library(readxl)
BD_MODELADO <- read_excel("BD_MODELADO.xlsx")
data = data.frame(BD_MODELADO)
data
plot(data$Avg_X_MCB,data$Avg_Y_MCE,col="blue",pch=15,main="MUESTREO ESPACIAL")

Variable respuesta. CE

Datos <- as.matrix(BD_MODELADO[,c(3:8)])
Datos
##        Avg_CEa_07 Avg_CEa_15     NDVI      DEM     SLOPE    Avg_z
##   [1,]   7.237480   18.02656 0.863030 199.0000  6.385167 193.0512
##   [2,]   6.787250   18.02737 0.866502 197.1667  1.981082 193.2986
##   [3,]   6.848250   18.70444 0.874883 197.0000  0.577682 193.5659
##   [4,]   7.135162   18.34237 0.845838 197.0000  1.175075 194.4116
##   [5,]   6.826763   17.92409 0.797179 197.0000  0.210996 193.9931
##   [6,]   6.699966   18.39441 0.758272 197.6667  4.357386 195.3814
##   [7,]   6.180742   17.84332 0.763436 199.7500  6.628445 196.6780
##   [8,]   8.539024   18.75812 0.823320 197.1667  1.462050 194.9936
##   [9,]   8.869958   18.85396 0.759923 197.3333  1.663344 196.1356
##  [10,]   7.231308   18.34269 0.757382 197.6667  3.541936 197.8522
##  [11,]   7.372200   18.35662 0.775947 199.6667  5.092919 196.9330
##  [12,]   7.556792   18.40508 0.757534 201.5000  2.800611 198.0175
##  [13,]   6.613547   18.00057 0.786412 201.4444  2.361177 197.7762
##  [14,]   8.707629   18.60609 0.822730 198.5000  4.355658 195.8610
##  [15,]   8.619512   18.65902 0.751389 198.5000  2.763125 196.5075
##  [16,]   9.443404   18.87923 0.782599 199.0000  2.106899 197.4861
##  [17,]   7.948763   18.66895 0.837023 200.6667  3.431262 199.9242
##  [18,]   7.617205   18.72236 0.827783 202.0000  1.192970 199.1996
##  [19,]   6.952229   18.63938 0.815532 201.6667  1.590627 199.2844
##  [20,]   8.900977   19.16011 0.849303 198.4444  5.012258 197.4021
##  [21,]   8.362279   18.82934 0.784440 200.5000  2.915162 197.2999
##  [22,]   9.246182   19.41561 0.792788 199.7778  2.759113 197.7400
##  [23,]   9.565551   19.12467 0.830265 199.3333  2.352002 198.8052
##  [24,]   9.514172   19.31950 0.836988 200.4444  3.071998 199.7561
##  [25,]   7.765429   18.73330 0.856579 202.0000  2.045438 200.2470
##  [26,]   7.740431   19.30920 0.848950 201.2222  3.057894 200.0841
##  [27,]   8.005415   18.90811 0.846561 200.1667  3.000087 200.0516
##  [28,]   6.561038   18.64561 0.851043 200.7778  3.986067 198.6690
##  [29,]   6.283077   18.36692 0.854749 201.8333  2.074468 198.8767
##  [30,]   8.319138   18.83954 0.808107 199.0000  4.708445 198.0322
##  [31,]   9.039500   19.16427 0.704767 201.0000  1.474276 198.9863
##  [32,]   8.967420   18.79867 0.829590 200.8333  1.545263 199.0529
##  [33,]  10.180382   19.61115 0.796595 200.7500  3.036000 199.4091
##  [34,]  10.306887   20.20234 0.800730 201.3333  3.673525 200.2416
##  [35,]  10.387930   19.50311 0.822610 202.7500  3.780945 200.4325
##  [36,]   8.079340   19.52706 0.812524 201.6667  5.572433 200.7606
##  [37,]   7.416591   18.46507 0.851740 198.7500  6.139762 201.2179
##  [38,]   7.794147   18.55415 0.861789 199.0000  6.402925 201.1689
##  [39,]   6.358915   18.25549 0.855028 200.5000  5.598307 198.6975
##  [40,]   7.251424   19.10358 0.868394 199.0000  6.668860 197.1639
##  [41,]   9.239875   20.23771 0.863231 198.4444  3.801271 195.1000
##  [42,]   8.808246   19.87461 0.842880 199.0000  3.790430 195.2742
##  [43,]   9.690171   19.67751 0.821701 198.3333  4.396922 195.7090
##  [44,]  10.155757   19.46209 0.798429 196.8333  3.904072 196.6163
##  [45,]   8.804591   19.08687 0.737705 199.3333  2.923768 196.6843
##  [46,]   8.434166   19.03361 0.750449 200.5000  2.458677 197.5293
##  [47,]   9.156519   18.77033 0.835305 201.3333  1.687156 199.8418
##  [48,]   9.274048   18.43818 0.752140 202.3333  3.230637 200.1707
##  [49,]  10.207658   19.63138 0.715250 203.5556  4.476171 200.8024
##  [50,]  10.902909   19.60230 0.739356 205.0000  4.121137 201.0412
##  [51,]   7.761483   18.37293 0.856687 200.3333 10.745049 201.2643
##  [52,]   8.006260   18.36260 0.852410 197.4444  5.309658 201.3608
##  [53,]   7.533355   18.36884 0.849109 197.5000  3.681294 200.7411
##  [54,]   6.599943   18.65739 0.855608 196.8889  3.572474 198.9216
##  [55,]   6.165389   18.22589 0.837410 196.1667  1.894812 198.8203
##  [56,]   9.801222   20.57460 0.813314 201.0000  6.860100 195.6087
##  [57,]   9.883363   19.67821 0.785680 201.2500  5.779408 196.0870
##  [58,]   9.356057   19.23891 0.828626 200.5000  5.703887 196.1448
##  [59,]   9.417184   18.72799 0.843965 199.2500  6.287442 196.4108
##  [60,]   8.755571   18.37157 0.847600 199.0000  5.979193 197.4217
##  [61,]   8.698579   18.29050 0.837913 200.0000  5.017095 197.9413
##  [62,]   8.703409   18.35272 0.758228 200.5000  4.258302 198.2749
##  [63,]   8.273370   18.69217 0.782020 201.5000  5.531510 198.1177
##  [64,]   8.349463   18.67237 0.843852 202.0000  1.791052 198.8206
##  [65,]   9.406651   19.00990 0.803169 201.5000  3.412350 200.6089
##  [66,]   9.437600   18.38075 0.805965 203.3333  6.380927 201.0759
##  [67,]  10.106193   18.76165 0.786369 205.0000  5.288365 201.1798
##  [68,]  10.622833   19.52911 0.815856 206.5000  5.275273 200.8173
##  [69,]   9.710588   19.22582 0.862998 205.2500 11.876602 203.1204
##  [70,]   8.792682   18.39832 0.848414 200.6667 12.718485 201.7512
##  [71,]   8.157281   18.32854 0.847895 198.0000  7.269520 201.4652
##  [72,]   7.586421   18.00271 0.865199 197.1667  5.617575 201.3465
##  [73,]   7.571196   17.90945 0.870017 196.7500  3.788360 201.2001
##  [74,]   6.827806   17.68600 0.871002 197.1667  3.364663 200.1021
##  [75,]  10.413632   19.74619 0.758252 204.5000  5.642858 198.3504
##  [76,]   9.166925   19.62213 0.867244 203.7778  6.482583 197.8452
##  [77,]   8.504000   18.89116 0.867638 202.3333  6.083620 197.3573
##  [78,]   8.788548   18.37173 0.870942 201.1111  2.459150 197.0722
##  [79,]   8.662250   18.26270 0.872671 201.0000  0.455108 198.1134
##  [80,]   8.719192   18.85450 0.868578 202.1111  4.101172 198.8306
##  [81,]   8.341883   18.48699 0.848237 203.6667  2.456326 199.8018
##  [82,]   8.293013   18.90836 0.851545 202.3333  4.217897 199.2333
##  [83,]   8.894091   18.87077 0.819059 200.8333  2.518604 200.0127
##  [84,]   9.640773   18.75718 0.804251 200.2222  4.984981 201.2964
##  [85,]   9.492250   18.26178 0.815396 201.8333  8.670177 202.1158
##  [86,]   9.782962   18.64194 0.823529 206.0000  7.582604 202.1501
##  [87,]  11.163060   20.20002 0.841616 207.3333  4.667620 201.8758
##  [88,]   9.308194   19.18990 0.849396 203.0000  8.109317 204.5230
##  [89,]   8.156393   18.35493 0.866166 202.5556 11.049718 201.9955
##  [90,]   8.287346   18.28569 0.864788 201.1667 11.253322 201.7849
##  [91,]   8.951000   18.28127 0.855187 199.1111  7.486137 201.6944
##  [92,]   7.039985   17.21669 0.856369 200.3333  6.899040 199.8109
##  [93,]   9.423294   19.52137 0.824327 207.0000  5.684828 198.8574
##  [94,]   9.017756   19.17876 0.862673 205.2500  7.447565 198.8165
##  [95,]   8.648365   19.24670 0.861911 203.0000  7.774040 198.1910
##  [96,]   8.578609   18.44053 0.870474 201.5000  4.397030 198.3609
##  [97,]   8.499200   18.28480 0.877252 202.8333  4.143000 199.0324
##  [98,]   8.404081   18.78468 0.860681 204.2500  1.997852 199.9175
##  [99,]   8.742085   19.17412 0.845406 204.0000  3.836572 201.0765
## [100,]   9.369309   19.24459 0.841513 202.0000  6.512908 202.0215
## [101,]   9.560190   18.78436 0.825845 199.6667  4.350432 201.3854
## [102,]   9.754492   18.74436 