This is to run the same evaluation of GPP simulated by the P-model as done for Stocker et al. (2020), using data from the FLUXNET2015 Tier 1 ensemble. Model forcing and observational GPP data are prepared as detailed in the vignette prepare_inputs_FLUXNET2015_ensemble.Rmd
. Respective files are available on Euler XXXpathXXX.
This assumes that the model is already calibrated (calibratable parameters are prescribed).
Note: For simulations used in Stocker et al. (2020), forcing data was written to files and read by Fortran. With the updated rsofun model, this is passed through R, using an object formatted like rsofun::df_drivers
.
Load drivers data frame (created by prepare_inputs_FLUXNET2015_ensemble.Rmd
).
load("~/data/rsofun_benchmarking/df_drivers_fluxnet2015.Rdata")
There seem to be some leap year dates which create problems for rsofun. Drop Feb. 29 dates.
df_drivers_fluxnet2015 <- df_drivers_fluxnet2015 %>%
dplyr::select(sitename, forcing) %>%
unnest(forcing) %>%
dplyr::filter(!(month(date)==2 & mday(date)==29)) %>%
## model requires flux per seconds now
mutate(prec = prec / (60*60*24), ppfd = ppfd / (60*60*24)) %>%
group_by(sitename) %>%
nest() %>%
rename(forcing = data) %>%
right_join(
df_drivers_fluxnet2015 %>%
dplyr::select(-forcing),
by = "sitename"
) %>%
ungroup()
# save(df_drivers_fluxnet2015, file = "~/data/rsofun_benchmarking/df_drivers_fluxnet2015.Rdata")
Define calibration sites.
flue_sites <- readr::read_csv( "~/data/flue/flue_stocker18nphyt.csv" ) %>%
dplyr::filter( !is.na(cluster) ) %>%
distinct(site) %>%
pull(site)
## Parsed with column specification:
## cols(
## site = col_character(),
## date = col_date(format = ""),
## year = col_double(),
## doy = col_double(),
## flue = col_double(),
## is_flue_drought = col_logical(),
## cluster = col_character()
## )
calibsites <- siteinfo_fluxnet2015 %>%
dplyr::filter(!(sitename %in% c("DE-Akm", "IT-Ro1"))) %>% # excluded because fapar data could not be downloaded (WEIRD)
# dplyr::filter(!(sitename %in% c("AU-Wom"))) %>% # excluded because no GPP data was found in FLUXNET file
dplyr::filter(sitename != "FI-Sod") %>% # excluded because some temperature data is missing
dplyr::filter( c4 %in% c(FALSE, NA) & classid != "CRO" & classid != "WET" ) %>%
dplyr::filter( sitename %in% flue_sites ) %>%
pull(sitename)
Define calibration settings.
settings_calib <- list(
method = "gensa",
targetvars = c("gpp"),
timescale = list( gpp = "d" ),
maxit = 5,
sitenames = calibsites,
metric = "rmse",
dir_results = "./",
name = "FULL",
par = list( kphio = list( lower=0.03, upper=0.1, init= 0.05 ),
soilm_par_a = list( lower=0.0, upper=1.0, init=0.0 ),
soilm_par_b = list( lower=0.0, upper=1.5, init=0.6 ) )
)
Use the ingestr package once again, now for collecting calibration target data. I.e., GPP based on the nighttime flux decomposition method.
settings_ingestr_fluxnet <- list(
dir_hh = "~/data/FLUXNET-2015_Tier1/20191024/HH/",
getswc = FALSE,
filter_ntdt = TRUE,
threshold_GPP = 0.8,
remove_neg = FALSE
)
filn <- "~/data/rsofun_benchmarking/ddf_fluxnet_gpp.Rdata"
if (!file.exists(filn)){
ddf_fluxnet_gpp <- ingestr::ingest(
siteinfo = siteinfo_fluxnet2015 %>%
dplyr::filter(sitename %in% calibsites),
source = "fluxnet",
getvars = list(gpp = "GPP_NT_VUT_REF",
gpp_unc = "GPP_NT_VUT_SE"),
dir = "~/data/FLUXNET-2015_Tier1/20191024/DD/",
settings = settings_ingestr_fluxnet,
timescale = "d"
)
save(ddf_fluxnet_gpp, file = filn)
} else {
load(filn)
}
Calibrate the model.
