Objetivo

Determinar predicciones de datos bajo el modelo de regresión lineal simple

Descripción

De un conjunto de datos con dos variables (bivariable) en donde una de ellas es X variable independiente y otra de ellas Y variable dependiente, predecir el valor de Y conforme la historia de X.

#1.Cargar Librerias

library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(mosaic)
## Warning: package 'mosaic' was built under R version 4.0.3
## Registered S3 method overwritten by 'mosaic':
##   method                           from   
##   fortify.SpatialPolygonsDataFrame ggplot2
## 
## The 'mosaic' package masks several functions from core packages in order to add 
## additional features.  The original behavior of these functions should not be affected by this.
## 
## Attaching package: 'mosaic'
## The following object is masked from 'package:Matrix':
## 
##     mean
## The following object is masked from 'package:ggplot2':
## 
##     stat
## The following objects are masked from 'package:dplyr':
## 
##     count, do, tally
## The following objects are masked from 'package:stats':
## 
##     binom.test, cor, cor.test, cov, fivenum, IQR, median, prop.test,
##     quantile, sd, t.test, var
## The following objects are masked from 'package:base':
## 
##     max, mean, min, prod, range, sample, sum
library(readr)
library(ggplot2)  # Para gráficos
library(knitr)    # Para formateo de datos

#2. Ejercicios ventas en función de comerciales

2.1. Cargar o generar los datos De un conjunto de datos para una empresa que invierte dinero en comerciales se tienen un historial de ventas de doce semanas.

semanas <- c(1:12)
comerciales <- c(2,5,1,3,4,1,5,3,4,2,3,2)
ventas <- c(50,57,41,54,54,38,63,48,59,46, 45, 48 )

datos <- data.frame(semanas,comerciales,ventas)
kable(datos, caption = "Ventas en función de inversión en comerciales")
Ventas en función de inversión en comerciales
semanas comerciales ventas
1 2 50
2 5 57
3 1 41
4 3 54
5 4 54
6 1 38
7 5 63
8 3 48
9 4 59
10 2 46
11 3 45
12 2 48

2.2. Valor de correlación entre las varibles

r <- cor(datos$comerciales, datos$ventas)
r
## [1] 0.9006177

2.3. Gráfica de dispersión

ggplot(data = datos, aes(x = comerciales, y = ventas)) +
  geom_point(colour = 'blue')

2.4. Generar el modelo regresión lineal Y=a+bx

modelo <- lm(data = datos, formula = ventas~comerciales)

modelo
## 
## Call:
## lm(formula = ventas ~ comerciales, data = datos)
## 
## Coefficients:
## (Intercept)  comerciales  
##      36.131        4.841
summary(modelo)
## 
## Call:
## lm(formula = ventas ~ comerciales, data = datos)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.6534 -2.7331  0.1076  2.8357  4.1873 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  36.1315     2.3650  15.278 2.93e-08 ***
## comerciales   4.8406     0.7387   6.553 6.45e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.378 on 10 degrees of freedom
## Multiple R-squared:  0.8111, Adjusted R-squared:  0.7922 
## F-statistic: 42.94 on 1 and 10 DF,  p-value: 6.449e-05
paste("El coeficiente de determinación o Multiple R-squared: es igual al cuadrado del coeficiente de correlación: ", r^2)
## [1] "El coeficiente de determinación o Multiple R-squared: es igual al cuadrado del coeficiente de correlación:  0.811112191696598"
a <- modelo$coefficients[1]
b <- modelo$coefficients[2]
a ; b
## (Intercept) 
##    36.13147
## comerciales 
##    4.840637

Gráfica de tendencia

ggplot() + 
  geom_point(data = datos, aes(x = comerciales, y = ventas), colour='blue') +
  geom_line(aes( x = datos$comerciales, y = predict(modelo, datos)), color = "red") +
  xlab("Comerciales") + 
  ylab("Ventas") + 
  ggtitle("Linea de tendencia sobre Conjunto de Datos")

2.5. Predecir conforme al modelo

x <- c(4,3.5,2,0,1)

prediccion <- predict(object = modelo, newdata = data.frame(comerciales = x))
prediccion
##        1        2        3        4        5 
## 55.49402 53.07371 45.81275 36.13147 40.97211
# Comprobar
y = a + b * x
y
## [1] 55.49402 53.07371 45.81275 36.13147 40.97211
  1. Ejercicio. Medidas de los sólidos y la demanda de oxígeno químico.