0.808722 200.0000  4.851805 202.4915
## [103,]   9.550490   18.27571 0.817211 203.1667  7.158753 203.2807
## [104,]   9.488833   18.19102 0.844389 205.2500  3.089440 203.4541
## [105,]  11.076870   20.15741 0.848573 204.8333  1.423512 203.0027
## [106,]   9.998806   19.54010 0.848647 205.0000  1.982079 204.2055
## [107,]   9.759255   19.09805 0.856381 206.6667  3.747822 204.8999
## [108,]   8.134407   18.10189 0.849230 205.7500  7.037877 201.7845
## [109,]   8.283045   18.08600 0.843651 202.1667  5.566600 201.8522
## [110,]   9.061986   18.65290 0.843616 201.0000  1.501851 201.4426
## [111,]   8.171761   18.13158 0.849739 202.3333  5.030968 199.7676
## [112,]   7.553833   17.89883 0.860130 203.0000  4.671025 199.0601
## [113,]   9.105000   19.12731 0.843663 207.8333  3.271004 198.3139
## [114,]   9.540674   19.70359 0.853745 206.4444  6.858296 197.9799
## [115,]   8.603241   19.29691 0.856553 205.0000  7.369337 199.1988
## [116,]   8.789031   18.58095 0.866439 204.1111  4.006299 199.6428
## [117,]   8.815902   18.78757 0.840555 204.8333  1.462050 200.2269
## [118,]   8.671873   18.86411 0.841259 204.8889  1.218358 201.0782
## [119,]   9.639222   18.64261 0.861820 204.0000  3.836572 202.3012
## [120,]   9.724586   18.89210 0.832131 201.6667  5.265142 202.6912
## [121,]   9.861596   18.64730 0.827554 201.5000  5.385043 202.6254
## [122,]  10.127983   18.61331 0.824167 204.1111  7.128587 203.7258
## [123,]  10.388884   18.67009 0.827009 206.0000  5.358540 204.1337
## [124,]   9.952259   18.44155 0.836960 204.7778  3.626926 204.7050
## [125,]  11.144444   19.95739 0.847317 203.6667  2.962247 203.4641
## [126,]  10.916097   19.64090 0.865341 204.7778  5.460382 203.7717
## [127,]   9.710557   18.55275 0.857880 205.5000  4.828302 204.8091
## [128,]   8.085140   17.91605 0.843587 202.3333  5.443827 201.9826
## [129,]   9.437786   18.36079 0.870549 201.5556  1.737311 200.9807
## [130,]   8.461278   18.23818 0.862629 202.0000  0.397830 199.6393
## [131,]   7.954150   18.13873 0.836774 200.8889  4.574136 198.6265
## [132,]   9.158409   19.58104 0.831675 209.3333  3.588530 198.2778
## [133,]   9.320712   19.21278 0.837706 208.0000  6.125635 199.2195
## [134,]   8.914465   19.23244 0.856900 206.1667  5.162935 200.2588
## [135,]   8.762164   18.87300 0.865854 205.2500  2.218411 200.8218
## [136,]   9.031770   18.57587 0.872514 205.3333  2.080359 201.5015
## [137,]   8.958058   18.34819 0.872568 204.5000  3.006227 202.4989
## [138,]   9.390675   18.47270 0.852908 202.3333  4.674987 203.3595
## [139,]   9.799225   18.57563 0.833239 201.5000  4.727215 204.4179
## [140,]  10.491500   19.03598 0.841123 206.3333  9.757872 203.6451
## [141,]  10.666597   19.02223 0.838892 209.2500  5.480415 204.4681
## [142,]  10.220761   18.92078 0.854460 206.3333  8.254676 205.4655
## [143,]   9.576524   18.23724 0.866290 203.7500  3.371925 206.1004
## [144,]  11.325523   19.28098 0.858144 203.3333  2.225776 204.2725
## [145,]  11.492385   19.30587 0.863999 203.7500  2.808880 204.0167
## [146,]   7.968871   17.46971 0.862478 201.5000  2.990262 201.6800
## [147,]   8.121050   17.72365 0.873844 201.8333  2.530224 201.5062
## [148,]   9.461541   18.51354 0.836021 202.5000  2.276920 200.5268
## [149,]   9.119667   18.28281 0.812793 201.8333  2.716172 199.7099
## [150,]   9.490019   18.76485 0.827297 200.5000  4.612540 198.5984
## [151,]   9.033125   19.33087 0.820116 210.3333  4.002342 199.7960
## [152,]   9.038783   19.51658 0.836631 209.8889  7.841606 200.2779
## [153,]   8.930578   19.08338 0.863915 207.8333  8.257585 201.3893
## [154,]   8.875571   18.92654 0.873334 206.4444  3.857106 202.0203
## [155,]   9.428071   18.44366 0.875065 205.1667  3.487768 202.6132
## [156,]   8.788283   18.25748 0.866960 203.2222  6.914147 203.7657
## [157,]   9.177440   18.19536 0.834331 201.1667  4.310694 204.5432
## [158,]   9.794014   18.57058 0.839068 205.7778 11.296110 205.7407
## [159,]  10.494813   18.72233 0.856831 210.0000  1.747159 204.5445
## [160,]  10.637610   18.78246 0.857267 208.5556  6.130330 204.9341
## [161,]  10.651236   18.81255 0.857484 205.5000  5.711950 205.8528
## [162,]   9.873600   17.76493 0.850752 205.0000  4.719129 206.3428
## [163,]  11.176595   18.51562 0.857664 204.8333  5.374358 205.1603
## [164,]  11.420059   19.12765 0.855681 203.3333  5.159998 204.1542
## [165,]  10.373150   18.40430 0.863387 203.8333  5.796872 202.9000
## [166,]   9.611918   18.19295 0.874638 204.1111  4.943022 203.4336
## [167,]   8.906259   17.73712 0.848241 204.0000  3.505737 201.4334
## [168,]  10.253087   18.28652 0.840399 203.3333  3.730053 200.1442
## [169,]  10.481411   18.95797 0.841652 201.5000  4.479237 199.8272
## [170,]  13.058916   20.93098 0.795073 199.7778  3.182941 198.7313
## [171,]   9.350082   19.53766 0.810811 211.7500  7.183032 201.5489
## [172,]   9.242393   19.02414 0.864632 208.3333  7.453835 202.5080
## [173,]   9.099338   18.98034 0.874916 206.7500  3.146847 203.1635
## [174,]   9.063097   18.44244 0.854908 205.8333  6.620357 203.5593
## [175,]   9.204898   18.10246 0.844776 204.2500  7.818020 204.7211
## [176,]   8.911786   17.86002 0.850159 206.1667  7.750718 205.2250
## [177,]  10.290754   18.50285 0.856557 209.2500  4.140995 206.9010
## [178,]  10.683234   18.46745 0.834661 209.5000  2.622039 205.6902
## [179,]  11.102933   18.37955 0.836137 208.2500  6.048235 204.9596
## [180,]  11.555725   18.25584 0.847999 208.1667  6.774420 206.3974
## [181,]  10.262660   17.39117 0.846368 208.0000  6.397650 206.1927
## [182,]  10.833848   17.85763 0.844550 205.6667  5.088587 205.5291
## [183,]  11.726238   18.83256 0.862181 206.0000  3.834015 204.3245
## [184,]  10.057179   18.69707 0.865831 206.5000  3.339427 202.7165
## [185,]  10.225946   18.36255 0.851753 205.5000  3.257628 202.3656
## [186,]   9.190459   17.95162 0.853442 203.6667  3.698943 201.2474
## [187,]  10.466905   17.97419 0.857861 202.7500  3.159929 200.5020
## [188,]  11.088537   18.78384 0.845244 201.3333  4.151367 199.8491
## [189,]  10.537560   20.02344 0.774291 200.2500  4.271058 198.5972
## [190,]   9.588048   18.82817 0.804610 209.8889  4.661827 202.7712
## [191,]   8.890474   18.78765 0.855494 209.3333  5.267915 203.2853
## [192,]   9.178667   18.73316 0.849169 209.2222  6.872354 203.6961
## [193,]   8.939582   17.58596 0.848935 208.6667  7.365235 204.2412
## [194,]   9.121469   17.82763 0.853871 209.0000  5.953982 205.0853
## [195,]   9.161358   17.63924 0.850449 210.5000  5.253798 205.9503
## [196,]   9.624125   18.32854 0.832890 211.0000  3.526908 207.7375
## [197,]  11.124750   17.95658 0.823946 211.3333  5.185570 206.7987
## [198,]  11.890033   17.76955 0.840283 211.3333  4.988912 204.8491
## [199,]  11.216469   17.67884 0.848761 210.5000  5.430198 206.4087
## [200,]  11.074617   17.49098 0.853740 208.0000  5.881513 206.0711
## [201,]  11.575519   17.08335 0.870374 207.1667  3.109163 205.9899
## [202,]  11.625279   18.87552 0.859950 207.2222  1.517558 204.7037
## [203,]  12.533951   18.86659 0.831997 206.0000  5.347407 204.3314
## [204,]  12.664912   18.38086 0.825287 203.4444  3.258100 202.1066
## [205,]  10.729181   17.21194 0.829966 203.0000  0.281328 201.1195
## [206,]   9.710667   17.63315 0.831045 203.0000  2.432128 200.8034
## [207,]  13.227629   21.51339 0.804012 202.5000  5.575297 199.7839
## [208,]   9.126116   19.53128 0.773180 