_se                                  7 520    0.25   0.08    0.25    0.25
## ndvi_sw                                  8 520    0.27   0.09    0.26    0.26
## precipitation_amt_mm                     9 520   64.10  35.12   60.25   62.06
## reanalysis_air_temp_k                   10 520  297.88   1.17  297.83  297.87
## reanalysis_avg_temp_k                   11 520  299.13   1.33  299.14  299.15
## reanalysis_dew_point_temp_k             12 520  295.49   1.41  295.83  295.62
## reanalysis_max_air_temp_k               13 520  307.05   2.40  307.00  307.00
## reanalysis_min_air_temp_k               14 520  292.89   1.68  293.10  293.05
## reanalysis_precip_amt_kg_per_m2         15 520   57.48  50.12   45.98   49.24
## reanalysis_relative_humidity_percent    16 520   88.59   7.58   90.87   89.53
## reanalysis_sat_precip_amt_mm            17 520   64.10  35.12   60.25   62.06
## reanalysis_specific_humidity_g_per_kg   18 520   17.09   1.44   17.42   17.20
## reanalysis_tdtr_k                       19 520    9.17   2.47    8.94    9.09
## station_avg_temp_c                      20 520   27.51   0.89   27.50   27.54
## station_diur_temp_rng_c                 21 520   10.39   1.61   10.44   10.38
## station_max_temp_c                      22 520   33.96   1.33   33.90   33.92
## station_min_temp_c                      23 520   21.21   1.26   21.40   21.33
## station_precip_mm                       24 520   61.76  62.39   44.00   51.52
## total_cases                             25 520    7.57  10.77    5.00    5.38
##                                          mad     min     max  range  skew
## city                                    0.00    1.00    1.00   0.00   NaN
## year                                    3.71 2000.00 2010.00  10.00  0.00
## weekofyear                             19.27    1.00   53.00  52.00  0.00
## week_start_date                       192.74    1.00  520.00 519.00  0.00
## ndvi_ne                                 0.09    0.06    0.51   0.45  0.23
## ndvi_nw                                 0.08    0.04    0.45   0.42  0.24
## ndvi_se                                 0.08    0.03    0.54   0.51  0.28
## ndvi_sw                                 0.09    0.06    0.55   0.48  0.28
## precipitation_amt_mm                   33.35    0.00  210.83 210.83  0.61
## reanalysis_air_temp_k                   1.15  294.64  301.64   7.00  0.09
## reanalysis_avg_temp_k                   1.40  294.89  302.93   8.04 -0.11
## reanalysis_dew_point_temp_k             1.28  290.09  298.45   8.36 -0.88
## reanalysis_max_air_temp_k               2.67  300.00  314.00  14.00  0.16
## reanalysis_min_air_temp_k               1.63  286.90  296.00   9.10 -0.92
## reanalysis_precip_amt_kg_per_m2        33.19    0.00  362.03 362.03  2.01
## reanalysis_relative_humidity_percent    6.43   57.79   98.61  40.82 -1.08
## reanalysis_sat_precip_amt_mm           33.35    0.00  210.83 210.83  0.61
## reanalysis_specific_humidity_g_per_kg   1.39   12.11   20.46   8.35 -0.66
## reanalysis_tdtr_k                       2.73    3.71   16.03  12.31  0.28
## station_avg_temp_c                      0.74   21.40   30.80   9.40 -0.87
## station_diur_temp_rng_c                 1.79    5.20   15.80  10.60  0.01
## station_max_temp_c                      1.33   30.10   42.20  12.10  0.63
## station_min_temp_c                      1.04   14.70   24.20   9.50 -1.16
## station_precip_mm                      45.96    0.00  543.30 543.30  2.26
## total_cases                             5.93    0.00  116.00 116.00  3.97
##                                       kurtosis   se
## city                                       NaN 0.00
## year                                     -1.16 0.13
## weekofyear                               -1.21 0.66
## week_start_date                          -1.21 6.59
## ndvi_ne                                  -0.35 0.00
## ndvi_nw                                  -0.51 0.00
## ndvi_se                                   0.02 0.00
## ndvi_sw                                  -0.18 0.00
## precipitation_amt_mm                      0.42 1.54
## reanalysis_air_temp_k                    -0.04 0.05
## reanalysis_avg_temp_k                    -0.19 0.06
## reanalysis_dew_point_temp_k               0.60 0.06
## reanalysis_max_air_temp_k                -0.51 0.11
## reanalysis_min_air_temp_k                 0.92 0.07
## reanalysis_precip_amt_kg_per_m2           5.65 2.20
## reanalysis_relative_humidity_percent      0.75 0.33
## reanalysis_sat_precip_amt_mm              0.42 1.54
## reanalysis_specific_humidity_g_per_kg     0.08 0.06
## reanalysis_tdtr_k                        -0.66 0.11
## station_avg_temp_c                        4.81 0.04
## station_diur_temp_rng_c                  -0.32 0.07
## station_max_temp_c                        2.42 0.06
## station_min_temp_c                        2.54 0.06
## station_precip_mm                         8.77 2.74
## total_cases                              26.35 0.47

Chart Cases

autoplot(train.sj[,"total_cases"])

autoplot(train.iq[,"total_cases"])

#Decomposition

train.sj[,"total_cases"] %>%
  stl(t.window=52, s.window="periodic", robust=TRUE) %>%
  autoplot()

train.iq[,"total_cases"] %>%
  stl(t.window=52, s.window="periodic", robust=TRUE) %>%
  autoplot()

Check ACF plots

#SJ
train.sj[,"total_cases"] %>% ur.kpss() %>% summary()
## 
## ####################### 
## # KPSS Unit Root Test # 
## ####################### 
## 
## Test is of type: mu with 6 lags. 
## 
## Value of test-statistic is: 0.7987 
## 
## Critical value for a significance level of: 
##                 10pct  5pct 2.5pct  1pct
## critical values 0.347 0.463  0.574 0.739
ggtsdisplay(train.sj[,"total_cases"])

ndiffs(train.sj[,"total_cases"])
## [1] 1
cases.diff.sj<-diff(train.sj[,"total_cases"])
ggtsdisplay(cases.diff.sj)

train.sj<-ts(data.frame(train.sj[2:936,], cases.diff.sj), frequency = 365.25/7, start = c(1990, 4, 30))

#IQ
train.iq[,"total_cases"] %>% ur.kpss() %>% summary()
## 
## ####################### 
## # KPSS Unit Root Test # 
## ####################### 
## 
## Test is of type: mu with 6 lags. 
## 
## Value of test-statistic is: 0.4686 
## 
## Critical value for a significance level of: 
##                 10pct  5pct 2.5pct  1pct
## critical values 0.347 0.463  0.574 0.739
ggtsdisplay(train.iq[,"total_cases"])

ndiffs(train.iq[,"total_cases"])
## [1] 1
cases.diff.iq<-diff(train.iq[,"total_cases"])
ggtsdisplay(cases.diff.iq)

train.iq<-ts(data.frame(train.iq[2:520,], cases.diff.iq), frequency = 365.25/7, start = c(2000, 1, 8))

