Read the data for the Italian's Provinces:
CV19_pro_backup<- read.csv("https://raw.githubusercontent.com/pcm-dpc/COVID-19/master/dati-province/dpc-covid19-ita-province.csv")
names(CV19_pro_backup)
## [1] "data" "stato"
## [3] "codice_regione" "denominazione_regione"
## [5] "codice_provincia" "denominazione_provincia"
## [7] "sigla_provincia" "lat"
## [9] "long" "totale_casi"
## [11] "note"
In this data anlysis of the covid19 impact, Italy is divided in two part, the north and the south sides, considering as a centre point a distinctive "geographic center" which also appears on the inevitable road signs, the exact point has been identified, and signalised with a plate on the tourist maps, in "Ponte Cardona", at these exact coordinates: Latitude 42 ° 30 '11 "N (42.503056) - Longitude 12'34'24 "(12.573333).
source:https://www.giuntitvp.it/blog/geoblog/la-palude-del-centro-d-italia/#:~:text=La%20distinzione%20%E2%80%9Ccentro%20geografico%E2%80%9D%20compare,'34'24%22%20E.
For the purpose to identify the difference in the number of cases btween the north and the south of Italy, the data set would be approximately subdivided in two parts, as follow:
CV19_pro_ns<-CV19_pro_backup%>%
rename(date="data",
region="denominazione_regione",
province="denominazione_provincia",
tot_cases=totale_casi)%>%
group_by(province)%>%
mutate(cases=c(0,diff(tot_cases)),case_incidence=round((cases/tot_cases*100),2))%>%
select(date,region,province,lat,long,tot_cases,cases,case_incidence)%>%
filter(!province=="In fase di definizione/aggiornamento")%>%
arrange(desc(date))
head(CV19_pro_ns)
## # A tibble: 6 x 8
## # Groups: province [6]
## date region province lat long tot_cases cases case_incidence
## <fct> <fct> <fct> <dbl> <dbl> <int> <dbl> <dbl>
## 1 2020-12-1… Abruzzo L'Aquila 42.4 13.4 10158 50 0.49
## 2 2020-12-1… Abruzzo Teramo 42.7 13.7 8471 110 1.3
## 3 2020-12-1… Abruzzo Pescara 42.5 14.2 6346 37 0.580
## 4 2020-12-1… Abruzzo Chieti 42.4 14.2 6070 65 1.07
## 5 2020-12-1… Abruzzo Fuori Regione /… NA NA 261 -2739 -1049.
## 6 2020-12-1… Basili… Potenza 40.6 15.8 5787 89 1.54
lat_rg<-range(CV19_pro_ns$lat,na.rm=TRUE)
long_rg<-range(CV19_pro_ns$long,na.rm=TRUE)
require(data.table)
## Loading required package: data.table
##
## Attaching package: 'data.table'
## The following objects are masked from 'package:reshape2':
##
## dcast, melt
## The following object is masked from 'package:purrr':
##
## transpose
## The following objects are masked from 'package:dplyr':
##
## between, first, last
data.table(GeoRange=c("min","max"),lat_rg,long_rg)
## GeoRange lat_rg long_rg
## 1: min 36.92509 7.320149
## 2: max 46.49933 18.171897
CV19_pro_rm<-CV19_pro_ns%>%
filter(province=="Roma")
In this section will be considered all the regions with latidude greater than the latidute of the centre point, as well as per the longitude will be considered all the values below the given one. At opposite to estimate the south it will be considered a lat less than the given point and a lon greater.
covid19_north<-CV19_pro_ns%>%filter(lat>=42.503056,long<=12.573333)
head(covid19_north)
## # A tibble: 6 x 8
## # Groups: province [6]
## date region province lat long tot_cases cases case_incidence
## <fct> <fct> <fct> <dbl> <dbl> <int> <dbl> <dbl>
## 1 2020-12-11T… Emilia-R… Piacenza 45.1 9.69 13002 88 0.68
## 2 2020-12-11T… Emilia-R… Parma 44.8 10.3 11173 75 0.67
## 3 2020-12-11T… Emilia-R… Reggio nell… 44.7 10.6 20159 198 0.98
## 4 2020-12-11T… Emilia-R… Modena 44.6 10.9 25241 111 0.44
## 5 2020-12-11T… Emilia-R… Bologna 44.5 11.3 31002 412 1.33
## 6 2020-12-11T… Emilia-R… Ferrara 44.8 11.6 7116 100 1.41
(unique(covid19_north$region))
## [1] Emilia-Romagna Liguria Lombardia P.A. Bolzano P.A. Trento
## [6] Piemonte Toscana Umbria Valle d'Aosta Veneto
## 21 Levels: Abruzzo Basilicata Calabria Campania ... Veneto
covid19_south<-CV19_pro_ns%>%filter(lat<42.503056,long>12.573333)%>%
arrange(desc(date))
head(covid19_south)
## # A tibble: 6 x 8
## # Groups: province [6]
## date region province lat long tot_cases cases case_incidence
## <fct> <fct> <fct> <dbl> <dbl> <int> <dbl> <dbl>
## 1 2020-12-11T17:0… Abruzzo L'Aquila 42.4 13.4 10158 50 0.49
## 2 2020-12-11T17:0… Abruzzo Pescara 42.5 14.2 6346 37 0.580
## 3 2020-12-11T17:0… Abruzzo Chieti 42.4 14.2 6070 65 1.07
## 4 2020-12-11T17:0… Basilica… Potenza 40.6 15.8 5787 89 1.54
## 5 2020-12-11T17:0… Basilica… Matera 40.7 16.6 3196 15 0.47
## 6 2020-12-11T17:0… Calabria Cosenza 39.3 16.3 6180 77 1.25
unique(covid19_south$region)
## [1] Abruzzo Basilicata Calabria Campania Lazio Molise Puglia
## [8] Sicilia
## 21 Levels: Abruzzo Basilicata Calabria Campania ... Veneto
#esquisse::esquisser(covid19_north)
ggplot(covid19_north) +
aes(x = date, fill = region, weight = cases) +
geom_bar() +
scale_fill_hue() +
theme_minimal()+
labs(title="Covid19 IT North Geopoints",
subtitle="Selected regions as above the centre point",
caption="Source: Civil Protection")
ggplot(covid19_south) +
aes(x = date, fill = region, weight = cases) +
geom_bar() +
scale_fill_hue() +
theme_minimal()+
labs(title="Covid19 IT South Geopoints",
subtitle="Selected regions as below the centre point",
caption="Source: Civil Protection")