199.6667  7.781784 198.6119
## [209,]   6.894246   18.29086 0.794779 197.5000  5.738217 197.4881
## [210,]   8.503577   18.33692 0.804623 210.7500  4.400325 203.6242
## [211,]   8.451278   18.34056 0.851234 212.3333  4.360802 204.1438
## [212,]   8.930413   18.50075 0.850611 211.5000  4.597890 204.2841
## [213,]   9.979037   18.06068 0.836540 211.1667  1.883871 204.7361
## [214,]  10.039082   17.67702 0.831368 211.2500  1.786949 205.4088
## [215,]  10.834800   17.87506 0.840000 211.8333  1.462050 206.3681
## [216,]  11.127763   18.10650 0.838095 212.2500  1.786949 207.6834
## [217,]  11.791851   18.21894 0.841190 212.3333  1.680566 207.2423
## [218,]  12.863088   17.80500 0.865160 211.5000  2.549555 205.3834
## [219,]  12.366322   17.62178 0.849108 210.0000  3.990678 205.9602
## [220,]  12.096839   17.61648 0.841961 208.5000  3.257628 205.7391
## [221,]  11.738320   16.88126 0.848782 207.5000  3.292012 205.9970
## [222,]  12.740534   18.68069 0.828928 205.0000  6.269660 204.5509
## [223,]  13.601094   18.82575 0.811157 203.1667  2.430204 204.8136
## [224,]  11.457347   18.02683 0.820088 203.5000  3.299475 201.8857
## [225,]  11.166191   18.37085 0.830938 204.5000  3.254442 201.3896
## [226,]  11.297233   18.90360 0.804511 204.0000  2.554135 200.8387
## [227,]  11.039111   21.20233 0.817266 202.1667  4.492692 199.5112
## [228,]   7.963308   19.38825 0.789837 200.5000  4.355658 198.6991
## [229,]   9.048643   18.20879 0.812592 212.3333  3.567334 204.5661
## [230,]   8.881460   17.97930 0.837166 212.5000  2.958468 204.0985
## [231,]  10.835075   18.14640 0.830340 210.6667  3.911258 204.9926
## [232,]  10.506455   17.76495 0.815107 210.1667  2.740343 205.3672
## [233,]   9.840000   16.97415 0.837437 210.8889  2.434887 205.4851
## [234,]  10.916683   17.68562 0.839855 211.8333  1.462050 206.6006
## [235,]  11.010927   17.45429 0.843084 211.6667  1.574458 206.9225
## [236,]  13.424340   18.47732 0.849661 211.1667  1.191299 206.9044
## [237,]  12.675188   17.95838 0.829123 210.3333  1.963581 205.8225
## [238,]  12.447763   17.93237 0.814726 209.3333  2.510633 205.4299
## [239,]  12.444867   17.68103 0.859755 208.1111  3.357586 207.9852
## [240,]  11.632409   17.55151 0.860111 205.6667  5.573225 211.9958
## [241,]  12.971378   18.85073 0.836932 205.0000  3.883573 205.4668
## [242,]  13.262604   19.25704 0.833459 205.3333  3.425505 204.7264
## [243,]  10.691591   18.11443 0.862390 205.3333  2.397526 202.1130
## [244,]  10.110577   18.56411 0.835272 203.5000  3.529828 201.4283
## [245,]  10.214864   18.50148 0.820129 202.3333  1.757121 200.8799
## [246,]   9.330150   20.68170 0.813438 201.8333  1.321386 199.5737
## [247,]   8.808750   17.69575 0.801299 211.0000  3.843770 204.1000
## [248,]   9.284254   17.66615 0.814951 209.6667  2.339072 204.1985
## [249,]   9.965915   17.60387 0.810631 210.0000  3.372290 205.5335
## [250,]  10.322586   17.42128 0.830254 210.8333  1.331963 205.8982
## [251,]   9.753217   16.80468 0.829867 211.5000  2.331430 205.7017
## [252,]  10.107022   17.01939 0.830576 211.3333  1.753202 206.8975
## [253,]  12.064159   17.70423 0.829442 210.7500  1.982079 206.8196
## [254,]  13.318076   18.44122 0.807566 210.6667  1.994592 206.3962
## [255,]  11.840000   18.03844 0.830631 210.5000  3.652555 205.9474
## [256,]  11.691589   17.92762 0.869058 208.8333  4.000510 205.4009
## [257,]  12.471000   18.34732 0.876872 207.2500  4.344182 204.7141
## [258,]  11.860000   17.76506 0.856497 206.5000  2.025263 212.3547
## [259,]  11.974023   18.34123 0.855178 206.7500  2.143036 208.9608
## [260,]  12.494547   19.32316 0.865053 205.6667  3.054682 204.7026
## [261,]   9.845591   18.51041 0.856615 203.5000  3.507347 201.5060
## [262,]  10.792130   18.86935 0.833807 202.3333  1.699703 201.5401
## [263,]   9.899631   17.45368 0.799654 210.5000  3.195748 205.3600
## [264,]  10.453354   17.65788 0.841748 211.7778  3.074642 205.9236
## [265,]  10.972456   18.56572 0.840825 212.6667  2.340314 206.6825
## [266,]   9.714850   17.08600 0.842335 211.8889  3.682146 205.9591
## [267,]  11.064222   17.15713 0.842948 210.0000  1.380508 206.3634
## [268,]  12.026567   17.66037 0.823280 210.2222  1.494623 206.4892
## [269,]  12.136029   17.96648 0.835574 211.0000  1.180966 206.3979
## [270,]  12.298185   18.43244 0.855167 210.3333  3.630946 205.9306
## [271,]  12.122456   18.10990 0.856197 208.0000  4.508540 205.4732
## [272,]  12.715985   18.00555 0.846907 207.0000  1.229972 204.6796
## [273,]  11.433000   17.89280 0.848410 207.5000  3.308189 210.9083
## [274,]  11.097524   18.34174 0.861704 207.0000  5.720357 212.1226
## [275,]  12.078147   19.67345 0.866817 204.5000  5.589362 205.4466
## [276,]   9.787512   17.72488 0.818078 212.6667  2.291358 205.9218
## [277,]   9.977851   17.93497 0.844989 212.0000  3.971073 207.1207
## [278,]  10.401154   17.04784 0.848807 210.0000  1.192970 206.7147
## [279,]  10.185048   17.19309 0.838659 210.0000  0.281328 206.9503
## [280,]  11.695016   17.65305 0.831923 210.5000  2.276920 206.2647
## [281,]  12.247611   18.35720 0.843948 210.3333  1.731291 206.4828
## [282,]  12.025920   18.36328 0.839912 209.5000  3.270202 206.1123
## [283,]  11.256382   18.32035 0.829359 208.3333  4.489935 205.3742
## [284,]  11.515895   18.41900 0.832789 209.0000  4.915900 204.6418
## [285,]  11.611375   18.73189 0.852465 209.3333  4.350432 208.2343
## [286,]   9.577556   17.74167 0.804340 213.1667  1.191299 206.9770
## [287,]   9.894512   17.67345 0.831047 212.1111  3.048190 207.8832
## [288,]  10.346464   17.80915 0.838290 211.3333  3.132002 207.5258
## [289,]  10.386561   17.27867 0.828603 210.7778  3.312014 207.4212
## [290,]   9.972537   16.80343 0.833425 211.3333  2.262116 207.1158
## [291,]  11.363155   17.82667 0.843895 210.7778  2.962719 206.1141
## [292,]  11.511292   18.15106 0.836312 209.8333  2.286170 206.2850
## [293,]  11.321532   18.56879 0.808821 209.0000  2.715691 205.8256
## [294,]  11.403831   18.60643 0.804109 208.6667  4.780660 205.4207
## [295,]  12.237587   19.39965 0.828916 209.8889  2.595346 204.7865
## [296,]  10.013111   17.44778 0.802328 212.8333  2.800913 208.1229
## [297,]   9.645260   17.53826 0.826260 212.5000  3.006227 208.1408
## [298,]  10.961389   18.04187 0.835826 212.5000  2.802492 207.5593
## [299,]   9.826764   17.54689 0.843641 212.5000  2.385940 206.4362
## [300,]   9.692833   17.14611 0.840611 212.6667  3.459422 205.2322
## [301,]  11.477929   18.16683 0.824012 210.0000  7.497325 206.2511
## [302,]  11.563340   18.74846 0.814689 207.1667  6.410306 206.1078
## [303,]  10.787655   18.61794 0.815784 205.5000  6.839028 205.4652
## [304,]  10.040680   17.56948 0.819922 213.1111  1.389929 207.7260
## [305,]  11.507673   17.99358 0.839661 212.6667  1.531505 207.4729
## [306,]   9.891250   18.13896 0.826877 213.3333  2.869667 207.5030
## [307,]   9.972969   17.30525 0.825225 211.8333  8.230437 205.3955
## [308,]  10.590700   18.89458 0.834841 207.0000  9.589556 206.0401
## [309,]   9.565263   18.37484 0.800520 211.7500  3.309488 207.5483
## [310,]   9.002500   18.15950 0.820314 212.1667  4.362813 207.6438
## [311,]   9.762534   18.99889 0.837665 212.7500  4.403135 207.4406
## [312,]   9.225618   18.51444 0.796948 209.6667  8.798860 205.7614
## [313,]   9.394625   18.19100 0.777866 212.0000  2.791830 207.6968
v_res75 <- Datos[,1]
v_res150 <- Datos[,2]