Summarize Data

describe(train.sj)
##                                       vars   n    mean     sd  median trimmed
## city                                     1 935    1.00   0.00    1.00    1.00
## year                                     2 935 1998.84   5.21 1999.00 1998.84
## weekofyear                               3 935   26.51  15.03   27.00   26.51
## week_start_date                          4 935  469.00 270.06  469.00  469.00
## ndvi_ne                                  5 935    0.08   0.10    0.09    0.08
## ndvi_nw                                  6 935    0.07   0.09    0.07    0.07
## ndvi_se                                  7 935    0.18   0.06    0.18    0.18
## ndvi_sw                                  8 935    0.17   0.06    0.17    0.17
## precipitation_amt_mm                     9 935   35.59  44.42   21.53   27.71
## reanalysis_air_temp_k                   10 935  299.16   1.23  299.24  299.19
## reanalysis_avg_temp_k                   11 935  299.28   1.21  299.38  299.31
## reanalysis_dew_point_temp_k             12 935  295.11   1.56  295.45  295.23
## reanalysis_max_air_temp_k               13 935  301.41   1.26  301.50  301.44
## reanalysis_min_air_temp_k               14 935  297.29   1.30  297.50  297.37
## reanalysis_precip_amt_kg_per_m2         15 935   30.53  35.54   21.40   24.41
## reanalysis_relative_humidity_percent    16 935   78.60   3.39   78.68   78.65
## reanalysis_sat_precip_amt_mm            17 935   35.59  44.42   21.53   27.71
## reanalysis_specific_humidity_g_per_kg   18 935   16.56   1.55   16.83   16.65
## reanalysis_tdtr_k                       19 935    2.53   0.53    2.46    2.49
## station_avg_temp_c                      20 935   27.01   1.41   27.21   27.06
## station_diur_temp_rng_c                 21 935    6.77   0.84    6.76    6.76
## station_max_temp_c                      22 935   31.62   1.71   31.70   31.70
## station_min_temp_c                      23 935   22.60   1.50   22.80   22.67
## station_precip_mm                       24 935   26.88  29.26   18.00   21.81
## total_cases                             25 935   34.21  51.40   19.00   23.86
## cases.diff.sj                           26 935    0.00  13.63    0.00    0.04
##                                          mad     min     max  range  skew
## city                                    0.00    1.00    1.00   0.00   NaN
## year                                    5.93 1990.00 2008.00  18.00  0.00
## weekofyear                             19.27    1.00   53.00  52.00  0.00
## week_start_date                       346.93    2.00  936.00 934.00  0.00
## ndvi_ne                                 0.08   -0.41    0.49   0.90 -0.41
## ndvi_nw                                 0.08   -0.46    0.44   0.89 -0.18
## ndvi_se                                 0.05   -0.02    0.39   0.41  0.19
## ndvi_sw                                 0.05   -0.06    0.38   0.44  0.11
## precipitation_amt_mm                   31.92    0.00  390.60 390.60  2.61
## reanalysis_air_temp_k                   1.44  295.94  302.20   6.26 -0.21
## reanalysis_avg_temp_k                   1.40  296.11  302.16   6.05 -0.23
## reanalysis_dew_point_temp_k             1.71  289.64  297.80   8.15 -0.63
## reanalysis_max_air_temp_k               1.48  297.80  304.30   6.50 -0.16
## reanalysis_min_air_temp_k               1.48  292.60  299.90   7.30 -0.52
## reanalysis_precip_amt_kg_per_m2        18.38    0.00  570.50 570.50  5.56
## reanalysis_relative_humidity_percent    3.52   66.74   87.58  20.84 -0.20
## reanalysis_sat_precip_amt_mm           31.92    0.00  390.60 390.60  2.61
## reanalysis_specific_humidity_g_per_kg   1.79   11.72   19.44   7.72 -0.47
## reanalysis_tdtr_k                       0.49    1.36    4.90   3.55  1.05
## station_avg_temp_c                      1.67   22.84   30.07   7.23 -0.31
## station_diur_temp_rng_c                 0.80    4.53    9.91   5.39  0.10
## station_max_temp_c                      1.63   26.70   35.60   8.90 -0.45
## station_min_temp_c                      1.63   17.80   25.60   7.80 -0.39
## station_precip_mm                      18.98    0.00  305.90 305.90  2.62
## total_cases                            17.79    0.00  461.00 461.00  4.46
## cases.diff.sj                           7.41  -82.00   93.00 175.00 -0.08
##                                       kurtosis   se
## city                                       NaN 0.00
## year                                     -1.19 0.17
## weekofyear                               -1.20 0.49
## week_start_date                          -1.20 8.83
## ndvi_ne                                   2.16 0.00
## ndvi_nw                                   2.06 0.00
## ndvi_se                                   0.45 0.00
## ndvi_sw                                   0.64 0.00
## precipitation_amt_mm                     11.78 1.45
## reanalysis_air_temp_k                    -0.87 0.04
## reanalysis_avg_temp_k                    -0.81 0.04
## reanalysis_dew_point_temp_k              -0.38 0.05
## reanalysis_max_air_temp_k                -0.79 0.04
## reanalysis_min_air_temp_k                -0.34 0.04
## reanalysis_precip_amt_kg_per_m2          62.50 1.16
## reanalysis_relative_humidity_percent     -0.09 0.11
## reanalysis_sat_precip_amt_mm             11.78 1.45
## reanalysis_specific_humidity_g_per_kg    -0.72 0.05
## reanalysis_tdtr_k                         2.03 0.02
## station_avg_temp_c                       -0.88 0.05
## station_diur_temp_rng_c                   0.41 0.03
## station_max_temp_c                       -0.51 0.06
## station_min_temp_c                       -0.46 0.05
## station_precip_mm                        12.70 0.96
## total_cases                              25.15 1.68
## cases.diff.sj                            11.75 0.45
describe(train.iq)
##                                       vars   n    mean     sd  median trimmed
## city                                     1 519    1.00   0.00    1.00    1.00
## year                                     2 519 2005.01   2.91 2005.00 2005.01
## weekofyear                               3 519   26.50  15.04   27.00   26.50
## week_start_date                          4 519  261.00 149.97  261.00  261.00
## ndvi_ne                                  5 519    0.26   0.08    0.26    0.26
## ndvi_nw                                  6 519    0.24   0.08    0.23    0.24
## ndvi_se                                  7 519    0.25   0.08    0.25    0.25
## ndvi_sw                                  8 519    0.27   0.09    0.26    0.26
## precipitation_amt_mm                     9 519   64.18  35.11   60.36   62.17
## reanalysis_air_temp_k                   10 519  297.88   1.17  297.84  297.87
## reanalysis_avg_temp_k                   11 519  299.14   1.33  299.15  299.15
## reanalysis_dew_point_temp_k             12 519  295.49   1.41  295.83  295.62
## reanalysis_max_air_temp_k               13 519  307.05   2.40  307.00  307.00
## reanalysis_min_air_temp_k               14 519  292.89   1.68  293.10  293.05
## reanalysis_precip_amt_kg_per_m2         15 519   57.50  50.16   46.00   49.33
## reanalysis_relative_humidity_percent    16 519   88.58   7.58   90.86   89.51
## reanalysis_sat_precip_amt_mm            17 519   64.18  35.11   60.36   62.17
## reanalysis_specific_humidity_g_per_kg   18 519   17.09   1.44   17.42   17.20
## reanalysis_tdtr_k                       19 519    9.17   2.47    8.96    9.09
## station_avg_temp_c                      20 519   27.51   0.89   27.50   27.54
## station_diur_temp_rng_c                 21 519   10.39   1.62   10.43   10.38
## station_max_temp_c                      22 519   33.97   1.33   33.90   33.92
## station_min_temp_c                      23 519   21.21   1.26   21.40   21.33
## station_precip_mm                       24 519   61.87  62.40   44.00   51.73
## total_cases                             25 519    7.58  10.77    5.00    5.41
## cases.diff.iq                           26 519    0.01   7.66    0.00   -0.02
##                                          mad     min     max  range  skew
## city                                    0.00    1.00    1.00   0.00   NaN
## year                                    2.97 2000.00 2010.00  10.00  0.00
## weekofyear                             19.27    1.00   53.00  52.00  0.00
## week_start_date                       192.74    2.00  520.00 518.00  0.00
## ndvi_ne                                 0.09    0.06    0.51   0.45  0.22
## ndvi_nw                                 0.08    0.04    0.45   0.42  0.24
## ndvi_se                                 0.08    0.03    0.54   0.51  0.28
## ndvi_sw                                 0.09    0.06    0.55   0.48  0.28
## precipitation_amt_mm                   32.96    0.00  210.83 210.83  0.61
## reanalysis_air_temp_k                   1.15  294.64  301.64   7.00  0.09
## reanalysis_avg_temp_k                   1.41  294.89  302.93   8.04 -0.11
## reanalysis_dew_point_temp_k             1.28  290.09  298.45   8.36 -0.88
## reanalysis_max_air_temp_k               2.67  300.00  314.00  14.00  0.16
## reanalysis_min_air_temp_k               1.63  286.90  296.00   9.10 -0.92
## reanalysis_precip_amt_kg_per_m2        33.21    0.00  362.03 362.03  2.00
## reanalysis_relative_humidity_percent    6.43   57.79   98.61  40.82 -1.08
## reanalysis_sat_precip_amt_mm           32.96    0.00  210.83 210.83  0.61
## reanalysis_specific_humidity_g_per_kg   1.39   12.11   20.46   8.35 -0.66
## reanalysis_tdtr_k                       2.71    3.71   16.03  12.31  0.28
## station_avg_temp_c                      0.74   21.40   30.80   9.40 -0.88
## station_diur_temp_rng_c                 1.80    5.20   15.80  10.60  0.01
## station_max_temp_c                      1.33   30.10   42.20  12.10  0.63
## station_min_temp_c                      1.04   14.70   24.20   9.50 -1.16
## station_precip_mm                      45.96    0.00  543.30 543.30  2.26
## total_cases                             5.93    0.00  116.00 116.00  3.97
## cases.diff.iq                           2.97  -84.00   65.00 149.00 -1.15
##                                       kurtosis   se
## city                                       NaN 0.00
## year                                     -1.16 0.13
## weekofyear                               -1.21 0.66
## week_start_date                          -1.21 6.58
## ndvi_ne                                  -0.35 0.00
## ndvi_nw                                  -0.51 0.00
## ndvi_se                                   0.03 0.00
## ndvi_sw                                  -0.19 0.00
## precipitation_amt_mm                      0.42 1.54
## reanalysis_air_temp_k                    -0.04 0.05
## reanalysis_avg_temp_k                    -0.19 0.06
## reanalysis_dew_point_temp_k               0.60 0.06
## reanalysis_max_air_temp_k                -0.52 0.11
## reanalysis_min_air_temp_k                 0.91 0.07
## reanalysis_precip_amt_kg_per_m2           5.63 2.20
## reanalysis_relative_humidity_percent      0.74 0.33
## reanalysis_sat_precip_amt_mm              0.42 1.54
## reanalysis_specific_humidity_g_per_kg     0.08 0.06
## reanalysis_tdtr_k                        -0.66 0.11
## station_avg_temp_c                        4.84 0.04
## station_diur_temp_rng_c                  -0.32 0.07
## station_max_temp_c                        2.43 0.06
## station_min_temp_c                        2.53 0.06
## station_precip_mm                         8.77 2.74
## total_cases                              26.33 0.47
## cases.diff.iq                            38.74 0.34
hist(cases.diff.sj)

hist(cases.diff.iq)

#Seasonality Charts

ggseasonplot(train.sj[,"total_cases"], year.labels=TRUE, year.labels.left=TRUE) +
  ylab("Cases SJ") +
  ggtitle("Seasonal plot: Cases")

ggseasonplot(train.iq[,"total_cases"], year.labels=TRUE, year.labels.left=TRUE) +
  ylab("Cases IQ") +
  ggtitle("Seasonal plot: Cases")

ggplot(data=cases.train,aes(x=weekofyear,y=total_cases,fill=city))+geom_bar(stat="identity")+facet_wrap(.~city)

ggplot(data=cases.train,aes(x=year,y=total_cases,fill=city))+geom_bar(stat="identity")+facet_wrap(.~city)

Correlation to cases for different features

#SJ
corr.vars.sj<-train.sj[,5:24]
co_v<-cor(corr.vars.sj)
corrplot(co_v,tl.cex=.7)

#IQ
corr.vars.iq<-train.iq[,5:24]
co_v<-cor(corr.vars.iq)
corrplot(co_v,tl.cex=.7)

validation create

sj.train.train <- head(train.sj, 800)
sj.train.valid  <- tail(train.sj, nrow(train.sj) - 800)

iq.train.train <- head(train.iq, 400)
iq.train.valid  <- tail(train.iq, nrow(train.iq) - 400)


xreg.sj.train<-stats::lag(sj.train.train[, 5:23], 1)
#This gives a ank deficiancy error
xreg.sj.train<-xreg.sj.train[,-13]

xreg.iq.train<-stats::lag(iq.train.train[, 5:23], 1)
xreg.iq.train<-xreg.iq.train[,-13]

xreg.sj.test<-stats::lag(sj.train.valid[, 5:23], 1)
xreg.sj.test<-xreg.sj.test[,-13]
xreg.iq.test<-stats::lag(iq.train.valid[, 5:23], 1)
xreg.iq.test<-xreg.iq.test[,-13]

cases.diff.sj<-sj.train.train[,"cases.diff.sj"]
cases.diff.iq<-iq.train.train[,"cases.diff.iq"]

valid.cases.diff.sj<-sj.train.valid[,"cases.diff.sj"]
valid.cases.diff.iq<-iq.train.valid[,"cases.diff.iq"]