3.1. Cargar o generar los datos

seq <- c(1:33)
solido <- c(3,7,11,15,18,27,29,30,30,31,31,32,33,33,34,36,36,36,37,38,39,39,39,40,41,42,42,43,44,45,46,47,50)
oxigeno <- c(5,11,21,16,16,28,27,25,35,30,40,32,34,32,34,37,38,34,36,38,37,36,45,39,41,40,44,37,44,46,46,49,51 )

datos <- data.frame(seq,solido,oxigeno)
kable(datos, caption = "Contaminante oxígeno en función de reducción de sólidos")
Contaminante oxígeno en función de reducción de sólidos
seq solido oxigeno
1 3 5
2 7 11
3 11 21
4 15 16
5 18 16
6 27 28
7 29 27
8 30 25
9 30 35
10 31 30
11 31 40
12 32 32
13 33 34
14 33 32
15 34 34
16 36 37
17 36 38
18 36 34
19 37 36
20 38 38
21 39 37
22 39 36
23 39 45
24 40 39
25 41 41
26 42 40
27 42 44
28 43 37
29 44 44
30 45 46
31 46 46
32 47 49
33 50 51

3.2. Valor de correlación entre las variables

r <- cor(datos$solido, datos$oxigeno)
r
## [1] 0.9554794

3.3. Gráfica de dispersión

ggplot(data = datos, aes(x = solido, y = oxigeno)) +
  geom_point(colour = 'blue')

3.4. Generar el modelo regresión lineal Y=a+bx

modelo <- lm(data = datos, formula = oxigeno~solido)

modelo
## 
## Call:
## lm(formula = oxigeno ~ solido, data = datos)
## 
## Coefficients:
## (Intercept)       solido  
##      3.8296       0.9036
summary(modelo)
## 
## Call:
## lm(formula = oxigeno ~ solido, data = datos)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -5.939 -1.783 -0.228  1.506  8.157 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  3.82963    1.76845   2.166   0.0382 *  
## solido       0.90364    0.05012  18.030   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.23 on 31 degrees of freedom
## Multiple R-squared:  0.9129, Adjusted R-squared:  0.9101 
## F-statistic: 325.1 on 1 and 31 DF,  p-value: < 2.2e-16
paste("El coeficiente de determinación o Multiple R-squared: es igual al cuadrado del coeficiente de correlación :", r^2)
## [1] "El coeficiente de determinación o Multiple R-squared: es igual al cuadrado del coeficiente de correlación : 0.912940801014387"
a <- modelo$coefficients[1]
b <- modelo$coefficients[2]
a ; b
## (Intercept) 
##    3.829633
##    solido 
## 0.9036432

Gráfica de tendencia

ggplot() + 
  geom_point(data = datos, aes(x = solido, y = oxigeno), colour='blue') +
  geom_line(aes( x = datos$solido, y = predict(modelo, datos)), color = "red") +
  xlab("Reducción de sólido") + 
  ylab("% Oxígeno") + 
  ggtitle("Linea de tendencia sobre Conjunto de Datos")

3.5. Predecir conforme al modelo

x <- c(15,20,35,40,50)

prediccion <- predict(object = modelo, newdata = data.frame(solido = x))
prediccion
##        1        2        3        4        5 
## 17.38428 21.90250 35.45715 39.97536 49.01179
# Comprobar
y = a + b * x
y
## [1] 17.38428 21.90250 35.45715 39.97536 49.01179

Ejercicio 4. Caso de mediciones del cuerpo humano (Peso y Estatura)