Variable Explicativas

v_exp75 <- Datos[,2:6]
v_exp150 <- Datos[,c(1,3:6)]
x75 <- as.matrix(v_exp75)
x150 <- as.matrix(v_exp150)

Coordenadas

xydat <- as.matrix(BD_MODELADO[,1:2])

Matriz

MD <- as.matrix(dist(xydat, diag = T, upper = T))
MD_inv <- as.matrix(1/MD)
diag(MD_inv) <- 0
W <- as.matrix(MD_inv)
suma <- apply(W, 1, sum)
We <- W/suma  # Estandarizado
apply(We, 1, sum)
##   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19  20 
##   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1 
##  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40 
##   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1 
##  41  42  43  44  45  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60 
##   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1 
##  61  62  63  64  65  66  67  68  69  70  71  72  73  74  75  76  77  78  79  80 
##   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1 
##  81  82  83  84  85  86  87  88  89  90  91  92  93  94  95  96  97  98  99 100 
##   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1 
## 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 
##   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1 
## 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 
##   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1 
## 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 
##   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1 
## 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 
##   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1 
## 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 
##   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1 
## 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 
##   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1 
## 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 
##   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1 
## 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 
##   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1 
## 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 
##   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1 
## 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 
##   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1 
## 301 302 303 304 305 306 307 308 309 310 311 312 313 
##   1   1   1   1   1   1   1   1   1   1   1   1   1

Indice de Moran

library(ape)
MI_CE75 <-Moran.I(v_res75, We);MI_CE75
## $observed
## [1] 0.2687468
## 
## $expected
## [1] -0.003205128
## 
## $sd
## [1] 0.004665906
## 
## $p.value
## [1] 0
MI_CE150 <- Moran.I(v_res150, We);MI_CE150
## $observed
## [1] 0.160951
## 
## $expected
## [1] -0.003205128
## 
## $sd
## [1] 0.00465455
## 
## $p.value
## [1] 0
MI_NDVI <- Moran.I(Datos[,3], We);MI_NDVI
## $observed
## [1] 0.09750403
## 
## $expected
## [1] -0.003205128
## 
## $sd
## [1] 0.004644979
## 
## $p.value
## [1] 0
MI_DEM <- Moran.I(Datos[,4], We);MI_DEM
## $observed
## [1] 0.3096708
## 
## $expected
## [1] -0.003205128
## 
## $sd
## [1] 0.004672384
## 
## $p.value
## [1] 0
MI_SLOPE <- Moran.I(Datos[,5], We);MI_SLOPE
## $observed
## [1] 0.06993324
## 
## $expected
## [1] -0.003205128
## 
## $sd
## [1] 0.004654307
## 
## $p.value
## [1] 0
MI_z <- Moran.I(Datos[,6], We);MI_z
## $observed
## [1] 0.3505031
## 
## $expected
## [1] -0.003205128
## 
## $sd
## [1] 0.004667935
## 
## $p.value
## [1] 0

Por lo tanto se concluye que las varaibles tienen dependencia espacial

Moran_o <- list() # Observado
Moran_p <-list() # p.valor
for(j in 1:6){
  Moran_o[j]=Moran.I(Datos[,j], We)$observed
}

for(j in 1:6){
  Moran_p[j]=Moran.I(Datos[,j], We)$p.value
}

Moran_o <- as.vector(Moran_o)
list(Moran_o,Moran_p)
## [[1]]
## [[1]][[1]]
## [1] 0.2687468
## 
## [[1]][[2]]
## [1] 0.160951
## 
## [[1]][[3]]
## [1] 0.09750403
## 
## [[1]][[4]]
## [1] 0.3096708
## 
## [[1]][[5]]
## [1] 0.06993324
## 
## [[1]][[6]]
## [1] 0.3505031
## 
## 
## [[2]]
## [[2]][[1]]
## [1] 0
## 
## [[2]][[2]]
## [1] 0
## 
## [[2]][[3]]
## [1] 0
## 
## [[2]][[4]]
## [1] 0
## 
## [[2]][[5]]
## [1] 0
## 
## [[2]][[6]]
## [1] 0
data.frame(list(Moran_o,Moran_p))