set.seed(1982)
settings_calib <- calib_sofun(
df_drivers = dplyr::filter(df_drivers_fluxnet2015, sitename %in% calibsites), # use only one site
ddf_obs = ddf_fluxnet_gpp,
settings = settings_calib
)
## kphio soilm_par_a soilm_par_b
## 0.09423773 0.33349283 1.45602286
## [1] "writing output from GenSA function to .//out_gensa_FULL.Rdata"
## [1] "writing calibrated parameters to .//params_opt_FULL.csv"
The calibrated parameters are returned by calib_sofun()
as part of the list:
print(settings_calib$par_opt)
## kphio soilm_par_a soilm_par_b
## 0.09423773 0.33349283 1.45602286
save(settings_calib, file = "./settings_calib.Rdata")
Update model parameters.
params_modl <- list(
kphio = 0.05,
soilm_par_a = 1.0,
soilm_par_b = 0.0,
vpdstress_par_a = 9999,
vpdstress_par_b = 9999,
vpdstress_par_m = 9999
)
params_modl <- update_params(params_modl, settings_calib)
df_output <- runread_pmodel_f(
df_drivers_fluxnet2015,
params_modl = params_modl,
makecheck = TRUE,
parallel = FALSE
)
Do evaluation only for sites where simulation was run.
evalsites <- df_output %>%
mutate(ntsteps = purrr::map_dbl(data, ~nrow(.))) %>%
dplyr::filter(ntsteps > 0) %>%
pull(sitename)
Load standard benchmarking file with observational data for evaluation.
load("~/data/rsofun_benchmarking/obs_eval_fluxnet2015.Rdata")
Define evaluation settings.
settings_eval <- list(
benchmark = list( gpp = c("fluxnet") ),
sitenames = evalsites,
agg = 8 # An integer specifying the number of days used to define the width of bins for daily data aggregated to several days
)
And finally run the evaluation.
out_eval <- eval_sofun(
df_output,
settings_eval,
settings_sims,
obs_eval = obs_eval,
overwrite = TRUE,
light = FALSE
)
## Error in approx(seq(length(vec)), vec, xout = seq(length(vec))) :
## need at least two non-NA values to interpolate
## Error in approx(seq(length(vec)), vec, xout = seq(length(vec))) :
## need at least two non-NA values to interpolate
## Error in approx(seq(length(vec)), vec, xout = seq(length(vec))) :
## need at least two non-NA values to interpolate
## Error in approx(seq(length(vec)), vec, xout = seq(length(vec))) :
## need at least two non-NA values to interpolate
## Error in approx(seq(length(vec)), vec, xout = seq(length(vec))) :
## need at least two non-NA values to interpolate
## Error in approx(seq(length(vec)), vec, xout = seq(length(vec))) :
## need at least two non-NA values to interpolate
## Error in approx(seq(length(vec)), vec, xout = seq(length(vec))) :
## need at least two non-NA values to interpolate
## Error in approx(seq(length(vec)), vec, xout = seq(length(vec))) :
## need at least two non-NA values to interpolate
## Error in approx(seq(length(vec)), vec, xout = seq(length(vec))) :
## need at least two non-NA values to interpolate
## Error in approx(seq(length(vec)), vec, xout = seq(length(vec))) :
## need at least two non-NA values to interpolate
## Error in approx(seq(length(vec)), vec, xout = seq(length(vec))) :
## need at least two non-NA values to interpolate
## Error in approx(seq(length(vec)), vec, xout = seq(length(vec))) :
## need at least two non-NA values to interpolate
out_eval$gpp$fluxnet$metrics %>%