4.1. Cargar los datos

datos <- read.table("https://raw.githubusercontent.com/rpizarrog/probabilidad-y-estad-stica/master/datos/body.dat.txt", quote="\"", comment.char="")

datos <- as.data.frame(datos)

colnames(datos)[23:25] <- c("peso", "estatura", "genero")

# Solo nos interesan las tres últimas columnas
datos <- select(datos, estatura, peso, genero)

kable(head(datos, 10), caption = "Datos de pesos y etaturas de personas")
Datos de pesos y etaturas de personas
estatura peso genero
174.0 65.6 1
175.3 71.8 1
193.5 80.7 1
186.5 72.6 1
187.2 78.8 1
181.5 74.8 1
184.0 86.4 1
184.5 78.4 1
175.0 62.0 1
184.0 81.6 1

4.2. Valor de correlación entre las variables

r <- cor(datos$estatura, datos$peso)
r
## [1] 0.7173011

4.3. Gráfica de dispersión

ggplot(data = datos, aes(x = estatura, y = peso)) +
  geom_point(colour = 'blue')

4.4. Generar el modelo regresión lineal Y=a+bx

modelo <- lm(data = datos, formula = peso~estatura)

modelo
## 
## Call:
## lm(formula = peso ~ estatura, data = datos)
## 
## Coefficients:
## (Intercept)     estatura  
##    -105.011        1.018
summary(modelo)
## 
## Call:
## lm(formula = peso ~ estatura, data = datos)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -18.743  -6.402  -1.231   5.059  41.103 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -105.01125    7.53941  -13.93   <2e-16 ***
## estatura       1.01762    0.04399   23.14   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 9.308 on 505 degrees of freedom
## Multiple R-squared:  0.5145, Adjusted R-squared:  0.5136 
## F-statistic: 535.2 on 1 and 505 DF,  p-value: < 2.2e-16
paste("El coeficiente de determinación o Multiple R-squared: es igual al cuadrado del coeficiente de correlación :", r^2)
## [1] "El coeficiente de determinación o Multiple R-squared: es igual al cuadrado del coeficiente de correlación : 0.514520837538849"
a <- modelo$coefficients[1]
b <- modelo$coefficients[2]
a ; b
## (Intercept) 
##   -105.0113
## estatura 
## 1.017617

Gráfica de tendencia

ggplot() + 
  geom_point(data = datos, aes(x = estatura, y = peso), colour='blue') +
  geom_line(aes( x = datos$estatura, y = predict(modelo, datos)), color = "red") +
  xlab("Estarura") + 
  ylab("Peso") + 
  ggtitle("Linea de tendencia sobre Conjunto de Datos")

4.5. Predecir conforme al modelo

x <- c(150, 160, 170, 175, 185, 190)

prediccion <- predict(object = modelo, newdata = data.frame(estatura = x))
prediccion
##        1        2        3        4        5        6 
## 47.63126 57.80743 67.98360 73.07168 83.24785 88.33593
# Comprobar
y = a + b * x
y
## [1] 47.63126 57.80743 67.98360 73.07168 83.24785 88.33593

INTERPRETACION DEL CASO

###¿DE QUE TRATA EL EJERCICIO? Ejer1: Sobre una empresa que invierte tales cantidades de dinero en comerciales Ejer2: De las medidas de solidos y demanda del oxígeno químico Ejer3: Sobre peso y estatura de personas, sobre el cuerpo humano

###¿QUE SIGNIFICADO TIENE LAS VARIABLES? Ejer1: Las variables nos ayudan a saber las ventas que hubo de cada comercial semanal Ejer2: Las cantidades de Solido y Liquido que nos muestran Ejer3: Cada peso y estatura de la persona

###¿CUAL ES EL VALOR DEL COEFICIENTE DE LA CORRELACION Y QUE PRESENTA? Ejer1: 0.9006177 Ejer2: 0.9554794 Ejer3: 0.7173011

#¿QUE REPRESENTAN LOS COEFICIENTES A Y B EN LA ECUACION DE MINIMOS CUADRADOS? Ejer1: A= 36.13147 B=4.840637 Ejer2: A=3.829633 B=0.9036432 Ejer3: A=-105.0113 B=1.017617