Matrices de correlation

library("psych")
library("ggplot2")
## 
## Attaching package: 'ggplot2'
## The following objects are masked from 'package:psych':
## 
##     %+%, alpha
library("car")
## Loading required package: carData
## 
## Attaching package: 'car'
## The following object is masked from 'package:psych':
## 
##     logit
library("Hmisc")
## Loading required package: lattice
## Loading required package: survival
## Loading required package: Formula
## 
## Attaching package: 'Hmisc'
## The following object is masked from 'package:psych':
## 
##     describe
## The following object is masked from 'package:ape':
## 
##     zoom
## The following objects are masked from 'package:base':
## 
##     format.pval, units
library("corrplot")
## corrplot 0.84 loaded
mcp = rcorr(as.matrix(data[,3:8]),type="pearson")
mcs = rcorr(as.matrix(data[,3:8]),type="spearman")

mcorp = mcp$r
mcorp
##             Avg_CEa_07  Avg_CEa_15        NDVI        DEM       SLOPE
## Avg_CEa_07  1.00000000  0.01089764  0.03552583  0.5322948 -0.13642334
## Avg_CEa_15  0.01089764  1.00000000 -0.17636216 -0.3841976  0.18719946
## NDVI        0.03552583 -0.17636216  1.00000000  0.1015882  0.09610537
## DEM         0.53229480 -0.38419758  0.10158817  1.0000000 -0.11958979
## SLOPE      -0.13642334  0.18719946  0.09610537 -0.1195898  1.00000000
## Avg_z       0.62185866 -0.46431546  0.21352028  0.7901060 -0.04623111
##                  Avg_z
## Avg_CEa_07  0.62185866
## Avg_CEa_15 -0.46431546
## NDVI        0.21352028
## DEM         0.79010605
## SLOPE      -0.04623111
## Avg_z       1.00000000
mcors = mcs$r
mcors
##             Avg_CEa_07  Avg_CEa_15         NDVI          DEM      SLOPE
## Avg_CEa_07  1.00000000 -0.07010792 -0.087758460  0.554650652 -0.1373202
## Avg_CEa_15 -0.07010792  1.00000000 -0.090734198 -0.390986746  0.2188554
## NDVI       -0.08775846 -0.09073420  1.000000000 -0.001001312  0.1079099
## DEM         0.55465065 -0.39098675 -0.001001312  1.000000000 -0.1353297
## SLOPE      -0.13732021  0.21885538  0.107909879 -0.135329719  1.0000000
## Avg_z       0.64975197 -0.50662301  0.087797985  0.816109089 -0.1057241
##                  Avg_z
## Avg_CEa_07  0.64975197
## Avg_CEa_15 -0.50662301
## NDVI        0.08779798
## DEM         0.81610909
## SLOPE      -0.10572405
## Avg_z       1.00000000

Grafico de metodo pearson y metodo spearman

par(mfrow=c(1,2))
corrplot(mcorp,order="hclust", tl.col = 'darkgreen', tl.cex = 0.7, number.cex = 0.3,tl.srt=45, main="PEARSON")
corrplot(mcors,order="hclust",tl.col="darkgreen", tl.cex = 0.7, number.cex = 0.3, tl.srt=45, main="SPEARMAN")

Se pueden observar relaciones etre las variables Avg_z y DEM ,tambien existe una relacion entre Avg_z y CEa_07; Avg_z se relaciona con CEa_15.

describe(data[,3:8])
## data[, 3:8] 
## 
##  6  Variables      313  Observations
## --------------------------------------------------------------------------------
## Avg_CEa_07 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      313        0      313        1    9.769    1.728    7.193    7.950 
##      .25      .50      .75      .90      .95 
##    8.808    9.645   10.835   11.830   12.446 
## 
## lowest :  6.165389  6.180742  6.283077  6.358915  6.561038
## highest: 13.227629 13.262604 13.318076 13.424340 13.601094
## --------------------------------------------------------------------------------
## Avg_CEa_15 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      313        0      313        1     18.5   0.8114    17.41    17.64 
##      .25      .50      .75      .90      .95 
##    18.03    18.44    18.88    19.45    19.68 
## 
## lowest : 16.80343 16.80468 16.88126 16.97415 17.01939
## highest: 20.57460 20.68170 20.93098 21.20233 21.51339
## --------------------------------------------------------------------------------
## NDVI 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      313        0      313        1   0.8346  0.03075   0.7753   0.7987 
##      .25      .50      .75      .90      .95 
##   0.8233   0.8404   0.8552   0.8652   0.8702 
## 
## lowest : 0.704767 0.715250 0.737705 0.739356 0.750449
## highest: 0.874883 0.874916 0.875065 0.876872 0.877252
## --------------------------------------------------------------------------------
## DEM 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      313        0      143        1    205.1    5.245    197.7    199.1 
##      .25      .50      .75      .90      .95 
##    201.5    204.8    209.3    211.5    212.3 
## 
## lowest : 196.1667 196.7500 196.8333 196.8889 197.0000
## highest: 212.7500 212.8333 213.1111 213.1667 213.3333
## --------------------------------------------------------------------------------
## SLOPE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      313        0      299        1    4.128    2.374    1.361    1.667 
##      .25      .50      .75      .90      .95 
##    2.519    3.781    5.385    6.911    7.796 
## 
## lowest :  0.210996  0.281328  0.397830  0.455108  0.577682
## highest: 11.049718 11.253322 11.296110 11.876602 12.718485
## --------------------------------------------------------------------------------
## Avg_z 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      313        0      313        1    202.5    4.174    196.5    197.8 
##      .25      .50      .75      .90      .95 
##    199.8    202.5    205.5    206.8    207.6 
## 
## lowest : 193.0512 193.2986 193.5659 193.9931 194.4116
## highest: 208.9608 210.9083 211.9958 212.1226 212.3547
## --------------------------------------------------------------------------------
par(mfrow = c(1,2))
boxplot(data[,3], main ="Conductividad Electrica 75 cm", ylab='CE75', col = 'orange' ) 
hist(data[,3],main = "Conductividad Electrica 75 cm", col = 'darkgreen', xlab="CE 75cm ")

par(mfrow = c(1,2))
boxplot(data[,4], main ="Conductividad Electrica 150 cm", ylab='CE150', col = 'orange' ) 
hist(data[,4],main = "Conductividad Electrica 150 cm", col = 'darkgreen', xlab="CE 150cm ")

library(nortest)
cv75 = cvm.test(data[,3])
cv75
## 
##  Cramer-von Mises normality test
## 
## data:  data[, 3]
## W = 0.13062, p-value = 0.04289
cv150 = cvm.test(data[,4])
cv150
## 
##  Cramer-von Mises normality test
## 
## data:  data[, 4]
## W = 0.19809, p-value = 0.005641

