library(tidyverse)
library(openintro)

The Research Question

What is the average class size at UTSA? Many students complain about large classes, many universities brag about their small classes. Let’s put a number on it.

SRS of 5 Clusters

sample(1:132, 5, replace=FALSE)
## [1]  74  28 128  66   3
## Output [1] 120  78  74  47  11
## 11=ART 47=ENT 74=IDE 78=KIN 120=SPE

The output produced by the simple random sampling function corresponded to the following five class subjects: Art, Entrepreneurship, Interior Design, Kinesiology, and Special Education.

Import Data

ARTraw <- read.csv("C:/Users/Savanna.DESKTOP-0OJMFCH/Downloads/ART.CSV")
ENTraw <- read.csv("C:/Users/Savanna.DESKTOP-0OJMFCH/Downloads/ENT.CSV")
IDEraw <- read.csv("C:/Users/Savanna.DESKTOP-0OJMFCH/Downloads/IDE.CSV")
KINraw <- read.csv("C:/Users/Savanna.DESKTOP-0OJMFCH/Downloads/KIN.CSV")
SPEraw <- read.csv("C:/Users/Savanna.DESKTOP-0OJMFCH/Downloads/SPE.CSV")
library(tidyverse)

Clean Data

ART <- ARTraw[!(ARTraw$Status=="CANCELED"| ARTraw$Title=="Independent Study"| ARTraw$Title=="Internship in the Visual Arts"| ARTraw$Course>=5000),]

ENT <- ENTraw[!(ENTraw$Status=="CANCELED"| ENTraw$Title=="Independent Study"| ENTraw$Title=="Internship in Entrepreneurship"| ENTraw$Course>=5000),]

IDE <- IDEraw[!(IDEraw$Status=="CANCELED"| IDEraw$Title=="Independent Study"| IDEraw$Title=="Practicum/Internship"| IDEraw$Course>=5000),]

KIN <- KINraw[!(KINraw$Status=="CANCELED"| KINraw$Title=="Independent Study"| KINraw$Title=="Internship in Kinesiology"| KINraw$Title=="Honors Thesis"| KINraw$Course>=5000),]

SPE <- SPEraw[!(SPEraw$Status=="CANCELED"| SPEraw$Title=="Independent Study"| SPEraw$Course>=5000),]

Summarizing Data

#ART Data
ARTrows<- count(ART) #cluster size of 74
#RSS of 3 independent estimates
sample(1:10, 3, replace = FALSE) #original output [1] 10  2  5
## [1] 1 9 7
a<- c(10, 20) 
b<- c(2, 12) 
c<- c(5, 15) 
amean <- mean(a)
bmean <- mean(b)
cmean <- mean(c)
ARTmean <- c(amean, bmean, cmean)
ARTvar <- var(ARTmean)
ARTsum <- sum(ART$Enrolled)

#ENT Data
ENTrows<- count(ENT) #cluster size of 5
ENTmean<- mean(ENT[,"Enrolled"])
ENTvar <- var(ENT[,"Enrolled"])
ENTsum <- sum(ENT$Enrolled)

#IDE Data
IDErows<- count(IDE) #cluster size of 8
IDEmean<- mean(IDE[,"Enrolled"])
IDEvar <- var(IDE[,"Enrolled"])
IDEsum <- sum(IDE$Enrolled)

#KIN Data
KINrows<- count(KIN) #cluster size of 53
#RSS of 3 independent estimates
sample(1:10, 3, replace = FALSE) #output [1] 15  2  3
## [1] 10  5  9
x<- c(15, 25) 
y<- c(2, 12) 
z<- c(3, 13) 
xmean <- mean(x)
ymean <- mean(y)
zmean <- mean(z)
KINmean<- c(xmean, ymean, zmean)
KINvar<- var(KINmean)
KINsum<- sum(KIN$Enrolled)

#SPE Data
SPErows<- count(SPE) #cluster size of 11
SPEmean<- mean(SPE[,"Enrolled"])
SPEvar<- var(SPE[,"Enrolled"])
SPEsum<- sum(SPE$Enrolled)

Estimate of Mean Class Size

class <- c(ARTmean, ENTmean, IDEmean, KINmean, SPEmean)
t.test(class, conf.level = 0.95)
## 
##  One Sample t-test
## 
## data:  class
## t = 5.3266, df = 8, p-value = 0.0007054
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
##   9.22117 23.30055
## sample estimates:
## mean of x 
##  16.26086

The t-test provides the average class size to have 16 students. There is a 95% probability that the size of any given Undergraduate class at UTSA would consist of 9 to 23 students enrolled. This estimate does exclude internships, independent studies, and honors thesis.