bind_rows(.id = "Level") %>%
kable
Level | rsq | rmse | slope | bias | nvals |
---|---|---|---|---|---|
daily_pooled | 0.6647013 | 2.317325 | 0.9005069 | 0.0505925 | 237777 |
xdaily_pooled | 0.7278124 | 2.013727 | 0.9948575 | 0.0583899 | 33152 |
annual_pooled | 0.6992443 | 386.054715 | 1.1002031 | -0.7718708 | 598 |
monthly_pooled | 0.7547680 | 1.822366 | 1.0311406 | -0.0564397 | 7428 |
spatial | 0.7067811 | 408.008044 | 1.0448012 | -19.5171391 | 109 |
anomalies_annual | 0.0741801 | 176.567490 | 0.4227650 | -3.6159965 | 598 |
meandoy | 0.7222098 | 1.862512 | 0.9807113 | 0.1339092 | 42844 |
anomalies_daily | 0.2615536 | 1.647578 | 0.4124326 | -0.0356895 | 237603 |
meanxoy | 0.7494810 | 1.738624 | 1.0077950 | 0.1161248 | 5528 |
anomalies_xdaily | 0.1414565 | 1.247923 | 0.3838807 | -0.0043352 | 33152 |
out_eval$gpp$fluxnet$plot$gg_modobs_xdaily
out_eval$gpp$fluxnet$plot$gg_modobs_spatial_annual
siteinfo_fluxnet2015 %>%
dplyr::filter(sitename %in% evalsites) %>%
kable()
sitename | lon | lat | elv | year_start | year_end | classid | c4 | whc | koeppen_code | igbp_land_use | plant_functional_type |
---|---|---|---|---|---|---|---|---|---|---|---|
AR-SLu | -66.4598 | -33.4648 | 499.0 | 2009 | 2011 | MF | FALSE | 268.42401 | Bwk | NA | NA |
AR-Vir | -56.1886 | -28.2395 | 97.0 | 2009 | 2012 | ENF | FALSE | 302.42755 | Csb | NA | NA |
AT-Neu | 11.3175 | 47.1167 | 970.0 | 2002 | 2012 | GRA | FALSE | 270.08563 | Dfc | Mixed Forests | Evergreen Broadleaf Trees |
AU-Ade | 131.1178 | -13.0769 | 81.0 | 2007 | 2009 | WSA | FALSE | 269.21866 | Aw | Savannas | Grass |
AU-ASM | 133.2490 | -22.2830 | 606.0 | 2010 | 2013 | ENF | FALSE | 214.58427 | BSh | Open Shrublands | Shrub |
AU-Cpr | 140.5891 | -34.0021 | 57.0 | 2010 | 2014 | SAV | FALSE | 217.31125 | BSk | Closed Shrublands | Shrub |
AU-Cum | 150.7225 | -33.6133 | 28.0 | 2012 | 2014 | EBF | FALSE | 310.86740 | Cfa | Woody Savannas | Evergreen Broadleaf Trees |
AU-DaP | 131.3181 | -14.0633 | 102.0 | 2007 | 2013 | GRA | FALSE | 294.63034 | Aw | Savannas | Grass |
AU-DaS | 131.3881 | -14.1593 | 98.0 | 2008 | 2014 | SAV | FALSE | 249.25092 | Aw | Savannas | Grass |
AU-Dry | 132.3706 | -15.2588 | 172.0 | 2008 | 2014 | SAV | FALSE | 239.15613 | Aw | Savannas | Grass |
AU-Emr | 148.4746 | -23.8587 | 183.0 | 2011 | 2013 | GRA | FALSE | 212.93277 | Bwk | NA | NA |
AU-Gin | 115.7138 | -31.3764 | 51.0 | 2011 | 2014 | WSA | FALSE | 194.44785 | Csa | Woody Savannas | Shrub |
AU-GWW | 120.6541 | -30.1913 | 452.0 | 2013 | 2014 | SAV | FALSE | 183.37975 | Bwk | NA | NA |
AU-Lox | 140.6551 | -34.4704 | 48.0 | 2008 | 2009 | DBF | FALSE | 248.41380 | Bsh | NA | NA |