tets shapiro

shpt75<-shapiro.test(data[,3])
shpt75
## 
##  Shapiro-Wilk normality test
## 
## data:  data[, 3]
## W = 0.99217, p-value = 0.09827
shpt150<-shapiro.test(data[,4])
shpt150
## 
##  Shapiro-Wilk normality test
## 
## data:  data[, 4]
## W = 0.97785, p-value = 9.283e-05
ks.test(data[,3], data[,4])
## 
##  Two-sample Kolmogorov-Smirnov test
## 
## data:  data[, 3] and data[, 4]
## D = 1, p-value < 2.2e-16
## alternative hypothesis: two-sided
ks.test(data[,3], data[,4])
## 
##  Two-sample Kolmogorov-Smirnov test
## 
## data:  data[, 3] and data[, 4]
## D = 1, p-value < 2.2e-16
## alternative hypothesis: two-sided
modcv75 = lm(Avg_CEa_07~SLOPE+Avg_z+Avg_CEa_15,data= data)
summary(modcv75)
## 
## Call:
## lm(formula = Avg_CEa_07 ~ SLOPE + Avg_z + Avg_CEa_15, data = data)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.41298 -0.71115 -0.05541  0.64834  3.01718 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -73.98404    4.74765 -15.583  < 2e-16 ***
## SLOPE        -0.12525    0.02799  -4.475 1.07e-05 ***
## Avg_z         0.33680    0.01834  18.369  < 2e-16 ***
## Avg_CEa_15    0.86887    0.09270   9.373  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.05 on 309 degrees of freedom
## Multiple R-squared:  0.5315, Adjusted R-squared:  0.527 
## F-statistic: 116.9 on 3 and 309 DF,  p-value: < 2.2e-16
modcv150 = lm(Avg_CEa_15~SLOPE+Avg_z+Avg_CEa_07,data= data)
summary(modcv150)
## 
## Call:
## lm(formula = Avg_CEa_15 ~ SLOPE + Avg_z + Avg_CEa_07, data = data)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.50608 -0.39071  0.01281  0.36509  2.04703 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 47.55651    2.11792  22.454  < 2e-16 ***
## SLOPE        0.07595    0.01503   5.053 7.45e-07 ***
## Avg_z       -0.15733    0.01123 -14.009  < 2e-16 ***
## Avg_CEa_07   0.25480    0.02718   9.373  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5686 on 309 degrees of freedom
## Multiple R-squared:  0.4107, Adjusted R-squared:  0.405 
## F-statistic: 71.78 on 3 and 309 DF,  p-value: < 2.2e-16
mod2cv75 = lm(Avg_CEa_07~SLOPE+Avg_z+log(Avg_CEa_15),data= data)
summary(mod2cv75)
## 
## Call:
## lm(formula = Avg_CEa_07 ~ SLOPE + Avg_z + log(Avg_CEa_15), data = data)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.42707 -0.71701 -0.05763  0.63705  3.00432 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     -104.75300    7.56476 -13.847  < 2e-16 ***
## SLOPE             -0.12589    0.02811  -4.479 1.06e-05 ***
## Avg_z              0.33663    0.01844  18.259  < 2e-16 ***
## log(Avg_CEa_15)   16.07153    1.74114   9.230  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.054 on 309 degrees of freedom
## Multiple R-squared:  0.5284, Adjusted R-squared:  0.5238 
## F-statistic: 115.4 on 3 and 309 DF,  p-value: < 2.2e-16
mod2cv150 =  lm(log(Avg_CEa_15)~SLOPE+Avg_z+log(Avg_CEa_07),data= data)
summary(mod2cv150)
## 
## Call:
## lm(formula = log(Avg_CEa_15) ~ SLOPE + Avg_z + log(Avg_CEa_07), 
##     data = data)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.083486 -0.020916 -0.000046  0.019431  0.102855 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      4.3365073  0.1049644  41.314  < 2e-16 ***
## SLOPE            0.0039929  0.0007972   5.009 9.24e-07 ***
## Avg_z           -0.0085806  0.0006020 -14.254  < 2e-16 ***
## log(Avg_CEa_07)  0.1330214  0.0139088   9.564  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.03024 on 309 degrees of freedom
## Multiple R-squared:  0.4194, Adjusted R-squared:  0.4137 
## F-statistic: 74.39 on 3 and 309 DF,  p-value: < 2.2e-16
residuos1 = modcv75$residuals
shapiro.test(residuos1)
## 
##  Shapiro-Wilk normality test
## 
## data:  residuos1
## W = 0.99092, p-value = 0.05044
residuos2 = modcv150$residuals
shapiro.test(residuos2)
## 
##  Shapiro-Wilk normality test
## 
## data:  residuos2
## W = 0.99144, p-value = 0.06673
par(mfrow = c(1,2))
hist(residuos1, col = "darkgreen")
hist(residuos2, col = "darkgreen")

residuos3 = mod2cv75$residuals
shapiro.test(residuos3)
## 
##  Shapiro-Wilk normality test
## 
## data:  residuos3
## W = 0.99096, p-value = 0.05142
residuos4 = mod2cv150$residuals
shapiro.test(residuos4)
## 
##  Shapiro-Wilk normality test
## 
## data:  residuos4
## W = 0.99471, p-value = 0.3564
par(mfrow = c(1,2))
hist(residuos3, col = "darkgreen")
hist(residuos4, col = "darkgreen")

library (normtest)

skew(data[,3])
## [1] 0.1002837
skewness.norm.test(data[,3])
## 
##  Skewness test for normality
## 
## data:  data[, 3]
## T = 0.10077, p-value = 0.4775
skew(data[,4])
## [1] 0.5702493
skewness.norm.test(data[,4])
## 
##  Skewness test for normality
## 
## data:  data[, 4]
## T = 0.57299, p-value < 2.2e-16
skew(residuos1)
## [1] 0.2441868
skewness.norm.test(residuos1)
## 
##  Skewness test for normality
## 
## data:  residuos1
## T = 0.24536, p-value = 0.0665
skew(residuos2)
## [1] 0.257621
skewness.norm.test(residuos2)
## 
##  Skewness test for normality
## 
## data:  residuos2
## T = 0.25886, p-value = 0.061
skew(residuos3)
## [1] 0.2440019
skewness.norm.test(residuos3)
## 
##  Skewness test for normality
## 
## data:  residuos3
## T = 0.24518, p-value = 0.074
skew(residuos4)
## [1] 0.1429125
skewness.norm.test(residuos4)
## 
##  Skewness test for normality
## 
## data:  residuos4
## T = 0.1436, p-value = 0.29
vmodcv75 = modcv75$fitted.values
vmodcv150 = modcv150$fitted.values
vmod2cv75 = mod2cv75$fitted.values
vmod2cv150 = mod2cv150$fitted.values




plot(data$Avg_CEa_07,vmodcv75,pch=18, col = 'blue', xlab = "CE 75cm observada", ylab="CE 75cm estimada", main = "Valores observados Vs Valores estimados CE75cm")

plot(data$Avg_CEa_07,vmodcv150,pch=16, col = 'blue', xlab = "CE 150 cm observada", ylab="CE 150cm estimada",main = "Valores observados Vs Valores estimados CE150")

cor(data$Avg_CEa_07,vmodcv75)
## [1] 0.7290603
cor(data$Avg_CEa_07,vmodcv150)
## [1] 0.01700518
cor(data$Avg_CEa_07,vmod2cv75)
## [1] 0.7268909
cor(data$Avg_CEa_07,vmod2cv150)
## [1] 0.01463969
residuosm1 = modcv75$residuals
shapiro.test(residuosm1)
## 
##  Shapiro-Wilk normality test
## 
## data:  residuosm1
## W = 0.99092, p-value = 0.05044
residuosm2 = modcv150$residuals
shapiro.test(residuosm2)
## 
##  Shapiro-Wilk normality test
## 
## data:  residuosm2
## W = 0.99144, p-value = 0.06673
residuosm3 = mod2cv75$residuals
shapiro.test(residuosm3)
## 
##  Shapiro-Wilk normality test
## 
## data:  residuosm3
## W = 0.99096, p-value = 0.05142
residuosm4 = mod2cv150$residuals
shapiro.test(residuosm4)
## 
##  Shapiro-Wilk normality test
## 
## data:  residuosm4
## W = 0.99471, p-value = 0.3564

Modelo autoregresivo puro

library(spdep)
## Loading required package: sp
## Loading required package: spData
## To access larger datasets in this package, install the spDataLarge
## package with: `install.packages('spDataLarge',
## repos='https://nowosad.github.io/drat/', type='source')`
## Loading required package: sf
## Linking to GEOS 3.5.1, GDAL 2.2.2, PROJ 4.9.2
## Registered S3 method overwritten by 'spdep':
##   method   from
##   plot.mst ape
contnb <- dnearneigh(coordinates(xydat),0,854, longlat = F)
contnb
## Neighbour list object:
## Number of regions: 313 
## Number of nonzero links: 97656 
## Percentage nonzero weights: 99.68051 
## Average number of links: 312
dlist <- nbdists(contnb, xydat)
dlist <- lapply(dlist, function(x) 1/x)
Wve <- nb2listw(contnb, glist = dlist, style = 'W')