ETS

fit.ets.sj <- ets(cases.diff.sj)
## Warning in ets(cases.diff.sj): I can't handle data with frequency greater than
## 24. Seasonality will be ignored. Try stlf() if you need seasonal forecasts.
autoplot(fit.ets.sj)

fc.ets.sj <- forecast(fit.ets.sj, h=78)
autoplot(fc.ets.sj)

checkresiduals(fc.ets.sj)

## 
##  Ljung-Box test
## 
## data:  Residuals from ETS(A,N,N)
## Q* = 166.33, df = 102.36, p-value = 6.582e-05
## 
## Model df: 2.   Total lags used: 104.357142857143
fit.ets.iq <- ets(cases.diff.iq)
## Warning in ets(cases.diff.iq): I can't handle data with frequency greater than
## 24. Seasonality will be ignored. Try stlf() if you need seasonal forecasts.
autoplot(fit.ets.iq)

fc.ets.iq <- forecast(fit.ets.iq, h=78)
autoplot(fc.ets.iq)

checkresiduals(fc.ets.iq)

## 
##  Ljung-Box test
## 
## data:  Residuals from ETS(A,N,N)
## Q* = 135.49, df = 78, p-value = 5.952e-05
## 
## Model df: 2.   Total lags used: 80
accuracy(fc.ets.sj, valid.cases.diff.sj)
##                        ME      RMSE      MAE  MPE MAPE      MASE       ACF1
## Training set  0.004602636 13.893921 8.145813 -Inf  Inf 0.6543243  0.1690799
## Test set     -1.312371442  7.927418 5.430700 -Inf  Inf 0.4362289 -0.2542126
##              Theil's U
## Training set        NA
## Test set           NaN
accuracy(fc.ets.iq, valid.cases.diff.iq)
##                        ME     RMSE      MAE  MPE MAPE      MASE       ACF1
## Training set  0.001809297 8.091881 3.977151 -Inf  Inf 0.5978611 -0.1752091
## Test set     -0.110192544 6.828784 4.145220 -Inf  Inf 0.6231260 -0.2302014
##              Theil's U
## Training set        NA
## Test set           NaN

ARIMA with Fourier

#SJ
fit <- auto.arima(na.omit(cases.diff.sj), xreg = fourier(na.omit(cases.diff.sj), K = 3),
 seasonal = FALSE) 

fit.fcst.fourier.sj<-forecast(fit, xreg=fourier(cases.diff.sj, K = 3, h=240))

autoplot(fit.fcst.fourier.sj)

#IQ
fit <- auto.arima(na.omit(cases.diff.iq), xreg = fourier(na.omit(cases.diff.iq), K = 3),
 seasonal = FALSE) 

fit.fcst.fourier.iq<-forecast(fit, xreg=fourier(cases.diff.iq, K = 3, h=240))

autoplot(fit.fcst.fourier.iq)

accuracy(fit.fcst.fourier.sj, valid.cases.diff.sj)
##                       ME     RMSE      MAE MPE MAPE      MASE         ACF1
## Training set  0.06205098 13.43882 8.198425 NaN  Inf 0.6585505  0.003352907
## Test set     -0.44264915 12.03714 7.494192 NaN  Inf 0.6019819 -0.125049511
##              Theil's U
## Training set        NA
## Test set           NaN
accuracy(fit.fcst.fourier.iq, valid.cases.diff.iq)
##                      ME     RMSE      MAE MPE MAPE      MASE         ACF1
## Training set  0.1234457 7.282897 4.000109 NaN  Inf 0.6013123  0.001961717
## Test set     -0.1055674 6.052472 3.766331 NaN  Inf 0.5661699 -0.200652235
##              Theil's U
## Training set        NA
## Test set           NaN

ARIMA

#fit arima models

#SJ
fit<-auto.arima(cases.diff.sj, xreg=xreg.sj.train)
fit.fcst.arima.sj<-forecast(fit, xreg=xreg.sj.test, h=24)
autoplot(fit.fcst.arima.sj)

#IQ
fit<-auto.arima(cases.diff.iq, xreg=xreg.iq.train)
fit.fcst.arima.iq<-forecast(fit, xreg=xreg.iq.test, h=24)
autoplot(fit.fcst.arima.iq)