AU-RDF | 132.4776 | -14.5636 | 181.0 | 2011 | 2013 | WSA | FALSE | 290.04077 | Bwh | NA | NA |
AU-Rig | 145.5759 | -36.6499 | 153.0 | 2011 | 2014 | GRA | FALSE | 251.43498 | Cfb | Croplands | Cereal crop |
AU-Rob | 145.6301 | -17.1175 | 772.0 | 2014 | 2014 | EBF | FALSE | 265.16736 | Csb | NA | NA |
AU-Stp | 133.3502 | -17.1507 | 227.0 | 2008 | 2014 | GRA | FALSE | 283.41589 | BSh | Grasslands | Grass |
AU-TTE | 133.6400 | -22.2870 | 552.0 | 2012 | 2013 | OSH | FALSE | 217.10576 | BWh | Open Shrublands | Shrub |
AU-Tum | 148.1517 | -35.6566 | 932.0 | 2001 | 2014 | EBF | FALSE | 248.48276 | Cfb | Evergreen Broadleaf Forest | Evergreen Broadleaf Trees |
AU-Wac | 145.1878 | -37.4259 | 562.0 | 2005 | 2008 | EBF | FALSE | 163.75224 | Cfb | Evergreen Broadleaf Forest | Evergreen Broadleaf Trees |
AU-Whr | 145.0294 | -36.6732 | 152.0 | 2011 | 2014 | EBF | FALSE | 271.49738 | Cfb | Woody Savannas | Shrub |
AU-Wom | 144.0944 | -37.4222 | 705.0 | 2010 | 2012 | EBF | FALSE | 189.57100 | Cfb | Evergreen Broadleaf Forest | Evergreen Broadleaf Trees |
AU-Ync | 146.2907 | -34.9893 | 125.0 | 2012 | 2014 | GRA | FALSE | 199.15875 | BSk | Croplands | Cereal crop |
BE-Bra | 4.5206 | 51.3092 | 16.0 | 1996 | 2014 | MF | FALSE | 85.68380 | Cfb | Mixed Forests | Deciduous Broadleaf Trees |
BE-Vie | 5.9981 | 50.3051 | 493.0 | 1996 | 2014 | MF | FALSE | 312.76520 | Cfb | Mixed Forests | Deciduous Broadleaf Trees |
BR-Sa3 | -54.9714 | -3.0180 | 100.0 | 2000 | 2004 | EBF | FALSE | 207.06451 | Am | Evergreen Broadleaf Forest | Evergreen Broadleaf Trees |
CA-Man | -98.4808 | 55.8796 | 259.0 | 1994 | 2008 | ENF | FALSE | 52.67784 | Dfc | Evergreen Needleleaf Forest | Evergreen Needleleaf Trees |
CA-NS1 | -98.4839 | 55.8792 | 260.0 | 2001 | 2005 | ENF | FALSE | 50.25988 | Dfc | Evergreen Needleleaf Forest | Evergreen Needleleaf Trees |
CA-NS2 | -98.5247 | 55.9058 | 260.0 | 2001 | 2005 | ENF | FALSE | 59.02733 | Dfc | Evergreen Needleleaf Forest | Evergreen Needleleaf Trees |
CA-NS3 | -98.3822 | 55.9117 | 260.0 | 2001 | 2005 | ENF | FALSE | 115.96288 | Dfc | Evergreen Needleleaf Forest | Evergreen Needleleaf Trees |
CA-NS4 | -98.3822 | 55.9117 | 260.0 | 2002 | 2005 | ENF | FALSE | 115.96288 | Dfc | Evergreen Needleleaf Forest | Evergreen Needleleaf Trees |
CA-NS5 | -98.4850 | 55.8631 | 260.0 | 2001 | 2005 | ENF | FALSE | 32.74040 | Dfc | Evergreen Needleleaf Forest | Evergreen Needleleaf Trees |
CA-NS6 | -98.9644 | 55.9167 | 244.0 | 2001 | 2005 | OSH | FALSE | 28.60807 | Dfc | Evergreen Needleleaf Forest | Evergreen Needleleaf Trees |
CA-NS7 | -99.9483 | 56.6358 | 297.0 | 2002 | 2005 | OSH | FALSE | 90.78813 | Dfc | Evergreen Needleleaf Forest | Evergreen Needleleaf Trees |
CA-Qfo | -74.3421 | 49.6925 | 382.0 | 2003 | 2010 | ENF | FALSE | 176.82556 | Dfc | Evergreen Needleleaf Forest | Evergreen Needleleaf Trees |