Modelo CE 75CM

map_75 <- spautolm(Avg_CEa_07~1, data = data, listw = Wve) 
## Warning: Function spautolm moved to the spatialreg package
## Registered S3 methods overwritten by 'spatialreg':
##   method                   from 
##   residuals.stsls          spdep
##   deviance.stsls           spdep
##   coef.stsls               spdep
##   print.stsls              spdep
##   summary.stsls            spdep
##   print.summary.stsls      spdep
##   residuals.gmsar          spdep
##   deviance.gmsar           spdep
##   coef.gmsar               spdep
##   fitted.gmsar             spdep
##   print.gmsar              spdep
##   summary.gmsar            spdep
##   print.summary.gmsar      spdep
##   print.lagmess            spdep
##   summary.lagmess          spdep
##   print.summary.lagmess    spdep
##   residuals.lagmess        spdep
##   deviance.lagmess         spdep
##   coef.lagmess             spdep
##   fitted.lagmess           spdep
##   logLik.lagmess           spdep
##   fitted.SFResult          spdep
##   print.SFResult           spdep
##   fitted.ME_res            spdep
##   print.ME_res             spdep
##   print.lagImpact          spdep
##   plot.lagImpact           spdep
##   summary.lagImpact        spdep
##   HPDinterval.lagImpact    spdep
##   print.summary.lagImpact  spdep
##   print.sarlm              spdep
##   summary.sarlm            spdep
##   residuals.sarlm          spdep
##   deviance.sarlm           spdep
##   coef.sarlm               spdep
##   vcov.sarlm               spdep
##   fitted.sarlm             spdep
##   logLik.sarlm             spdep
##   anova.sarlm              spdep
##   predict.sarlm            spdep
##   print.summary.sarlm      spdep
##   print.sarlm.pred         spdep
##   as.data.frame.sarlm.pred spdep
##   residuals.spautolm       spdep
##   deviance.spautolm        spdep
##   coef.spautolm            spdep
##   fitted.spautolm          spdep
##   print.spautolm           spdep
##   summary.spautolm         spdep
##   logLik.spautolm          spdep
##   print.summary.spautolm   spdep
##   print.WXImpact           spdep
##   summary.WXImpact         spdep
##   print.summary.WXImpact   spdep
##   predict.SLX              spdep
summary(map_75)
## 
## Call: spatialreg::spautolm(formula = formula, data = data, listw = listw, 
##     na.action = na.action, family = family, method = method, 
##     verbose = verbose, trs = trs, interval = interval, zero.policy = zero.policy, 
##     tol.solve = tol.solve, llprof = llprof, control = control)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -3.258254 -0.650679 -0.071829  0.824652  3.063002 
## 
## Coefficients: 
##             Estimate Std. Error z value Pr(>|z|)
## (Intercept)   5.6941     5.5177   1.032   0.3021
## 
## Lambda: 0.98811 LR test value: 162.5 p-value: < 2.22e-16 
## Numerical Hessian standard error of lambda: 0.011876 
## 
## Log likelihood: -494.8231 
## ML residual variance (sigma squared): 1.347, (sigma: 1.1606)
## Number of observations: 313 
## Number of parameters estimated: 3 
## AIC: 995.65
CE75E1 <- as.data.frame(map_75$fit['fitted.values'])
head(CE75E1,10)
CE75E <- map_75$fit$fitted.values ## Estimados
head(CE75E,10)
##        1        2        3        4        5        6        7        8 
## 8.630840 8.677614 8.915327 8.905593 8.823590 8.855964 8.926651 9.075587 
##        9       10 
## 9.005442 8.976890
df75 <- data.frame(v_res75, CE75E)
colnames(df75) <-  c('CE_obs','CE_est')
plot(df75$CE_obs, df75$CE_est, cex=0.5, pch =19, col = "green", ylab= "coordenadas latitud", xlab = "coordenadas longitud", main = "Comparacion de CE75cm de valores observados vs estimados")

resmap1 <- map_75$fit$residuals
cor(df75$CE_obs, df75$CE_est)
## [1] 0.7977199
plot(xydat[,1]  ,xydat[,2], col = floor(abs(resmap1))+3, pch =18,  ylab= "coordenadas latitud", xlab = "coordenadas longitud", main = "Comparacion de CE75cm de valores observados vs estimados")

plot(xydat[,1]  ,xydat[,2], cex =abs(resmap1), pch =20, col = "darkred",  ylab= "coordenadas latitud", xlab = "coordenadas longitud", main = "Comparacion de CE75cm de valores observados vs estimados")

plot(xydat[,1]  ,xydat[,2], cex =0.1*df75$CE_obs, pch =20, ylab= "coordenadas latitud", xlab = "coordenadas longitud", main = "Comparacion de CE75cm de valores observados vs estimados")

data2 <- data.frame(xydat[,1]  ,xydat[,2], df75$CE_obs, df75$CE_est)
colnames(data2) <- c('x', 'y', 'CE_observado', 'CE_estimado')
plot1<-ggplot(data = data2, aes(xydat[,1]  ,xydat[,2])) +
  geom_point(cex = data2$CE_obs*0.2) +
  geom_point(color = data2$CE_est)
 

plot1

im_res_map_75 <- moran.mc(resmap1,Wve,nsim = 2000);im_res_map_75
## 
##  Monte-Carlo simulation of Moran I
## 
## data:  resmap1 
## weights: Wve  
## number of simulations + 1: 2001 
## 
## statistic = 0.16722, observed rank = 2001, p-value = 0.0004998
## alternative hypothesis: greater

MODELO LAMBDA Y RHO CE A 75 cm

modelol <- sacsarlm(Avg_CEa_07~SLOPE+Avg_z+Avg_CEa_15+DEM,data=data,listw=Wve)
## Warning: Function sacsarlm moved to the spatialreg package
summary(modelol)
## 
## Call:spatialreg::sacsarlm(formula = formula, data = data, listw = listw, 
##     listw2 = listw2, na.action = na.action, Durbin = Durbin, 
##     type = type, method = method, quiet = quiet, zero.policy = zero.policy, 
##     tol.solve = tol.solve, llprof = llprof, interval1 = interval1, 
##     interval2 = interval2, trs1 = trs1, trs2 = trs2, control = control)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -2.090770 -0.476848 -0.031738  0.518306  2.235748 
## 
## Type: sac 
## Coefficients: (asymptotic standard errors) 
##               Estimate Std. Error z value  Pr(>|z|)
## (Intercept) -60.138673  15.556909 -3.8657 0.0001108
## SLOPE        -0.062334   0.021580 -2.8885 0.0038705
## Avg_z         0.187865   0.031034  6.0535 1.417e-09
## Avg_CEa_15    0.854968   0.072736 11.7543 < 2.2e-16
## DEM           0.028548   0.018830  1.5160 0.1295090
## 
## Rho: 0.97458
## Asymptotic standard error: 0.38031
##     z-value: 2.5626, p-value: 0.01039
## Lambda: 0.9722
## Asymptotic standard error: 0.41632
##     z-value: 2.3352, p-value: 0.019532
## 
## LR test value: 179.63, p-value: < 2.22e-16
## 
## Log likelihood: -366.569 for sac model
## ML residual variance (sigma squared): 0.58432, (sigma: 0.76441)
## Number of observations: 313 
## Number of parameters estimated: 8 
## AIC: 749.14, (AIC for lm: 924.77)
res_modelol <- modelol$residuals
summary(res_modelol)
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
## -2.09077 -0.47685 -0.03174  0.00000  0.51831  2.23575
shapiro.test(res_modelol)
## 
##  Shapiro-Wilk normality test
## 
## data:  res_modelol
## W = 0.99543, p-value = 0.4903
cvm.test(res_modelol)
## 
##  Cramer-von Mises normality test
## 
## data:  res_modelol
## W = 0.050896, p-value = 0.4974
plot(df75$CE_obs, modelol$fitted.values, cex=0.8,  pch =20, col = 'purple', xlab = "CE 75 cm observada", ylab="CE 75 cm estimada",main = "Valores observados Vs Valores estimados CE75" )

cor(df75$CE_obs, modelol$fitted.values)
## [1] 0.8703349
moran_modelol <- moran.mc(res_modelol,Wve,nsim=2000)
moran_modelol
## 
##  Monte-Carlo simulation of Moran I
## 
## data:  res_modelol 
## weights: Wve  
## number of simulations + 1: 2001 
## 
## statistic = 0.09234, observed rank = 2001, p-value = 0.0004998
## alternative hypothesis: greater