xreg.iq.test
## Time Series:
## Start = 2007.64681724846 
## End = 2009.90828199863 
## Frequency = 52.1785714285714 
##             ndvi_ne    ndvi_nw    ndvi_se    ndvi_sw precipitation_amt_mm
## 2007.647 0.23833330 0.23272860 0.12394290 0.20007140             91.87000
## 2007.666 0.33660000 0.30421430 0.32290000 0.37731430             62.13000
## 2007.685 0.27008330 0.19027140 0.19065710 0.21515710            107.00000
## 2007.704 0.28435710 0.35367140 0.32178570 0.30282860             71.45000
## 2007.723 0.30261430 0.24467140 0.29631430 0.32875710             79.74000
## 2007.743 0.27060000 0.37131430 0.34422860 0.28307140             42.05000
## 2007.762 0.06172857 0.13390000 0.09471429 0.11784290             42.12000
## 2007.781 0.13615710 0.16315710 0.13915710 0.13455710             50.50000
## 2007.800 0.19638570 0.29632000 0.26415710 0.22558570             30.08000
## 2007.819 0.22101670 0.23531670 0.18044290 0.19947140             45.69000
## 2007.838 0.12245000 0.15710000 0.08600000 0.10331430             72.04000
## 2007.858 0.19518570 0.15771430 0.18442860 0.13361430             30.09000
## 2007.877 0.29374290 0.26436670 0.24662860 0.29195710             13.27000
## 2007.896 0.22402860 0.17547140 0.26565710 0.24521430            111.18000
## 2007.915 0.19704290 0.27798330 0.21394290 0.26561430             89.88000
## 2007.934 0.30482860 0.23367140 0.24891430 0.25581430              0.00000
## 2007.953 0.15385000 0.14958570 0.32944290 0.13288570              0.00000
## 2007.973 0.23238570 0.21395710 0.22030000 0.19842860             62.84000
## 2007.992 0.32701670 0.20911670 0.28376670 0.30955000             52.36000
## 2008.011 0.35480000 0.34655000 0.26741670 0.39211670             44.63000
## 2008.030 0.20020000 0.25138570 0.21134290 0.19972860             32.45000
## 2008.049 0.43037140 0.43301430 0.43691430 0.46572860             26.03000
## 2008.068 0.28330000 0.30447140 0.27445710 0.38050000             12.88000
## 2008.088 0.31818570 0.31976670 0.30817140 0.32360000             58.20000
## 2008.107 0.33980000 0.36910000 0.28880000 0.30923330             34.59000
## 2008.126 0.23190000 0.27625000 0.26120000 0.23278330             86.14000
## 2008.145 0.21680000 0.27733330 0.20893330 0.33626670             65.43000
## 2008.164 0.41495000 0.36342860 0.32240000 0.40068570             61.38000
## 2008.183 0.39308570 0.37827140 0.34370000 0.40484290             24.28000
## 2008.203 0.16055710 0.16387140 0.19493330 0.20611430             69.47000
## 2008.222 0.28820000 0.22785710 0.28075710 0.35797140             69.39000
## 2008.241 0.32915710 0.22790000 0.27334290 0.25684290             52.65000
## 2008.260 0.16174290 0.19620000 0.19827140 0.21961430             43.60000
## 2008.279 0.50102860 0.44500000 0.42768570 0.54572860             57.85000
## 2008.298 0.30428570 0.29464290 0.30627140 0.40038570             60.36000
## 2008.318 0.19305710 0.19652860 0.17625710 0.18305710             59.44000
## 2008.337 0.25101430 0.28831430 0.25370000 0.32130000             81.11000
## 2008.356 0.16436670 0.19635000 0.17313330 0.15491670             45.03000
## 2008.375 0.28941670 0.34778000 0.27482860 0.25808570             64.03000
## 2008.394 0.17838570 0.21917140 0.24972860 0.19230000             70.92000
## 2008.413 0.26341250 0.21987500 0.20008750 0.22662500             55.11000
## 2008.433 0.15128570 0.16168570 0.15327140 0.11944290             45.76039
## 2008.452 0.22991670 0.12234000 0.26116670 0.22305000             52.28000
## 2008.471 0.18848570 0.18818570 0.20391430 0.27750000             72.03000
## 2008.490 0.18845710 0.19931430 0.20270000 0.21392860             76.16000
## 2008.509 0.16673330 0.17373330 0.19043330 0.16171670            118.54000
## 2008.528 0.27991430 0.24028570 0.19572860 0.30765710            149.06000
## 2008.548 0.17027140 0.15111430 0.14047140 0.14297140             60.51000
## 2008.567 0.18878570 0.15945710 0.15687140 0.20298570            124.80000
## 2008.586 0.28236000 0.30511670 0.29408330 0.31601670            147.44000
## 2008.605 0.36207140 0.33670000 0.34530000 0.37928570             58.56000
## 2008.624 0.20342860 0.17844290 0.22597140 0.20187140             97.80000
## 2008.643 0.15788330 0.19210000 0.21372860 0.20138570            106.68000
## 2008.663 0.22358570 0.25913330 0.26328570 0.30578570            100.78000
## 2008.682 0.08905714 0.05895000 0.08927143 0.09934286            131.17000
## 2008.701 0.14684290 0.14165710 0.14118570 0.14877140            133.47000
## 2008.720 0.22360000 0.17882860 0.17500000 0.21614290             99.77000
## 2008.739 0.19534290 0.28567140 0.16118570 0.20238570             52.74000
## 2008.758 0.28358570 0.34551430 0.23744290 0.31612860             99.89000
## 2008.778 0.19075710 0.26455710 0.25388570 0.21920000             30.73000
## 2008.797 0.20774290 0.22785710 0.25420000 0.21604290             38.51000
## 2008.816 0.33121430 0.21720000 0.20938570 0.34451430             66.46000
## 2008.835 0.23834290 0.19731670 0.16550000 0.19014290             40.04000
## 2008.854 0.11400000 0.09244286 0.09747143 0.12628570             42.22000
## 2008.873 0.18712860 0.15780000 0.14345710 0.19947140              8.74000
## 2008.893 0.29167140 0.30702860 0.35622860 0.38911430             43.32000
## 2008.912 0.27080000 0.20518330 0.24012860 0.20015710            141.65000
## 2008.931 0.18685710 0.17691430 0.22307140 0.21898570             68.15000
## 2008.950 0.38591430 0.29038330 0.33642860 0.29278570             91.40000
## 2008.969 0.21965000 0.37805000 0.22387140 0.26590000             65.19000
## 2008.988 0.20788330 0.28085000 0.17560000 0.26160000             35.82000
## 2009.008 0.15435710 0.11527140 0.15345710 0.15590000             51.77000
## 2009.027 0.39500000 0.35273330 0.48428570 0.40191430              9.79000
## 2009.046 0.33088570 0.40830000 0.44335710 0.33477140             35.23000
## 2009.065 0.22062860 0.19435710 0.27857140 0.26045710              6.52000
## 2009.084 0.24534290 0.18598570 0.18134290 0.28205710             95.83000
## 2009.103 0.50835710 0.45442860 0.53831430 0.51482860             83.02000
## 2009.123 0.18961670 0.19200000 0.23681430 0.26968570             13.74000
## 2009.142 0.26632000 0.31336670 0.19565710 0.30707140             40.17000
## 2009.161 0.29431430 0.27067140 0.30207140 0.25401430             78.68000
## 2009.180 0.20630000 0.25525710 0.27995710 0.20665710             57.18000
## 2009.199 0.23227140 0.27250000 0.27157140 0.28538570             20.58000
## 2009.218 0.29741430 0.28217140 0.25592860 0.31978570             30.49000
## 2009.238 0.29680000 0.30848570 0.36230000 0.36165710             82.59000
## 2009.257 0.29075710 0.23795000 0.31768570 0.26160000             77.38000
## 2009.276 0.38867140 0.37281670 0.24990000 0.37301430             45.79000
## 2009.295 0.36887140 0.37995710 0.38002860 0.46792860             96.23000
## 2009.314 0.40705000 0.33510000 0.36650000 0.38935000             29.72000
## 2009.333 0.33611430 0.28776670 0.32545710 0.35760000             38.17000
## 2009.352 0.34852860 0.29040000 0.41061430 0.37045710             73.45000
## 2009.372 0.19220000 0.19352860 0.23988570 0.28588570             85.62000
## 2009.391 0.21760000 0.24030000 0.18177140 0.26230000             81.21000
## 2009.410 0.21042220 0.25713750 0.22113330 0.30025560             98.79000
## 2009.429 0.14229354 0.13055258 0.20378319 0.20230549             45.76039
## 2009.448 0.12457140 0.17912860 0.16384290 0.13547140             27.04000
## 2009.467 0.14528570 0.14231430 0.13530000 0.16752860             32.99000
## 2009.487 0.25211430 0.23048570 0.18732860 0.30278570             19.04000
## 2009.506 0.26327140 0.23060000 0.21887140 0.26128570            138.51000
## 2009.525 0.17010000 0.14211670 0.11791430 0.13934290             47.31000
## 2009.544 0.23075710 0.18925710 0.16348570 0.23887140             78.25000
## 2009.563 0.29330000 0.24782860 0.20662860 0.26667140             32.19000
## 2009.582 0.30365710 0.26005710 0.22548570 0.33331430             84.67000
## 2009.602 0.12731670 0.18116000 0.12046670 0.14276670             80.58000
## 2009.621 0.31172860 0.29268570 0.27258570 0.39480000             57.78000
## 2009.640 0.29460000 0.25097140 0.28147140 0.34164290            121.20000
## 2009.659 0.26628570 0.30123330 0.29600000 0.29574290             51.29000
## 2009.678 0.14143330 0.20472860 0.25097140 0.14524290             49.80000
## 2009.697 0.24284290 0.27275710 0.20227140 0.26011430             93.76000
## 2009.717 0.15768570 0.15661430 0.18401430 0.13588570             17.33000
## 2009.736 0.23148570 0.29468570 0.33165710 0.24440000             86.70000
## 2009.755 0.23974290 0.25927140 0.30778570 0.30794290             26.00000
## 2009.774 0.26081430 0.25578570 0.25777140 0.34028570             73.97000
## 2009.793 0.16868570 0.15850000 0.13307140 0.14560000             59.40000
## 2009.812 0.26307140 0.27250000 0.25827140 0.24450000              1.15000
## 2009.832 0.34275000 0.31890000 0.25634290 0.29251430             55.30000
## 2009.851 0.16015710 0.16037140 0.13604290 0.22565710             86.47000
## 2009.870 0.24705710 0.14605710 0.25035710 0.23371430             58.94000
## 2009.889 0.33391430 0.24577140 0.27888570 0.32548570             59.67000
## 2009.908 0.29818570 0.23297140 0.27421430 0.31575710             63.22000
##          reanalysis_air_temp_k reanalysis_avg_temp_k
## 2007.647              296.7557              297.9929
## 2007.666              297.0943              297.9929
## 2007.685              297.6943              298.8429
## 2007.704              297.5371              298.9000
## 2007.723              297.4471              298.6643
## 2007.743              296.7600              297.4143
## 2007.762              298.0729              299.4143
## 2007.781              295.9757              296.8714
## 2007.800              294.8500              295.4214
## 2007.819              296.2686              296.9357
## 2007.838              296.7414              297.6929
## 2007.858              296.4000              297.3571
## 2007.877              296.1871              297.3643
## 2007.896              296.7429              297.6500
## 2007.915              296.4586              297.2500
## 2007.934              296.5429              297.8071
## 2007.953              296.5457              297.4786
## 2007.973              296.0786              297.4071
## 2007.992              296.5457              297.3143
## 2008.011              297.0443              298.5000
## 2008.030              297.3100              298.5714
## 2008.049              297.2143              298.5000
## 2008.068              299.2286              300.3071
## 2008.088              298.5743              300.1429
## 2008.107              298.5314              300.0714
## 2008.126              296.9214              298.2429
## 2008.145              297.5886              298.4286
## 2008.164              297.6600              298.6214
## 2008.183              299.1786              301.1500
## 2008.203              300.1014              301.4071
## 2008.222              298.3500              299.9000
## 2008.241              297.8671              298.9857
## 2008.260              298.3729              299.8000
## 2008.279              298.4643              299.5286
## 2008.298              298.4986              300.2214
## 2008.318              298.8900              300.3071
## 2008.337              298.5300              299.7214
## 2008.356              298.1114              299.1286
## 2008.375              298.6514              300.2143
## 2008.394              298.5286              300.2571
## 2008.413              299.5571              300.7714
## 2008.433              298.7019              299.2256
## 2008.452              297.7257              299.0071
## 2008.471              296.6829              297.4143
## 2008.490              296.5500              297.5143
## 2008.509              297.4957              298.8000
## 2008.528              297.4057              298.1929
## 2008.548              297.3229              298.4714
## 2008.567              297.6857              299.0143
## 2008.586              297.3914              298.8643
## 2008.605              297.8443              299.0000
## 2008.624              297.0586              298.0143
## 2008.643              297.3657              298.2500
## 2008.663              297.1529              298.3214
## 2008.682              297.2457              298.3857
## 2008.701              297.8900              298.9000
## 2008.720              296.6357              297.6214
## 2008.739              297.5457              298.2786
## 2008.758              297.4043              298.3214
## 2008.778              297.5629              298.5429
## 2008.797              297.6071              299.0071
## 2008.816              297.7243              299.5214
## 2008.835              296.7043              297.5214
## 2008.854              296.1257              296.7786
## 2008.873              295.1043              295.7786
## 2008.893              296.0314              297.3143
## 2008.912              297.2171              298.5214
## 2008.931              296.4529              297.8214
## 2008.950              296.0657              296.9929
## 2008.969              296.5271              297.6643
## 2008.988              296.5257              297.9643
## 2009.008              297.0871              298.2357
## 2009.027              297.3700              298.8786
## 2009.046              298.3571              299.9857
## 2009.065              298.6771              300.1071
## 2009.084              298.9971              300.9214
## 2009.103              297.3886              298.4500
## 2009.123              299.8557              300.7500
## 2009.142              299.4700              300.8143
## 2009.161              299.3243              301.0286
## 2009.180              298.0343              299.5714
## 2009.199              298.7071              300.1286
## 2009.218              299.7371              301.0000
## 2009.238              298.8557              300.2857
## 2009.257              298.6786              300.0714
## 2009.276              299.1614              300.4786
## 2009.295              300.3214              301.7857
## 2009.314              300.4857              301.7500
## 2009.333              299.4557              300.6143
## 2009.352              298.7629              299.9357
## 2009.372              299.1986              300.6786
## 2009.391              298.3471              299.3500
## 2009.410              297.1814              298.1857
## 2009.429              298.7019              299.2256
## 2009.448              299.2643              300.5214
## 2009.467              298.2971              299.9357
## 2009.487              298.9257              300.4571
## 2009.506              298.2914              299.6143
## 2009.525              298.7543              