CA-SF1 | -105.8176 | 54.4850 | 536.0 | 2003 | 2006 | ENF | FALSE | 265.99557 | Dfc | Evergreen Needleleaf Forest | Evergreen Needleleaf Trees |
CA-SF2 | -105.8775 | 54.2539 | 520.0 | 2001 | 2005 | ENF | FALSE | 286.65930 | Dfc | Mixed Forests | Evergreen Needleleaf Trees |
CA-SF3 | -106.0053 | 54.0916 | 540.0 | 2001 | 2006 | OSH | FALSE | 272.68091 | Dfc | Evergreen Needleleaf Forest | Evergreen Needleleaf Trees |
CH-Cha | 8.4104 | 47.2102 | 393.0 | 2005 | 2014 | GRA | FALSE | 343.09296 | Cfb | Cropland/Natural Vegetation Mosaic | Grass |
CH-Dav | 9.8559 | 46.8153 | 1639.0 | 1997 | 2014 | ENF | FALSE | 171.52492 | ET | Evergreen Needleleaf Forest | Evergreen Needleleaf Trees |
CH-Fru | 8.5378 | 47.1158 | 982.0 | 2005 | 2014 | GRA | FALSE | 285.33804 | Cfb | Cropland/Natural Vegetation Mosaic | Grass |
CH-Lae | 8.3650 | 47.4781 | 689.0 | 2004 | 2014 | MF | FALSE | 292.45551 | Cfb | Mixed Forests | Deciduous Broadleaf Trees |
CH-Oe1 | 7.7319 | 47.2858 | 450.0 | 2002 | 2008 | GRA | FALSE | 316.34888 | Cfb | Croplands | Cereal crop |
CN-Cha | 128.0958 | 42.4025 | 754.0 | 2003 | 2005 | MF | FALSE | 320.64484 | Dwb | Mixed Forests | Deciduous Broadleaf Trees |
CN-Cng | 123.5092 | 44.5934 | 140.0 | 2007 | 2010 | GRA | FALSE | 244.44846 | Bsh | NA | NA |
CN-Dan | 91.0664 | 30.4978 | 4751.0 | 2004 | 2005 | GRA | FALSE | 229.43036 | ET | Grasslands | Grass |
CN-Din | 112.5361 | 23.1733 | 261.0 | 2003 | 2005 | EBF | FALSE | 274.25833 | Cfa | Evergreen Broadleaf Forest | Evergreen Broadleaf Trees |
CN-Du2 | 116.2836 | 42.0467 | 1331.0 | 2006 | 2008 | GRA | FALSE | 327.09930 | Dwb | Grasslands | Grass |
CN-HaM | 101.1800 | 37.3700 | 3932.0 | 2002 | 2004 | GRA | FALSE | 222.66310 | NA | NA | NA |
CN-Qia | 115.0581 | 26.7414 | 64.0 | 2003 | 2005 | ENF | FALSE | 303.67596 | Cfa | Woody Savannas | Shrub |
CN-Sw2 | 111.8971 | 41.7902 | 1439.0 | 2010 | 2012 | GRA | FALSE | 313.57028 | Bsh | NA | NA |
CZ-BK1 | 18.5369 | 49.5021 | 875.0 | 2004 | 2008 | ENF | FALSE | 260.95676 | Dfb | Evergreen Needleleaf Forest | Evergreen Needleleaf Trees |
CZ-BK2 | 18.5429 | 49.4944 | 855.0 | 2004 | 2006 | GRA | FALSE | 260.13770 | Dfb | Mixed Forests | Evergreen Needleleaf Trees |
DE-Gri | 13.5125 | 50.9495 | 385.0 | 2004 | 2014 | GRA | FALSE | 338.52594 | Cfb | Mixed Forests | Deciduous Broadleaf Trees |
DE-Hai | 10.4530 | 51.0792 | 430.0 | 2000 | 2012 | DBF | FALSE | 282.66736 | Cfb | Mixed Forests | Deciduous Broadleaf Trees |
DE-Lkb | 13.3047 | 49.0996 | 1308.0 | 2009 | 2013 | ENF | FALSE | 189.99904 | Cfb | Evergreen Needleleaf Forest | Evergreen Needleleaf Trees |
DE-Obe | 13.7196 | 50.7836 | 735.0 | 2008 | 2014 | ENF | FALSE | 246.86536 | Cfb | Evergreen Needleleaf Forest | Evergreen Needleleaf Trees |
DE-RuR | 6.3041 | 50.6219 | 514.7 | 2011 | 2014 | GRA | FALSE | 327.45950 | Cfb | Grasslands | Grass |