LS0tDQp0aXRsZTogIkEgVHdvLVN0YWdlIENsdXN0ZXIgU2FtcGxlIg0KYXV0aG9yOiAiU2F2YW5uYSBUb3JyZXMiDQpkYXRlOiAiYHIgU3lzLkRhdGUoKWAiDQpvdXRwdXQ6IG9wZW5pbnRybzo6bGFiX3JlcG9ydA0KLS0tDQoNCmBgYHtyIGxvYWQtcGFja2FnZXMsIG1lc3NhZ2U9RkFMU0V9DQpsaWJyYXJ5KHRpZHl2ZXJzZSkNCmxpYnJhcnkob3BlbmludHJvKQ0KYGBgDQoNCiMjIyBUaGUgUmVzZWFyY2ggUXVlc3Rpb24NCg0KV2hhdCBpcyB0aGUgYXZlcmFnZSBjbGFzcyBzaXplIGF0IFVUU0E/IE1hbnkgc3R1ZGVudHMgY29tcGxhaW4gYWJvdXQgbGFyZ2UgY2xhc3NlcywgbWFueSB1bml2ZXJzaXRpZXMgYnJhZyBhYm91dCB0aGVpciBzbWFsbCBjbGFzc2VzLiBMZXTigJlzIHB1dCBhIG51bWJlciBvbiBpdC4NCg0KIyBTUlMgb2YgNSBDbHVzdGVycw0KYGBge3IgU1JTLCBFY2hvID0gRkFMU0V9DQpzYW1wbGUoMToxMzIsIDUsIHJlcGxhY2U9RkFMU0UpDQojIyBPdXRwdXQgWzFdIDEyMCAgNzggIDc0ICA0NyAgMTENCiMjIDExPUFSVCA0Nz1FTlQgNzQ9SURFIDc4PUtJTiAxMjA9U1BFDQpgYGANCg0KVGhlIG91dHB1dCBwcm9kdWNlZCBieSB0aGUgc2ltcGxlIHJhbmRvbSBzYW1wbGluZyBmdW5jdGlvbiBjb3JyZXNwb25kZWQgdG8gdGhlIGZvbGxvd2luZyBmaXZlIGNsYXNzIHN1YmplY3RzOiBBcnQsIEVudHJlcHJlbmV1cnNoaXAsIEludGVyaW9yIERlc2lnbiwgS2luZXNpb2xvZ3ksIGFuZCBTcGVjaWFsIEVkdWNhdGlvbi4NCg0KIyBJbXBvcnQgRGF0YQ0KYGBge3IgaW1wb3J0fQ0KQVJUcmF3IDwtIHJlYWQuY3N2KCJDOi9Vc2Vycy9TYXZhbm5hLkRFU0tUT1AtME9KTUZDSC9Eb3dubG9hZHMvQVJULkNTViIpDQpFTlRyYXcgPC0gcmVhZC5jc3YoIkM6L1VzZXJzL1NhdmFubmEuREVTS1RPUC0wT0pNRkNIL0Rvd25sb2Fkcy9FTlQuQ1NWIikNCklERXJhdyA8LSByZWFkLmNzdigiQzovVXNlcnMvU2F2YW5uYS5ERVNLVE9QLTBPSk1GQ0gvRG93bmxvYWRzL0lERS5DU1YiKQ0KS0lOcmF3IDwtIHJlYWQuY3N2KCJDOi9Vc2Vycy9TYXZhbm5hLkRFU0tUT1AtME9KTUZDSC9Eb3dubG9hZHMvS0lOLkNTViIpDQpTUEVyYXcgPC0gcmVhZC5jc3YoIkM6L1VzZXJzL1NhdmFubmEuREVTS1RPUC0wT0pNRkNIL0Rvd25sb2Fkcy9TUEUuQ1NWIikNCmxpYnJhcnkodGlkeXZlcnNlKQ0KYGBgDQoNCg0KIyBDbGVhbiBEYXRhDQpgYGB7ciBjbGVhbn0NCkFSVCA8LSBBUlRyYXdbIShBUlRyYXckU3RhdHVzPT0iQ0FOQ0VMRUQifCBBUlRyYXckVGl0bGU9PSJJbmRlcGVuZGVudCBTdHVkeSJ8IEFSVHJhdyRUaXRsZT09IkludGVybnNoaXAgaW4gdGhlIFZpc3VhbCBBcnRzInwgQVJUcmF3JENvdXJzZT49NTAwMCksXQ0KDQpFTlQgPC0gRU5UcmF3WyEoRU5UcmF3JFN0YXR1cz09IkNBTkNFTEVEInwgRU5UcmF3JFRpdGxlPT0iSW5kZXBlbmRlbnQgU3R1ZHkifCBFTlRyYXckVGl0bGU9PSJJbnRlcm5zaGlwIGluIEVudHJlcHJlbmV1cnNoaXAifCBFTlRyYXckQ291cnNlPj01MDAwKSxdDQoNCklERSA8LSBJREVyYXdbIShJREVyYXckU3RhdHVzPT0iQ0FOQ0VMRUQifCBJREVyYXckVGl0bGU9PSJJbmRlcGVuZGVudCBTdHVkeSJ8IElERXJhdyRUaXRsZT09IlByYWN0aWN1bS9JbnRlcm5zaGlwInwgSURFcmF3JENvdXJzZT49NTAwMCksXQ0KDQpLSU4gPC0gS0lOcmF3WyEoS0lOcmF3JFN0YXR1cz09IkNBTkNFTEVEInwgS0lOcmF3JFRpdGxlPT0iSW5kZXBlbmRlbnQgU3R1ZHkifCBLSU5yYXckVGl0bGU9PSJJbnRlcm5zaGlwIGluIEtpbmVzaW9sb2d5InwgS0lOcmF3JFRpdGxlPT0iSG9ub3JzIFRoZXNpcyJ8IEtJTnJhdyRDb3Vyc2U+PTUwMDApLF0NCg0KU1BFIDwtIFNQRXJhd1shKFNQRXJhdyRTdGF0dXM9PSJDQU5DRUxFRCJ8IFNQRXJhdyRUaXRsZT09IkluZGVwZW5kZW50IFN0dWR5InwgU1BFcmF3JENvdXJzZT49NTAwMCksXQ0KYGBgDQoNCg0KIyBTdW1tYXJpemluZyBEYXRhDQpgYGB7ciBTdW0sIEVjaG8gPSBGQUxTRX0NCg0KI0FSVCBEYXRhDQpBUlRyb3dzPC0gY291bnQoQVJUKSAjY2x1c3RlciBzaXplIG9mIDc0DQojUlNTIG9mIDMgaW5kZXBlbmRlbnQgZXN0aW1hdGVzDQpzYW1wbGUoMToxMCwgMywgcmVwbGFjZSA9IEZBTFNFKSAjb3JpZ2luYWwgb3V0cHV0IFsxXSAxMCAgMiAgNQ0KYTwtIGMoMTAsIDIwKSANCmI8LSBjKDIsIDEyKSANCmM8LSBjKDUsIDE1KSANCmFtZWFuIDwtIG1lYW4oYSkNCmJtZWFuIDwtIG1lYW4oYikNCmNtZWFuIDwtIG1lYW4oYykNCkFSVG1lYW4gPC0gYyhhbWVhbiwgYm1lYW4sIGNtZWFuKQ0KQVJUdmFyIDwtIHZhcihBUlRtZWFuKQ0KQVJUc3VtIDwtIHN1bShBUlQkRW5yb2xsZWQpDQoNCiNFTlQgRGF0YQ0KRU5Ucm93czwtIGNvdW50KEVOVCkgI2NsdXN0ZXIgc2l6ZSBvZiA1DQpFTlRtZWFuPC0gbWVhbihFTlRbLCJFbnJvbGxlZCJdKQ0KRU5UdmFyIDwtIHZhcihFTlRbLCJFbnJvbGxlZCJdKQ0KRU5Uc3VtIDwtIHN1bShFTlQkRW5yb2xsZWQpDQoNCiNJREUgRGF0YQ0KSURFcm93czwtIGNvdW50KElERSkgI2NsdXN0ZXIgc2l6ZSBvZiA4DQpJREVtZWFuPC0gbWVhbihJREVbLCJFbnJvbGxlZCJdKQ0KSURFdmFyIDwtIHZhcihJREVbLCJFbnJvbGxlZCJdKQ0KSURFc3VtIDwtIHN1bShJREUkRW5yb2xsZWQpDQoNCiNLSU4gRGF0YQ0KS0lOcm93czwtIGNvdW50KEtJTikgI2NsdXN0ZXIgc2l6ZSBvZiA1Mw0KI1JTUyBvZiAzIGluZGVwZW5kZW50IGVzdGltYXRlcw0Kc2FtcGxlKDE6MTAsIDMsIHJlcGxhY2UgPSBGQUxTRSkgI291dHB1dCBbMV0gMTUgIDIgIDMNCng8LSBjKDE1LCAyNSkgDQp5PC0gYygyLCAxMikgDQp6PC0gYygzLCAxMykgDQp4bWVhbiA8LSBtZWFuKHgpDQp5bWVhbiA8LSBtZWFuKHkpDQp6bWVhbiA8LSBtZWFuKHopDQpLSU5tZWFuPC0gYyh4bWVhbiwgeW1lYW4sIHptZWFuKQ0KS0lOdmFyPC0gdmFyKEtJTm1lYW4pDQpLSU5zdW08LSBzdW0oS0lOJEVucm9sbGVkKQ0KDQojU1BFIERhdGENClNQRXJvd3M8LSBjb3VudChTUEUpICNjbHVzdGVyIHNpemUgb2YgMTENClNQRW1lYW48LSBtZWFuKFNQRVssIkVucm9sbGVkIl0pDQpTUEV2YXI8LSB2YXIoU1BFWywiRW5yb2xsZWQiXSkNClNQRXN1bTwtIHN1bShTUEUkRW5yb2xsZWQpDQpgYGANCg0KIyBQcmludCBWYWx1ZXMgDQpgYGB7ciBwcmludH0NCkFSVG1lYW4NCkFSVHZhcg0KRU5UbWVhbg0KRU5UdmFyDQpJREVtZWFuDQpJREV2YXINCktJTm1lYW4NCktJTnZhcg0KU1BFbWVhbg0KU1BFdmFyDQpgYGANCg0KIyBFc3RpbWF0ZSBvZiBNZWFuIENsYXNzIFNpemUNCmBgYHtyIGVzdGltYXRlfQ0KY2xhc3MgPC0gYyhBUlRtZWFuLCBFTlRtZWFuLCBJREVtZWFuLCBLSU5tZWFuLCBTUEVtZWFuKQ0KdC50ZXN0KGNsYXNzLCBjb25mLmxldmVsID0gMC45NSkNCmBgYA0KDQpUaGUgdC10ZXN0IHByb3ZpZGVzIHRoZSBhdmVyYWdlIGNsYXNzIHNpemUgdG8gaGF2ZSAxNiBzdHVkZW50cy4gVGhlcmUgaXMgYSA5NSUgcHJvYmFiaWxpdHkgdGhhdCB0aGUgc2l6ZSBvZiBhbnkgZ2l2ZW4gVW5kZXJncmFkdWF0ZSBjbGFzcyBhdCBVVFNBIHdvdWxkIGNvbnNpc3Qgb2YgOSB0byAyMyBzdHVkZW50cyBlbnJvbGxlZC4gVGhpcyBlc3RpbWF0ZSBkb2VzIGV4Y2x1ZGUgaW50ZXJuc2hpcHMsIGluZGVwZW5kZW50IHN0dWRpZXMsIGFuZCBob25vcnMgdGhlc2lzLg0KDQouLi4NCg0K