300.3429
## 2009.544              298.2514              299.6786
## 2009.563              299.6486              300.9500
## 2009.582              298.9171              300.4857
## 2009.602              298.3371              299.6643
## 2009.621              298.8371              300.0929
## 2009.640              299.1914              300.9286
## 2009.659              299.0043              300.3000
## 2009.678              299.0029              300.7143
## 2009.697              299.1157              300.2714
## 2009.717              298.3057              299.5571
## 2009.736              298.4386              299.5071
## 2009.755              299.0486              300.0286
## 2009.774              297.6171              298.5857
## 2009.793              297.2786              297.9357
## 2009.812              297.6486              298.7071
## 2009.832              299.3343              300.7714
## 2009.851              298.3300              299.3929
## 2009.870              296.5986              297.5929
## 2009.889              296.3457              297.5214
## 2009.908              298.0971              299.8357
##          reanalysis_dew_point_temp_k reanalysis_max_air_temp_k
## 2007.647                    295.4757                  305.0000
## 2007.666                    295.9486                  303.7000
## 2007.685                    295.8543                  305.4000
## 2007.704                    296.6329                  306.1000
## 2007.723                    295.9357                  305.5000
## 2007.743                    296.3829                  301.9000
## 2007.762                    296.7414                  306.3000
## 2007.781                    294.6657                  304.5000
## 2007.800                    293.2443                  304.4000
## 2007.819                    295.6386                  303.4000
## 2007.838                    295.9943                  304.1000
## 2007.858                    295.2100                  304.4000
## 2007.877                    293.8914                  305.8000
## 2007.896                    295.9343                  304.4000
## 2007.915                    295.1929                  304.8000
## 2007.934                    293.8300                  304.9000
## 2007.953                    293.5943                  305.9000
## 2007.973                    294.6914                  304.6000
## 2007.992                    295.0029                  306.8000
## 2008.011                    295.3700                  307.5000
## 2008.030                    295.5057                  307.4000
## 2008.049                    295.3471                  305.6000
## 2008.068                    294.4186                  310.2000
## 2008.088                    295.0929                  310.4000
## 2008.107                    294.8614                  309.3000
## 2008.126                    295.4843                  305.9000
## 2008.145                    295.3071                  306.7000
## 2008.164                    295.4900                  309.3000
## 2008.183                    294.7614                  310.2000
## 2008.203                    295.3614                  310.4000
## 2008.222                    295.9157                  310.5000
## 2008.241                    296.7014                  305.0000
## 2008.260                    296.8257                  308.5000
## 2008.279                    297.4686                  307.2000
## 2008.298                    296.0100                  309.6000
## 2008.318                    297.7414                  307.2000
## 2008.337                    297.5771                  306.1000
## 2008.356                    297.0443                  305.2000
## 2008.375                    296.1829                  308.9000
## 2008.394                    296.8471                  306.3000
## 2008.413                    295.5943                  308.3000
## 2008.433                    295.2464                  303.4271
## 2008.452                    296.7843                  304.6000
## 2008.471                    296.4186                  304.0000
## 2008.490                    295.1371                  303.5000
## 2008.509                    296.5143                  304.4000
## 2008.528                    296.8400                  302.7000
## 2008.548                    296.1943                  305.7000
## 2008.567                    296.2543                  306.7000
## 2008.586                    296.4943                  306.6000
## 2008.605                    296.7100                  304.6000
## 2008.624                    296.7157                  304.0000
## 2008.643                    296.5000                  304.6000
## 2008.663                    296.1843                  303.3000
## 2008.682                    296.5457                  304.5000
## 2008.701                    295.8043                  306.8000
## 2008.720                    296.1357                  304.7000
## 2008.739                    296.8871                  303.6000
## 2008.758                    296.4486                  303.6000
## 2008.778                    296.4843                  306.8000
## 2008.797                    296.2714                  306.5000
## 2008.816                    296.0129                  307.1000
## 2008.835                    296.2643                  305.1000
## 2008.854                    295.2671                  302.5000
## 2008.873                    293.9100                  305.2000
## 2008.893                    294.8629                  305.2000
## 2008.912                    296.1100                  305.6000
## 2008.931                    295.3571                  304.6000
## 2008.950                    295.1671                  306.2000
## 2008.969                    295.4114                  306.8000
## 2008.988                    294.0529                  306.7000
## 2009.008                    295.0457                  307.9000
## 2009.027                    294.8243                  307.9000
## 2009.046                    295.5071                  308.2000
## 2009.065                    294.7086                  309.3000
## 2009.084                    296.4443                  310.4000
## 2009.103                    296.3886                  305.0000
## 2009.123                    294.3143                  310.0000
## 2009.142                    294.6186                  310.0000
## 2009.161                    295.8271                  309.8000
## 2009.180                    296.3443                  307.4000
## 2009.199                    296.5614                  308.3000
## 2009.218                    295.3500                  311.3000
## 2009.238                    296.9186                  307.2000
## 2009.257                    297.4429                  310.8000
## 2009.276                    297.1400                  309.7000
## 2009.295                    296.9257                  308.7000
## 2009.314                    296.1086                  311.0000
## 2009.333                    297.2257                  308.7000
## 2009.352                    296.9700                  308.9000
## 2009.372                    296.5957                  308.6000
## 2009.391                    296.9057                  307.5000
## 2009.410                    296.5571                  302.9000
## 2009.429                    295.2464                  303.4271
## 2009.448                    294.5300                  308.6000
## 2009.467                    296.1471                  308.0000
## 2009.487                    296.3800                  307.8000
## 2009.506                    296.5600                  308.3000
## 2009.525                    296.8371                  306.1000
## 2009.544                    297.5686                  306.2000
## 2009.563                    297.0900                  309.2000
## 2009.582                    297.9286                  308.2000
## 2009.602                    297.9171                  306.3000
## 2009.621                    298.1414                  306.9000
## 2009.640                    298.4500                  307.4000
## 2009.659                    297.5557                  307.9000
## 2009.678                    296.5686                  309.1000
## 2009.697                    298.1614                  308.4000
## 2009.717                    297.0029                  307.3000
## 2009.736                    297.6786                  304.7000
## 2009.755                    296.4686                  308.4000
## 2009.774                    296.9757                  304.7000
## 2009.793                    296.7386                  306.0000
## 2009.812                    293.2271                  308.7000
## 2009.832                    296.8257                  309.7000
## 2009.851                    296.4529                  308.5000
## 2009.870                    295.5014                  305.5000
## 2009.889                    295.3243                  306.1000
## 2009.908                    295.8071                  307.8000
##          reanalysis_min_air_temp_k reanalysis_precip_amt_kg_per_m2
## 2007.647                  293.3000                        90.50000
## 2007.666                  293.1000                        53.36000
## 2007.685                  293.7000                        24.90000
## 2007.704                  292.8000                        99.96000
## 2007.723                  293.8000                        45.96000
## 2007.743                  293.7000                        62.52000
## 2007.762                  293.1000                       115.99000
## 2007.781                  290.6000                        47.10000
## 2007.800                  288.5000                        18.08000
## 2007.819                  291.7000                        59.40000
## 2007.838                  293.8000                       134.66000
## 2007.858                  292.2000                        73.01000
## 2007.877                  288.2000                        12.90000
## 2007.896                  293.8000                        57.87000
## 2007.915                  291.2000                        61.80000
## 2007.934                  290.7000                         9.40000
## 2007.953                  290.5000                         7.47000
## 2007.973                  291.8000                        27.33000
## 2007.992                  287.8000                        47.59000
## 2008.011                  292.9000                        39.00000
## 2008.030                  292.6000                       143.35000
## 2008.049                  292.7000                        39.69000
## 2008.068                  291.8000                        33.00000
## 2008.088                  292.7000                        37.00000
## 2008.107                  293.2000                        29.00000
## 2008.126                  293.4000                        59.10000
## 2008.145                  292.1000                        53.50000
## 2008.164                  292.7000                        63.27000
## 2008.183                  292.4000                       121.30000
## 2008.203                  294.0000                        53.90000
## 2008.222                  292.7000                        67.90000
## 2008.241                  292.7000                       111.90000
## 2008.260                  294.0000                       149.10000
## 2008.279                  293.1000                       107.48000
## 2008.298                  293.7000                        63.90000
## 2008.318                  295.2000                       199.52000
## 2008.337                  294.7000                        90.68000
## 2008.356                  293.4000                       139.55000
## 2008.375                  295.1000                        53.25000
## 2008.394                  295.2000                        57.61000
## 2008.413                  293.9000                        41.60000
## 2008.433                  295.7192                        40.15182
## 2008.452                  294.2000                        93.55000
## 2008.471                  295.2000                       149.77000
## 2008.490                  292.7000                        53.81000
## 2008.509                  294.0000                        66.10000
## 2008.528                  294.5000                        93.30000
## 2008.548                  292.9000                        48.72000
## 2008.567                  294.2000                       124.00000
## 2008.586                  294.3000                       102.72000
## 2008.605                  294.5000                        87.28000
## 2008.624                  293.6000                       108.83000
## 2008.643                  293.6000                        66.83000
## 2008.663                  294.6000                        49.93000
## 2008.682                  294.1000                        63.30000
## 2008.701                  293.1000                        50.64000
## 2008.720                  292.6000                        74.50000
## 2008.739                  294.9000                        62.74000
## 2008.758                  294.3000                        93.80000
## 2008.778                  292.9000                        59.50000
## 2008.797                  292.7000                        46.43000
## 2008.816                  293.4000                        39.89000
## 2008.835                  292.7000                        73.00000
## 2008.854                  292.8000                        53.91000
## 2008.873                  289.9000                       112.31000
## 2008.893                  292.0000                        45.97000
## 2008.912                  293.2000                        66.41000
## 2008.931                  292.3000                        55.50000
## 2008.950                  291.4000                        39.67000
## 2008.969                  292.7000                        40.10000
## 2008.988                  292.3000                        12.93000
## 2009.008                  290.4000                        39.30000
## 2009.027                  290.7000                        34.40000
## 2009.046                  292.2000                        43.20000
## 2009.065                  293.0000                        25.30000
## 2009.084                  293.4000                        45.34000
## 2009.103                  293.5000                        78.37000
## 2009.123                  291.8000                         9.30000
## 2009.142                  293.5000                        23.01000
## 2009.161                  293.7000                        33.00000
## 2009.180                  294.8000                        79.10000
## 2009.199                  294.3000                        43.94000
## 2009.218                  293.8000                        18.10000
## 