DE-Tha | 13.5669 | 50.9636 | 380.0 | 1996 | 2014 | ENF | FALSE | 295.66315 | Cfb | Evergreen Needleleaf Forest | Evergreen Needleleaf Trees |
DK-Sor | 11.6446 | 55.4859 | 40.0 | 1996 | 2014 | DBF | FALSE | 226.43781 | Cfb | Deciduous Broadleaf Forest | Deciduous Broadleaf Trees |
DK-ZaH | -20.5503 | 74.4732 | 38.0 | 2000 | 2014 | GRA | FALSE | 241.88185 | ET | Open Shrublands | Shrub |
ES-LgS | -2.9658 | 37.0979 | 2267.0 | 2007 | 2009 | OSH | FALSE | 272.30676 | Csa | Woody Savannas | Evergreen Needleleaf Trees |
ES-Ln2 | -3.4758 | 36.9695 | 2249.0 | 2009 | 2009 | OSH | FALSE | 246.17299 | Csa | Closed Shrublands | Shrub |
FI-Hyy | 24.2950 | 61.8475 | 181.0 | 1996 | 2014 | ENF | FALSE | 255.05896 | Dfc | Evergreen Needleleaf Forest | Evergreen Needleleaf Trees |
FR-Fon | 2.7801 | 48.4764 | 103.0 | 2005 | 2014 | DBF | FALSE | 335.19290 | Cfb | Deciduous Broadleaf Forest | Deciduous Broadleaf Trees |
FR-LBr | -0.7693 | 44.7171 | 61.0 | 1996 | 2008 | ENF | FALSE | 269.57657 | Cfb | Cropland/Natural Vegetation Mosaic | Shrub |
FR-Pue | 3.5958 | 43.7414 | 270.0 | 2000 | 2014 | EBF | FALSE | 239.64929 | Csa | Mixed Forests | Evergreen Needleleaf Trees |
GF-Guy | -52.9249 | 5.2788 | 48.0 | 2004 | 2014 | EBF | FALSE | 230.85413 | Af | Evergreen Broadleaf Forest | Evergreen Broadleaf Trees |
IT-CA1 | 12.0266 | 42.3804 | 200.0 | 2011 | 2014 | DBF | FALSE | 269.10382 | Csa | Croplands | Cereal crop |
IT-CA3 | 12.0222 | 42.3800 | 197.0 | 2011 | 2014 | DBF | FALSE | 269.12970 | Csa | Croplands | Cereal crop |
IT-Col | 13.5881 | 41.8494 | 1560.0 | 1996 | 2014 | DBF | FALSE | 267.97675 | Cfa | Deciduous Broadleaf Forest | Deciduous Broadleaf Trees |
IT-Cp2 | 12.3573 | 41.7043 | 19.0 | 2012 | 2014 | EBF | FALSE | 306.13284 | Csa | Evergreen Needleleaf Forest | Evergreen Needleleaf Trees |
IT-Cpz | 12.3761 | 41.7052 | 68.0 | 1997 | 2009 | EBF | FALSE | 305.06644 | Csa | Evergreen Needleleaf Forest | Evergreen Needleleaf Trees |
IT-Isp | 8.6336 | 45.8126 | 210.0 | 2013 | 2014 | DBF | FALSE | 320.68103 | Cfb | Woody Savannas | Deciduous Broadleaf Trees |
IT-La2 | 11.2853 | 45.9542 | 1350.0 | 2000 | 2002 | ENF | FALSE | 237.59509 | Cfb | Evergreen Needleleaf Forest | Evergreen Needleleaf Trees |
IT-Lav | 11.2813 | 45.9562 | 1353.0 | 2003 | 2014 | ENF | FALSE | 249.79709 | Cfb | Evergreen Needleleaf Forest | Evergreen Needleleaf Trees |
IT-MBo | 11.0458 | 46.0147 | 1550.0 | 2003 | 2013 | GRA | FALSE | 264.44385 | Dfb | Grasslands | Grass |
IT-Noe | 8.1515 | 40.6061 | 28.0 | 2004 | 2014 | CSH | FALSE | 237.01605 | - | Woody Savannas | Shrub |
IT-PT1 | 9.0610 | 45.2009 | 60.0 | 2002 | 2004 | DBF | FALSE | 317.98535 | Cfa | Croplands | Cereal crop |
IT-Ren | 11.4337 | 46.5869 | 1730.0 | 1998 | 2013 | ENF | FALSE | 167.45172 | Dfc | Evergreen Needleleaf Forest | Evergreen Needleleaf Trees |
IT-Ro2 | 11.9209 | 42.3903 | 160.0 | 2002 | 2012 | DBF | FALSE | 273.45822 | Csa | Cropland/Natural Vegetation Mosaic | Cereal crop |