MODELO ESPACIAL ERROR CE A 75 CM

modee1<- errorsarlm(Avg_CEa_07~NDVI+SLOPE+Avg_z+Avg_CEa_15+DEM,data=data,listw=Wve)
## Warning: Function errorsarlm moved to the spatialreg package
summary(modee1)
## 
## Call:spatialreg::errorsarlm(formula = formula, data = data, listw = listw, 
##     na.action = na.action, Durbin = Durbin, etype = etype, method = method, 
##     quiet = quiet, zero.policy = zero.policy, interval = interval, 
##     tol.solve = tol.solve, trs = trs, control = control)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -2.019160 -0.540466 -0.045367  0.513314  2.592838 
## 
## Type: error 
## Coefficients: (asymptotic standard errors) 
##               Estimate Std. Error  z value  Pr(>|z|)
## (Intercept) -64.737579   5.752902 -11.2530 < 2.2e-16
## NDVI         -2.395368   1.907913  -1.2555  0.209301
## SLOPE        -0.073067   0.024760  -2.9510  0.003168
## Avg_z         0.257034   0.028465   9.0299 < 2.2e-16
## Avg_CEa_15    0.859898   0.083054  10.3535 < 2.2e-16
## DEM           0.036792   0.020974   1.7542  0.079402
## 
## Lambda: 0.9825, LR test value: 99.359, p-value: < 2.22e-16
## Asymptotic standard error: 0.012342
##     z-value: 79.604, p-value: < 2.22e-16
## Wald statistic: 6336.8, p-value: < 2.22e-16
## 
## Log likelihood: -406.1005 for error model
## ML residual variance (sigma squared): 0.76603, (sigma: 0.87523)
## Number of observations: 313 
## Number of parameters estimated: 8 
## AIC: 828.2, (AIC for lm: 925.56)
modee2 <- errorsarlm(Avg_CEa_07~SLOPE+Avg_z+Avg_CEa_15+DEM,data=data,listw=Wve)
## Warning: Function errorsarlm moved to the spatialreg package
summary(modee2)
## 
## Call:spatialreg::errorsarlm(formula = formula, data = data, listw = listw, 
##     na.action = na.action, Durbin = Durbin, etype = etype, method = method, 
##     quiet = quiet, zero.policy = zero.policy, interval = interval, 
##     tol.solve = tol.solve, trs = trs, control = control)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -2.068942 -0.573110 -0.041672  0.535538  2.620533 
## 
## Type: error 
## Coefficients: (asymptotic standard errors) 
##               Estimate Std. Error  z value  Pr(>|z|)
## (Intercept) -66.334322   5.621356 -11.8004 < 2.2e-16
## SLOPE        -0.074849   0.024782  -3.0203  0.002525
## Avg_z         0.251732   0.028220   8.9203 < 2.2e-16
## Avg_CEa_15    0.871288   0.082765  10.5273 < 2.2e-16
## DEM           0.039380   0.020925   1.8819  0.059845
## 
## Lambda: 0.98246, LR test value: 98.998, p-value: < 2.22e-16
## Asymptotic standard error: 0.012369
##     z-value: 79.427, p-value: < 2.22e-16
## Wald statistic: 6308.6, p-value: < 2.22e-16
## 
## Log likelihood: -406.8867 for error model
## ML residual variance (sigma squared): 0.76989, (sigma: 0.87744)
## Number of observations: 313 
## Number of parameters estimated: 7 
## AIC: 827.77, (AIC for lm: 924.77)
modee3 <- errorsarlm(Avg_CEa_07~SLOPE+Avg_z+Avg_CEa_15,data=data,listw=Wve)
## Warning: Function errorsarlm moved to the spatialreg package
summary(modee3)
## 
## Call:spatialreg::errorsarlm(formula = formula, data = data, listw = listw, 
##     na.action = na.action, Durbin = Durbin, etype = etype, method = method, 
##     quiet = quiet, zero.policy = zero.policy, interval = interval, 
##     tol.solve = tol.solve, trs = trs, control = control)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -2.150527 -0.558459 -0.045187  0.540349  2.578564 
## 
## Type: error 
## Coefficients: (asymptotic standard errors) 
##               Estimate Std. Error z value  Pr(>|z|)
## (Intercept) -65.325177   5.620712 -11.622 < 2.2e-16
## SLOPE        -0.079881   0.024777  -3.224  0.001264
## Avg_z         0.286926   0.021256  13.498 < 2.2e-16
## Avg_CEa_15    0.874324   0.083217  10.507 < 2.2e-16
## 
## Lambda: 0.98237, LR test value: 97.514, p-value: < 2.22e-16
## Asymptotic standard error: 0.012433
##     z-value: 79.011, p-value: < 2.22e-16
## Wald statistic: 6242.7, p-value: < 2.22e-16
## 
## Log likelihood: -408.6476 for error model
## ML residual variance (sigma squared): 0.77863, (sigma: 0.8824)
## Number of observations: 313 
## Number of parameters estimated: 6 
## AIC: 829.3, (AIC for lm: 924.81)

Se concluye que el mejor modelo es el dos

resmodee2<- modee2$residuals
shapiro.test(resmodee2)
## 
##  Shapiro-Wilk normality test
## 
## data:  resmodee2
## W = 0.99235, p-value = 0.1078
cvm.test(resmodee2)
## 
##  Cramer-von Mises normality test
## 
## data:  resmodee2
## W = 0.084219, p-value = 0.182
plot(df75$CE_obs, modee2$fitted.values, cex=0.8, pch =20, col = "blue", xlab = "CE 150 cm observada", ylab="CE 150cm estimada",main = "Valores observados Vs Valores estimados CE150")

cor(df75$CE_obs, modee2$fitted.values)
## [1] 0.8246131
moran_error_75 <- moran.mc(resmodee2,Wve,nsim=2000)
moran_error_75
## 
##  Monte-Carlo simulation of Moran I
## 
## data:  resmodee2 
## weights: Wve  
## number of simulations + 1: 2001 
## 
## statistic = 0.12895, observed rank = 2001, p-value = 0.0004998
## alternative hypothesis: greater

GRAFICAS

library(plotly)
## 
## Attaching package: 'plotly'
## The following object is masked from 'package:Hmisc':
## 
##     subplot
## The following object is masked from 'package:ggplot2':
## 
##     last_plot
## The following object is masked from 'package:stats':
## 
##     filter
## The following object is masked from 'package:graphics':
## 
##     layout
GRAF = plot_ly(x=data$Avg_X_MCB  ,y=data$Avg_Y_MCE,z= data$Avg_z,data=data, size = I(90),
                  marker = list(color=rgb(0.1,0.3,0.6),
                                line = list(color = rgb(0.1,0.3,0.6))))%>%
            layout(title = "Z vs XY",
                  scene = list(xaxis = list(title = "Longitud"),
                              yaxis = list(title = "Latitud"),
                              zaxis = list(title = "Elevation (M.A.S.L.)")
    )
  )%>%
add_markers(color = "cyan")
GRAF
## Warning: `arrange_()` is deprecated as of dplyr 0.7.0.
## Please use `arrange()` instead.
## See vignette('programming') for more help
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_warnings()` to see where this warning was generated.
## Warning in RColorBrewer::brewer.pal(N, "Set2"): minimal value for n is 3, returning requested palette with 3 different levels

## Warning in RColorBrewer::brewer.pal(N, "Set2"): minimal value for n is 3, returning requested palette with 3 different levels
GRAFDEM <- plot_ly(x=data$Avg_X_MCB  ,y=data$Avg_Y_MCE,z= data$DEM,data=data, size = I(90),
                   marker = list(color=rgb(0.1,0.3,0.6),
                                line = list(color = rgb(0.1,0.3,0.6))))%>%
            layout(title = "DEM vs XY",
                  scene = list(
                              xaxis = list(title = "Longitud"),
                              yaxis = list(title = "Latitud"),
                              zaxis = list(title = "DEM")
    )
  )%>%
add_markers(color = "cyan")
GRAFDEM
## Warning in RColorBrewer::brewer.pal(N, "Set2"): minimal value for n is 3, returning requested palette with 3 different levels

## Warning in RColorBrewer::brewer.pal(N, "Set2"): minimal value for n is 3, returning requested palette with 3 different levels
GRAFslope <- plot_ly(x=data$Avg_X_MCB  ,y=data$Avg_Y_MCE,z= data$SLOPE ,data=data, size = I(90))%>%
            layout(title = 'CE_75 vs Slope',
                  scene = list(
                              xaxis = list(title = "Longitud"),
                              yaxis = list(title = "Latitud"),
                              zaxis = list(title = "Slope")
    )
  )%>%
  add_markers(color = data$Avg_CEa_07)
GRAFslope
GRAF1 <- plot_ly(x=data$Avg_X_MCB  ,y=data$Avg_Y_MCE,z= data$Avg_z,data=data, size = I(90))%>%
            layout(title = 'CEa_75 vs Altitud (z)',
                  scene = list(
                              xaxis = list(title = "Longitud"),
                              yaxis = list(title = "Latitud"),
                              zaxis = list(title = "Altitud")
    )
  )%>%
add_markers(color = data$Avg_CEa_07)
GRAF1