2009.238                  294.1000                        67.40000
## 2009.257                  294.9000                        84.54000
## 2009.276                  292.2000                        47.31000
## 2009.295                  296.0000                        31.65000
## 2009.314                  294.5000                        47.00000
## 2009.333                  295.1000                        60.70000
## 2009.352                  295.0000                       134.43000
## 2009.372                  294.6000                        49.32000
## 2009.391                  295.0000                       208.87000
## 2009.410                  294.9000                        66.30000
## 2009.429                  295.7192                        40.15182
## 2009.448                  292.8000                         8.50000
## 2009.467                  293.8000                       144.60000
## 2009.487                  294.8000                        31.20000
## 2009.506                  295.0000                        65.76000
## 2009.525                  295.6000                        95.83000
## 2009.544                  295.5000                       172.70000
## 2009.563                  294.5000                        54.20000
## 2009.582                  295.2000                       288.40000
## 2009.602                  295.8000                       144.98000
## 2009.621                  292.8000                        86.10000
## 2009.640                  294.0000                       191.76000
## 2009.659                  294.6000                       214.90000
## 2009.678                  294.2000                        24.25000
## 2009.697                  294.6000                       164.70000
## 2009.717                  294.3000                       150.80000
## 2009.736                  294.7000                        81.40000
## 2009.755                  294.6000                        23.60000
## 2009.774                  294.6000                        85.46000
## 2009.793                  294.0000                        87.30000
## 2009.812                  290.1000                         8.80000
## 2009.832                  294.5000                        45.00000
## 2009.851                  291.9000                       207.10000
## 2009.870                  292.4000                        50.60000
## 2009.889                  291.9000                        62.33000
## 2009.908                  292.3000                        36.90000
##          reanalysis_relative_humidity_percent
## 2007.647                             93.45143
## 2007.666                             94.07429
## 2007.685                             90.95714
## 2007.704                             95.15714
## 2007.723                             92.12429
## 2007.743                             97.97143
## 2007.762                             93.66286
## 2007.781                             93.15857
## 2007.800                             91.50429
## 2007.819                             96.62143
## 2007.838                             96.02571
## 2007.858                             93.98286
## 2007.877                             88.81000
## 2007.896                             95.86000
## 2007.915                             93.79571
## 2007.934                             86.52429
## 2007.953                             85.65571
## 2007.973                             93.05571
## 2007.992                             92.77714
## 2008.011                             92.04857
## 2008.030                             91.09286
## 2008.049                             90.72714
## 2008.068                             78.27714
## 2008.088                             84.49143
## 2008.107                             83.05000
## 2008.126                             92.65286
## 2008.145                             88.52571
## 2008.164                             90.18143
## 2008.183                             79.50286
## 2008.203                             78.45429
## 2008.222                             88.85714
## 2008.241                             93.85429
## 2008.260                             92.60857
## 2008.279                             95.29000
## 2008.298                             88.32857
## 2008.318                             94.14143
## 2008.337                             95.26000
## 2008.356                             94.64000
## 2008.375                             88.55143
## 2008.394                             91.77714
## 2008.413                             81.86857
## 2008.433                             82.16196
## 2008.452                             95.22286
## 2008.471                             98.61000
## 2008.490                             92.46714
## 2008.509                             94.92857
## 2008.528                             97.00714
## 2008.548                             94.23429
## 2008.567                             92.90571
## 2008.586                             95.12143
## 2008.605                             94.37857
## 2008.624                             98.13429
## 2008.643                             95.70857
## 2008.663                             94.90286
## 2008.682                             96.39571
## 2008.701                             89.67286
## 2008.720                             97.30000
## 2008.739                             96.66429
## 2008.758                             95.07857
## 2008.778                             95.10000
## 2008.797                             93.29857
## 2008.816                             91.79000
## 2008.835                             97.74286
## 2008.854                             95.50714
## 2008.873                             94.13000
## 2008.893                             93.97143
## 2008.912                             94.55571
## 2008.931                             94.53857
## 2008.950                             95.38571
## 2008.969                             94.62429
## 2008.988                             88.23000
## 2009.008                             89.97143
## 2009.027                             87.81143
## 2009.046                             87.11000
## 2009.065                             80.64000
## 2009.084                             88.17714
## 2009.103                             94.99286
## 2009.123                             75.23286
## 2009.142                             78.11857
## 2009.161                             83.76286
## 2009.180                             91.57571
## 2009.199                             89.31000
## 2009.218                             79.22286
## 2009.238                             90.65714
## 2009.257                             93.80857
## 2009.276                             90.37286
## 2009.295                             84.31143
## 2009.314                             80.78714
## 2009.333                             89.59429
## 2009.352                             91.70857
## 2009.372                             87.75286
## 2009.391                             92.95857
## 2009.410                             96.88571
## 2009.429                             82.16196
## 2009.448                             78.27143
## 2009.467                             89.80714
## 2009.487                             87.64143
## 2009.506                             91.79857
## 2009.525                             90.64857
## 2009.544                             96.51571
## 2009.563                             88.36571
## 2009.582                             94.91571
## 2009.602                             97.70000
## 2009.621                             96.25000
## 2009.640                             96.12429
## 2009.659                             93.08286
## 2009.678                             88.70714
## 2009.697                             95.18286
## 2009.717                             93.65571
## 2009.736                             95.99571
## 2009.755                             87.65714
## 2009.774                             96.71286
## 2009.793                             97.44571
## 2009.812                             78.99857
## 2009.832                             88.76571
## 2009.851                             91.60000
## 2009.870                             94.28000
## 2009.889                             94.66000
## 2009.908                             89.08286
##          reanalysis_specific_humidity_g_per_kg reanalysis_tdtr_k
## 2007.647                              16.99714          7.214286
## 2007.666                              17.50714          6.557143
## 2007.685                              17.42143          8.600000
## 2007.704                              18.31571          7.400000
## 2007.723                              17.50429          7.785714
## 2007.743                              17.96429          4.885714
## 2007.762                              18.39857          8.685714
## 2007.781                              16.18000          6.971429
## 2007.800                              14.78000          7.385714
## 2007.819                              17.14429          5.957143
## 2007.838                              17.52000          5.757143
## 2007.858                              16.71143          6.771429
## 2007.877                              15.37571          9.300000
## 2007.896                              17.44714          6.957143
## 2007.915                              16.71286          7.385714
## 2007.934                              15.28571          9.442857
## 2007.953                              15.08000          9.271429
## 2007.973                              16.14286          8.442857
## 2007.992                              16.58286          8.600000
## 2008.011                              16.87286          9.771429
## 2008.030                              17.05714          9.742857
## 2008.049                              16.84714          9.342857
## 2008.068                              15.99857         13.557143
## 2008.088                              16.65286         10.742857
## 2008.107                              16.46571         10.657143
## 2008.126                              17.03000          7.685714
## 2008.145                              16.81857          8.571429
## 2008.164                              17.04714          8.157143
## 2008.183                              16.33143         12.785714
## 2008.203                              17.01857         12.014286
## 2008.222                              17.52714          9.971429
## 2008.241                              18.38857          8.714286
## 2008.260                              18.48429          8.571429
## 2008.279                              19.25286          7.085714
## 2008.298                              17.62571         10.014286
## 2008.318                              19.61714          7.814286
## 2008.337                              19.38857          7.100000
## 2008.356                              18.77857          7.142857
## 2008.375                              17.78429          9.200000
## 2008.394                              18.57286          9.057143
## 2008.413                              17.24857         10.342857
## 2008.433                              16.74643          4.903754
## 2008.452                              18.46143          7.500000
## 2008.471                              17.99571          3.714286
## 2008.490                              16.64143          6.485714
## 2008.509                              18.13000          8.142857
## 2008.528                              18.48429          5.185714
## 2008.548                              17.76571          7.171429
## 2008.567                              17.85286          6.828571
## 2008.586                              18.12857          7.071429
## 2008.605                              18.35429          6.800000
## 2008.624                              18.35286          6.028571
## 2008.643                              18.10571          6.185714
## 2008.663                              17.78000          6.357143
## 2008.682                              18.17571          6.742857
## 2008.701                              17.42000          9.028571
## 2008.720                              17.70429          6.385714
## 2008.739                              18.50429          4.985714
## 2008.758                              18.01857          6.271429
## 2008.778                              18.09000          7.142857
## 2008.797                              17.85857          9.071429
## 2008.816                              17.58571         10.071429
## 2008.835                              17.83000          5.614286
## 2008.854                              16.75714          6.071429
## 2008.873                              15.48286          6.242857
## 2008.893                              16.36286          7.714286
## 2008.912                              17.66714          8.642857
## 2008.931                              16.87429          8.642857
## 2008.950                              16.68000          8.128571
## 2008.969                              16.92000          7.271429
## 2008.988                              15.51000          9.528571
## 2009.008                              16.60286          9.757143
## 2009.027                              16.33714         11.757143
## 2009.046                              17.04000         11.342857
## 2009.065                              16.22857         10.928571
## 2009.084                              18.12286         11.785714
## 2009.103                              17.98857          7.642857
## 2009.123                              15.86571         13.042857
## 2009.142                              16.20286         11.600000
## 2009.161                              17.38000         11.000000
## 2009.180                              17.94714          8.514286
## 2009.199                              18.13429          9.285714
## 2009.218                              16.89571         11.885714
## 2009.238                              18.66143          8.571429
## 2009.257                              19.25429          8.342857
## 2009.276                              18.93714         10.185714
## 2009.295                              18.66429         10.457143
## 2009.314                              17.80714         11.928571
## 2009.333                              19.00143          8.714286
## 2009.352                              18.67143          7.757143
## 2009.372                              18.30429         10.442857
## 2009.391                              18.60143          6.671429
## 2009.410                              18.18000          5.257143
## 2009.429                              16.74643          4.903754
## 2009.448                              16.12714         11.100000
## 