IT-SR2 | 10.2910 | 43.7320 | 12.0 | 2013 | 2014 | ENF | FALSE | 286.22598 | Csa | Mixed Forests | Evergreen Needleleaf Trees |
IT-SRo | 10.2844 | 43.7279 | 6.0 | 1999 | 2012 | ENF | FALSE | 286.22598 | Csa | Water | Water |
IT-Tor | 7.5781 | 45.8444 | 2160.0 | 2008 | 2014 | GRA | FALSE | 156.72546 | Dfc | Evergreen Needleleaf Forest | Evergreen Needleleaf Trees |
JP-MBF | 142.3186 | 44.3869 | 545.0 | 2003 | 2005 | DBF | FALSE | 214.18483 | Dfb | Mixed Forests | Deciduous Broadleaf Trees |
JP-SMF | 137.0788 | 35.2617 | 175.0 | 2002 | 2006 | MF | FALSE | 294.94739 | Cfa | Croplands | Cereal crop |
NL-Hor | 5.0713 | 52.2404 | 2.2 | 2004 | 2011 | GRA | FALSE | 335.84946 | Cfb | Mixed Forests | Deciduous Broadleaf Trees |
NL-Loo | 5.7436 | 52.1666 | 25.0 | 1996 | 2013 | ENF | FALSE | 71.05942 | Cfb | Evergreen Needleleaf Forest | Evergreen Needleleaf Trees |
NO-Blv | 11.8311 | 78.9216 | 25.0 | 2008 | 2009 | SNO | FALSE | 203.84015 | ET | Snow and Ice | Snow and Ice |
RU-Cok | 147.4943 | 70.8291 | 48.0 | 2003 | 2014 | OSH | FALSE | 376.49628 | Dfc | Open Shrublands | Shrub |
RU-Fyo | 32.9221 | 56.4615 | 265.0 | 1998 | 2014 | ENF | FALSE | 301.45709 | Dfb | Mixed Forests | Evergreen Needleleaf Trees |
RU-Ha1 | 90.0022 | 54.7252 | 446.0 | 2002 | 2004 | GRA | FALSE | 357.77884 | Dfc | Grasslands | Grass |
SD-Dem | 30.4783 | 13.2829 | 500.0 | 2005 | 2009 | SAV | FALSE | 200.05038 | BWh | Grasslands | Grass |
SN-Dhr | -15.4322 | 15.4028 | 40.0 | 2010 | 2013 | SAV | FALSE | 196.49721 | BWh | Grasslands | Grass |
US-AR1 | -99.4200 | 36.4267 | 611.0 | 2009 | 2012 | GRA | FALSE | 356.77850 | Cfa | Grasslands | Grass |
US-AR2 | -99.5975 | 36.6358 | 646.0 | 2009 | 2012 | GRA | FALSE | 222.08368 | Cfa | Grasslands | Grass |
US-ARb | -98.0402 | 35.5497 | 424.0 | 2005 | 2006 | GRA | FALSE | 334.74182 | Cfa | Croplands | Cereal crop |
US-ARc | -98.0400 | 35.5465 | 424.0 | 2005 | 2006 | GRA | FALSE | 327.44418 | Cfa | Grasslands | Grass |
US-Blo | -120.6328 | 38.8953 | 1315.0 | 1997 | 2007 | ENF | FALSE | 323.68643 | Csb | Evergreen Needleleaf Forest | Evergreen Needleleaf Trees |
US-Cop | -109.3900 | 38.0900 | 1520.0 | 2001 | 2007 | GRA | FALSE | 334.22589 | BSk | Grasslands | Grass |
US-GBT | -106.2397 | 41.3658 | 3191.0 | 1999 | 2006 | ENF | FALSE | 219.37785 | Dfc | Evergreen Needleleaf Forests | (null) |
US-GLE | -106.2399 | 41.3665 | 3197.0 | 2004 | 2014 | ENF | FALSE | 207.54053 | Dfb | Evergreen Needleleaf Forest | Evergreen Needleleaf Trees |
US-Ha1 | -72.1715 | 42.5378 | 340.0 | 1991 | 2012 | DBF | FALSE | 193.85033 | Dfb | Mixed Forests | Deciduous Broadleaf Trees |
US-KS2 | -80.6715 | 28.6086 | 3.0 | 2003 | 2006 | CSH | FALSE | 205.27802 | Cfa | Woody Savannas | Shrub |
US-Me1 | -121.5000 | 44.5794 | 896.0 | 2004 | 2005 | ENF | FALSE | 316.75296 | Csb | Croplands | Cereal crop |
US-Me2 | -121.5574 | 44.4523 | 1253.0 | 2002 | 2014 | ENF | FALSE | 244.58331 | Csb | Evergreen Needleleaf Forest | Evergreen Needleleaf Trees |
US-Me6 | -121.6078 | 44.3233 | 998.0 | 2010 | 2014 | ENF | FALSE | 226.51639 | Csb | Woody Savannas | Shrub |
US-MMS | -86.4131 | 39.3232 | 275.0 | 1999 | 2014 | DBF | FALSE | 343.01581 | Cfa | Deciduous Broadleaf Forest | Deciduous Broadleaf Trees |
US-NR1 | -105.5464 | 40.0329 | 3050.0 | 1998 | 2014 | ENF | FALSE | 170.75986 | Dfc | Evergreen Needleleaf Forest | Evergreen Needleleaf Trees |
US-PFa | -90.2723 | 45.9459 | 470.0 | 1995 | 2014 | MF | FALSE | 203.73933 | Dfb | Mixed Forests | Deciduous Broadleaf Trees |
US-Prr | -147.4876 | 65.1237 | 210.0 | 2010 | 2013 | ENF | FALSE | 382.20374 | Dfc | Evergreen Needleleaf Forests | Evergreen Needleleaf Trees |
US-SRG | -110.8277 | 31.7894 | 1291.0 | 2008 | 2014 | GRA | FALSE | 154.87320 | BSk | Grasslands | Shrub |
US-SRM | -110.8661 | 31.8214 | 1120.0 | 2004 | 2014 | WSA | FALSE | 201.24539 | BSk | Open Shrublands | Shrub |
US-Syv | -89.3477 | 46.2420 | 540.0 | 2001 | 2014 | MF | FALSE | 222.69208 | Dfb | Mixed Forests | Deciduous Broadleaf Trees |
US-Ton | -120.9660 | 38.4316 | 177.0 | 2001 | 2014 | WSA | FALSE | 304.46140 | Csa | Woody Savannas | Shrub |
US-UMB | -84.7138 | 45.5598 | 234.0 | 2000 | 2014 | DBF | FALSE | 174.07025 | Dfb | Deciduous Broadleaf Forest | Deciduous Broadleaf Trees |
US-UMd | -84.6975 | 45.5625 | 239.0 | 2007 | 2014 | DBF | FALSE | 235.31183 | Dfb | Mixed Forests | Deciduous Broadleaf Trees |
US-Var | -120.9507 | 38.4133 | 129.0 | 2000 | 2014 | GRA | FALSE | 307.51373 | Csa | Woody Savannas | Shrub |
US-WCr | -90.0799 | 45.8059 | 520.0 | 1999 | 2014 | DBF | FALSE | 264.96152 | Dfb | Deciduous Broadleaf Forest | Deciduous Broadleaf Trees |
US-Whs | -110.0522 | 31.7438 | 1370.0 | 2007 | 2014 | OSH | FALSE | 233.38818 | BSk | Open Shrublands | Shrub |
US-Wi0 | -91.0814 | 46.6188 | 349.0 | 2002 | 2002 | ENF | FALSE | 325.71179 | Dfb | Mixed Forests | Evergreen Needleleaf Trees |
US-Wi3 | -91.0987 | 46.6347 | 411.0 | 2002 | 2004 | DBF | FALSE | 343.67532 | Dfb | Deciduous Broadleaf Forest | Deciduous Broadleaf Trees |
US-Wi4 | -91.1663 | 46.7393 | 352.0 | 2002 | 2005 | ENF | FALSE | 299.29538 | Dfb | Mixed Forests | Evergreen Needleleaf Trees |
US-Wi6 | -91.2982 | 46.6249 | 371.0 | 2002 | 2003 | OSH | FALSE | 334.28870 | Dfb | Cropland/Natural Vegetation Mosaic | Cereal crop |
US-Wi9 | -91.0814 | 46.6188 | 350.0 | 2004 | 2005 | ENF | FALSE | 325.71179 | Dfb | Mixed Forests | Evergreen Needleleaf Trees |
US-Wkg | -109.9419 | 31.7365 | 1531.0 | 2004 | 2014 | GRA | FALSE | 209.49074 | BSk | Grasslands | Grass |
ZA-Kru | 31.4969 | -25.0197 | 359.0 | 2000 | 2010 | SAV | FALSE | 276.68857 | BSh | Savannas | Grass |
ZM-Mon | 23.2528 | -15.4378 | 1053.0 | 2000 | 2009 | DBF | FALSE | 132.62697 | Aw | Savannas | Grass |