2009.467                              17.75857          9.157143
## 2009.487                              18.00143          8.628571
## 2009.506                              18.19286          7.685714
## 2009.525                              18.52286          8.314286
## 2009.544                              19.34571          6.328571
## 2009.563                              18.85714          9.414286
## 2009.582                              19.77286          8.171429
## 2009.602                              19.75429          6.242857
## 2009.621                              20.09143          8.814286
## 2009.640                              20.46143          8.828571
## 2009.659                              19.36857          8.028571
## 2009.678                              18.21429          9.514286
## 2009.697                              20.07857          7.714286
## 2009.717                              18.67714          7.228571
## 2009.736                              19.44857          7.757143
## 2009.755                              18.06857          8.257143
## 2009.774                              18.60286          5.714286
## 2009.793                              18.39143          6.185714
## 2009.812                              14.90857         11.242857
## 2009.832                              18.48571          9.800000
## 2009.851                              18.07000          7.471429
## 2009.870                              17.00857          7.500000
## 2009.889                              16.81571          7.871429
## 2009.908                              17.35571         11.014286
##          station_avg_temp_c station_diur_temp_rng_c station_max_temp_c
## 2007.647           27.18578                8.059328           31.70000
## 2007.666           26.90000                8.266667           31.70000
## 2007.685           27.86667                9.000000           33.40000
## 2007.704           28.30000                9.000000           32.80000
## 2007.723           26.80000                8.100000           33.60000
## 2007.743           26.65000                7.700000           33.00000
## 2007.762           27.86667                8.000000           32.50000
## 2007.781           26.60000                8.966667           32.40000
## 2007.800           26.16667                7.900000           31.00000
## 2007.819           26.35000                8.850000           31.50000
## 2007.838           27.20000                9.200000           32.30000
## 2007.858           26.90000                7.550000           31.10000
## 2007.877           27.18578                8.059328           32.45244
## 2007.896           27.18578                8.059328           32.45244
## 2007.915           27.18578                8.059328           32.45244
## 2007.934           27.18578                8.059328           32.45244
## 2007.953           27.18578                8.059328           32.45244
## 2007.973           27.18578                8.059328           32.45244
## 2007.992           26.60000                9.775000           32.40000
## 2008.011           26.68000               11.240000           33.40000
## 2008.030           27.40000               12.100000           34.20000
## 2008.049           27.90000               11.225000           34.80000
## 2008.068           28.00000               14.075000           38.60000
## 2008.088           27.83333               12.533333           35.10000
## 2008.107           27.35000               13.225000           36.20000
## 2008.126           27.96667               12.583333           36.20000
## 2008.145           27.80000               11.600000           35.60000
## 2008.164           27.75000               12.450000           37.00000
## 2008.183           27.18578                8.059328           36.00000
## 2008.203           30.03333               13.966667           37.00000
## 2008.222           26.45000                9.100000           34.70000
## 2008.241           27.33333               10.066667           35.50000
## 2008.260           27.40000               11.350000           35.00000
## 2008.279           27.82000               12.100000           35.60000
## 2008.298           28.30000               12.866667           36.00000
## 2008.318           27.96667               12.100000           34.50000
## 2008.337           26.10000                8.350000           33.50000
## 2008.356           26.96000               10.640000           33.70000
## 2008.375           27.80000               11.175000           35.00000
## 2008.394           27.82500               12.150000           35.00000
## 2008.413           28.08000               12.020000           35.40000
## 2008.433           27.18578                8.059328           32.45244
## 2008.452           27.26667               11.100000           34.80000
## 2008.471           27.18000               10.240000           33.30000
## 2008.490           27.56667               10.700000           34.00000
## 2008.509           27.65000               11.650000           33.90000
## 2008.528           27.46667               12.333333           35.00000
## 2008.548           28.10000               12.333333           35.00000
## 2008.567           27.70000               12.540000           35.00000
## 2008.586           26.58000               10.520000           33.20000
## 2008.605           28.40000               11.450000           35.00000
## 2008.624           27.30000               11.800000           33.80000
## 2008.643           27.80000               10.500000           33.70000
## 2008.663           28.50000               11.500000           34.40000
## 2008.682           27.95000               10.900000           34.20000
## 2008.701           27.13333               10.866667           35.00000
## 2008.720           26.90000               10.833333           33.00000
## 2008.739           26.80000                8.700000           34.40000
## 2008.758           27.15000               10.750000           34.00000
## 2008.778           28.10000               10.500000           35.00000
## 2008.797           28.07500               11.425000           35.00000
## 2008.816           28.35000               11.450000           34.60000
## 2008.835           27.60000               10.266667           34.40000
## 2008.854           28.10000               11.800000           34.00000
## 2008.873           24.66667                8.633333           33.50000
## 2008.893           27.05000               10.900000           33.50000
## 2008.912           27.37500               11.125000           33.40000
## 2008.931           27.45000               10.700000           33.40000
## 2008.950           27.60000               10.766667           33.40000
## 2008.969           26.82500               10.425000           34.50000
## 2008.988           26.95000               10.250000           32.20000
## 2009.008           27.00000               11.500000           33.50000
## 2009.027           27.97500               12.100000           35.40000
## 2009.046           27.70000               11.500000           33.40000
## 2009.065           28.32000               12.860000           36.20000
## 2009.084           29.00000               13.000000           36.20000
## 2009.103           27.60000               13.200000           34.20000
## 2009.123           29.16667               14.133333           37.40000
## 2009.142           28.85000               12.750000           37.20000
## 2009.161           28.86667               13.300000           37.00000
## 2009.180           27.95000               12.225000           35.20000
## 2009.199           27.64000               11.660000           34.80000
## 2009.218           27.75000               10.650000           34.20000
## 2009.238           27.73333               12.200000           35.30000
## 2009.257           27.80000               11.320000           35.20000
## 2009.276           29.86667               12.733333           36.80000
## 2009.295           28.94000               11.960000           35.30000
## 2009.314           28.90000               12.333333           36.20000
## 2009.333           28.43333               11.833333           36.20000
## 2009.352           28.02500               10.375000           35.30000
## 2009.372           28.55000               11.000000           35.20000
## 2009.391           28.20000               11.125000           35.60000
## 2009.410           27.20000                8.200000           32.20000
## 2009.429           27.18578                8.059328           32.45244
## 2009.448           28.60000               12.300000           35.10000
## 2009.467           27.83333               11.300000           34.20000
## 2009.487           28.96667               11.266667           35.20000
## 2009.506           27.80000               10.520000           35.30000
## 2009.525           27.80000                9.266667           34.20000
## 2009.544           27.00000                8.300000           33.20000
## 2009.563           27.30000               11.800000           35.50000
## 2009.582           28.02000               10.360000           35.40000
## 2009.602           28.50000                9.900000           35.40000
## 2009.621           28.55000               10.050000           35.40000
## 2009.640           30.00000               12.000000           36.00000
## 2009.659           27.46667                9.333333           34.50000
## 2009.678           27.93333               12.300000           35.30000
## 2009.697           29.20000               12.300000           35.40000
## 2009.717           27.15000                9.600000           33.00000
## 2009.736           27.85000                9.600000           33.50000
## 2009.755           28.85000               12.125000           36.20000
## 2009.774           27.60000                9.600000           33.20000
## 2009.793           27.40000               10.400000           33.70000
## 2009.812           25.63333                9.200000           34.00000
## 2009.832           28.63333               11.933333           35.40000
## 2009.851           27.43333               10.500000           34.70000
## 2009.870           24.40000                6.900000           32.20000
## 2009.889           25.43333                8.733333           31.20000
## 2009.908           27.47500                9.900000           33.70000
##          station_min_temp_c
## 2007.647           22.00000
## 2007.666           22.60000
## 2007.685           22.50000
## 2007.704           21.00000
## 2007.723           21.70000
## 2007.743           21.60000
## 2007.762           22.70000
## 2007.781           20.60000
## 2007.800           18.00000
## 2007.819           21.40000
## 2007.838           21.70000
## 2007.858           20.40000
## 2007.877           17.80000
## 2007.896           21.00000
## 2007.915           18.00000
## 2007.934           20.80000
## 2007.953           21.00000
## 2007.973           21.00000
## 2007.992           20.80000
## 2008.011           20.60000
## 2008.030           18.50000
## 2008.049           19.80000
## 2008.068           19.20000
## 2008.088           20.40000
## 2008.107           20.40000
## 2008.126           20.80000
## 2008.145           20.70000
## 2008.164           20.80000
## 2008.183           19.60000
## 2008.203           21.50000
## 2008.222           21.00000
## 2008.241           21.50000
## 2008.260           21.20000
## 2008.279           21.20000
## 2008.298           20.50000
## 2008.318           21.70000
## 2008.337           21.00000
## 2008.356           21.00000
## 2008.375           21.20000
## 2008.394           20.50000
## 2008.413           21.20000
## 2008.433           22.10215
## 2008.452           21.10000
## 2008.471           21.10000
## 2008.490           21.80000
## 2008.509           21.10000
## 2008.528           21.00000
## 2008.548           21.20000
## 2008.567           20.50000
## 2008.586           20.50000
## 2008.605           21.00000
## 2008.624           21.00000
## 2008.643           21.00000
## 2008.663           21.50000
## 2008.682           21.70000
## 2008.701           21.00000
## 2008.720           21.20000
## 2008.739           21.20000
## 2008.758           21.00000
## 2008.778           22.00000
## 2008.797           22.00000
## 2008.816           21.40000
## 2008.835           21.00000
## 2008.854           22.20000
## 2008.873           20.00000
## 2008.893           19.40000
## 2008.912           21.20000
## 2008.931           21.40000
## 2008.950           21.60000
## 2008.969           21.30000
## 2008.988           21.00000
## 2009.008           20.50000
## 2009.027           20.50000
## 2009.046           21.00000
## 2009.065           21.20000
## 2009.084           22.00000
## 2009.103           21.00000
## 2009.123           21.40000
## 2009.142           20.40000
## 2009.161           21.00000
## 2009.180           20.50000
## 2009.199           21.00000
## 2009.218           21.20000
## 2009.238           21.00000
## 2009.257           21.00000
## 2009.276           21.20000
## 2009.295           21.90000
## 2009.314           22.30000
## 2009.333           21.80000
## 2009.352           22.20000
## 2009.372           21.20000
## 2009.391           22.00000
## 2009.410           21.80000
## 2009.429           22.10215
## 2009.448           21.80000
## 2009.467           22.10000
## 2009.487           22.50000
## 2009.506           22.40000
## 2009.525           22.00000
## 2009.544           22.90000
## 2009.563           21.40000
## 2009.582           21.40000
## 2009.602           21.20000
## 2009.621           21.40000
## 2009.640           22.00000
## 2009.659           21.00000
## 2009.678           21.00000
## 2009.697           22.50000
## 2009.717           21.20000
## 2009.736           22.50000
## 2009.755           21.40000
## 2009.774           21.40000
## 2009.793           21.20000
## 2009.812           20.00000
## 2009.832           22.40000
## 2009.851           21.70000
## 2009.870           19.20000
## 2009.889           21.00000
## 2009.908           22.20000
accuracy(fit.fcst.arima.sj, valid.cases.diff.sj)
##                        ME     RMSE      MAE MPE MAPE      MASE         ACF1
## Training set -0.001754407 13.45774 8.251882 NaN  Inf 0.6628445  0.004469666
## Test set     -1.650993653 12.12328 7.431525 NaN  Inf 0.5969481 -0.155052566
##              Theil's U
## Training set        NA
## Test set           NaN
accuracy(fit.fcst.arima.iq, valid.cases.diff.iq)
##                        ME     RMSE      MAE MPE MAPE      MASE         ACF1
## Training set  0.001797607 7.175697 4.178178 NaN  Inf 0.6280803  0.004935981
## Test set     -0.278016343 6.215963 4.077756 NaN  Inf 0.6129845 -0.188875861
##              Theil's U
## Training set        NA
## Test set           NaN

Neural Net

#Size=1
fit1.sj <- nnetar(cases.diff.sj, xreg=xreg.sj.train, size=1,repeats=100,lambda="auto")
fcast1.sj <- forecast(fit1.sj, h=24, xreg=xreg.sj.test)

#Size=2
fit2.sj <- nnetar(cases.diff.sj, xreg=xreg.sj.train, size=2,repeats=100,lambda="auto")
fcast2.sj <- forecast(fit2.sj, h=24, xreg=xreg.sj.test)

#Size=3
fit3.sj <- nnetar(cases.diff.sj, xreg=xreg.sj.train, size=3,repeats=100,lambda="auto")
fcast3.sj <- forecast(fit3.sj, h=24, xreg=xreg.sj.test)

#Size=4
fit4.sj <- nnetar(cases.diff.sj, xreg=xreg.sj.train, size=4,repeats=100,lambda="auto")
fcast4.sj <- forecast(fit4.sj, h=24, xreg=xreg.sj.test)

#Size=5
fit5.sj <- nnetar(cases.diff.sj, xreg=xreg.sj.train, size=5,repeats=100,lambda="auto")
fcast5.sj <- forecast(fit5.sj, h=24, xreg=xreg.sj.test)

autoplot(fcast1.sj)+autolayer(fcast2.sj, series="size=2")+autolayer(fcast3.sj, series="size=3")+autolayer(fcast4.sj, series="size=4")+autolayer(fcast5.sj, series="size=5")+autolayer(valid.cases.diff.sj, series="Orig")+coord_cartesian(xlim = c(2005, 2008))+ylim(-50, 50)

autoplot(diffinv(fcast1.sj$mean, xi=112))+autolayer(diffinv(valid.cases.diff.sj, xi=112), series="Orig")

Accuracy, they are all really close, so I am going to stick with size=1

kable(accuracy(fcast1.sj,valid.cases.diff.sj),caption="NNAR(13,1,1)[52]")
NNAR(13,1,1)[52]
ME RMSE MAE MPE MAPE MASE ACF1 Theil’s U
Training set -0.0144232 12.20853 7.298412 NaN Inf 0.5862556 0.1126203 NA
Test set -1.0908624 11.97830 7.222230 NaN Inf 0.5801362 -0.1669801 NaN
kable(accuracy(fcast2.sj,valid.cases.diff.sj),caption="NNAR(13,1,2)[52]")
NNAR(13,1,2)[52]
ME RMSE MAE MPE MAPE MASE ACF1 Theil’s U
Training set -0.0132114 10.22842 6.512499 NaN Inf 0.523126 0.0258677 NA
Test set -0.7480997 11.93446 7.116198 NaN Inf 0.571619 -0.1639925 NaN
kable(accuracy(fcast3.sj,valid.cases.diff.sj),caption="NNAR(13,1,3)[52]")
NNAR(13,1,3)[52]
ME RMSE MAE MPE MAPE MASE ACF1 Theil’s U
Training set -0.0137381 9.324173 6.048144 NaN Inf 0.4858260 0.0107910 NA
Test set -0.6025257 11.981226 7.238839 NaN Inf 0.5814703 -0.1748187 NaN
kable(accuracy(fcast4.sj,valid.cases.diff.sj),caption="NNAR(13,1,4)[52]")
NNAR(13,1,4)[52]
ME RMSE MAE MPE MAPE MASE ACF1 Theil’s U
Training set 0.0000954 8.517263 5.465437 NaN Inf 0.4390192 0.0026996 NA
Test set -0.5093721 12.172294 7.247682 NaN Inf 0.5821807 -0.1601930 NaN
kable(accuracy(fcast5.sj,valid.cases.diff.sj),caption="NNAR(13,1,5)[52]")
NNAR(13,1,5)[52]
ME RMSE MAE MPE MAPE MASE ACF1 Theil’s U
Training set -0.0097162 7.59050 4.978950 NaN Inf 0.3999414 -0.0296850 NA
Test set -0.6212553 11.98408 7.150526 NaN Inf 0.5743764 -0.1696778 NaN

Neural Net

#Size=1
fit1.iq <- nnetar(cases.diff.iq, xreg=xreg.iq.train, size=1,repeats=100,lambda="auto")
fcast1.iq <- forecast(fit1.iq, h=24, xreg=xreg.iq.test)


#Size=2
fit2.iq <- nnetar(cases.diff.iq, xreg=xreg.iq.train, size=2,repeats=100,lambda="auto")
fcast2.iq <- forecast(fit2.iq, h=24, xreg=xreg.iq.test)

#Size=3
fit3.iq <- nnetar(cases.diff.iq, xreg=xreg.iq.train, size=3,repeats=100,lambda="auto")
fcast3.iq<- forecast(fit3.iq, h=24, xreg=xreg.iq.test)

#Size=4
fit4.iq <- nnetar(cases.diff.iq, xreg=xreg.iq.train, size=4,repeats=100,lambda="auto")
fcast4.iq <- forecast(fit4.iq, h=24, xreg=xreg.iq.test)

#Size=5
fit5.iq <- nnetar(cases.diff.iq, xreg=xreg.iq.train, size=5,repeats=100,lambda="auto")
fcast5.iq <- forecast(fit5.iq, h=24, xreg=xreg.iq.test)

autoplot(fcast1.iq)+autolayer(fcast2.iq, series="size=2")+autolayer(fcast3.iq, series="size=3")+autolayer(fcast4.iq, series="size=4")+autolayer(fcast5.iq, series="size=5")+autolayer(valid.cases.diff.iq, series="Orig")+coord_cartesian(xlim = c(2007, 2010))+ylim(-50, 50)

autoplot(diffinv(fcast1.iq$mean, xi=9))+autolayer(diffinv(valid.cases.diff.iq, xi=9), series="Orig")

Accuracy, , they are all really close, so I am going to stick with size=1

kable(accuracy(fcast1.iq,valid.cases.diff.iq),caption="NNAR(4,1,1)[52]")
NNAR(4,1,1)[52]
ME RMSE MAE MPE MAPE MASE ACF1 Theil’s U
Training set 0.3070690 7.970568 3.860653 NaN Inf 0.5803487 -0.1039925 NA
Test set -0.0969935 5.958823 3.721537 NaN Inf 0.5594362 -0.2455145 NaN
kable(accuracy(fcast2.iq,valid.cases.diff.iq),caption="NNAR(4,1,2)[52]")
NNAR(4,1,2)[52]
ME RMSE MAE MPE MAPE MASE ACF1 Theil’s U
Training set 0.1050144 7.173085 3.426589 NaN Inf 0.5150985 -0.0685181 NA
Test set -0.1718781 6.046592 3.749931 NaN Inf 0.5637046 -0.2304863 NaN
kable(accuracy(fcast3.iq,valid.cases.diff.iq),caption="NNAR(4,1,3)[52]")
NNAR(4,1,3)[52]
ME RMSE MAE MPE MAPE MASE ACF1 Theil’s U
Training set 0.1180780 6.391123 2.937410 NaN Inf 0.4415632 -0.0359170 NA
Test set -0.1984653 6.055794 3.756404 NaN Inf 0.5646776 -0.2397218 NaN
kable(accuracy(fcast4.iq,valid.cases.diff.iq),caption="NNAR(4,1,4)[52]")
NNAR(4,1,4)[52]
ME RMSE MAE MPE MAPE MASE ACF1 Theil’s U
Training set 0.1209073 5.580210 2.577832 NaN Inf 0.3875100 -0.0158883 NA
Test set -0.2255450 6.090679 3.794035 NaN Inf 0.5703345 -0.2377051 NaN
kable(accuracy(fcast5.iq,valid.cases.diff.iq),caption="NNAR(4,1,5)[52]")
NNAR(4,1,5)[52]
ME RMSE MAE MPE MAPE MASE ACF1 Theil’s U
Training set 0.1229006 4.784357 2.158821 NaN Inf 0.3245225 0.0190075 NA
Test set -0.2131806 6.074590 3.784238 NaN Inf 0.5688618 -0.2319003 NaN

#Submission

#SJ
test.sj.xreg<-test.sj[,5:23]
test.sj.xreg<-test.sj.xreg[,-13]

fcast1.sj <- forecast(fit1.sj, h=3, xreg=test.sj.xreg)


submission_format.sj<-submission_format[1:260,]
submission_format.sj<-submission_format.sj[,-4]
submission_format.sj<-cbind(submission_format.sj, total_cases=diffinv(fcast1.sj$mean, xi=49)[1:260])


#IQ
test.iq.xreg<-test.iq[,5:23]
test.iq.xreg<-test.iq.xreg[,-13]

fcast1.iq <- forecast(fit1.iq, h=3, xreg=test.iq.xreg)




submission_format.iq<-submission_format[261:416,]
submission_format.iq<-submission_format.iq[,-4]
submission_format.iq<-cbind(submission_format.iq, total_cases=diffinv(fcast1.iq$mean, xi=4)[261:416])

submission_final<-rbind(submission_format.sj,submission_format.iq)

View(submission_final)

write.csv(submission_final, "C:/Users/jbiasi/OneDrive - CoStar Realty Information, Inc/Documents/Dengai/submission_final.csv", quote = F)