Determinar predicciones de datos bajo el modelo de regresión lineal simple
De un conjunto de datos con dos variables (bivariable) en donde una de ellas es X variable independiente y otra de ellas Y variable dependiente, predecir el valor de Y conforme la historia de X.
#1.Cargar Librerias
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(mosaic)
## Warning: package 'mosaic' was built under R version 4.0.3
## Registered S3 method overwritten by 'mosaic':
## method from
## fortify.SpatialPolygonsDataFrame ggplot2
##
## The 'mosaic' package masks several functions from core packages in order to add
## additional features. The original behavior of these functions should not be affected by this.
##
## Attaching package: 'mosaic'
## The following object is masked from 'package:Matrix':
##
## mean
## The following object is masked from 'package:ggplot2':
##
## stat
## The following objects are masked from 'package:dplyr':
##
## count, do, tally
## The following objects are masked from 'package:stats':
##
## binom.test, cor, cor.test, cov, fivenum, IQR, median, prop.test,
## quantile, sd, t.test, var
## The following objects are masked from 'package:base':
##
## max, mean, min, prod, range, sample, sum
library(readr)
library(ggplot2) # Para gráficos
library(knitr) # Para formateo de datos
#2. Ejercicios ventas en función de comerciales
2.1. Cargar o generar los datos De un conjunto de datos para una empresa que invierte dinero en comerciales se tienen un historial de ventas de doce semanas.
semanas <- c(1:12)
comerciales <- c(2,5,1,3,4,1,5,3,4,2,3,2)
ventas <- c(50,57,41,54,54,38,63,48,59,46, 45, 48 )
datos <- data.frame(semanas,comerciales,ventas)
kable(datos, caption = "Ventas en función de inversión en comerciales")
| semanas | comerciales | ventas |
|---|---|---|
| 1 | 2 | 50 |
| 2 | 5 | 57 |
| 3 | 1 | 41 |
| 4 | 3 | 54 |
| 5 | 4 | 54 |
| 6 | 1 | 38 |
| 7 | 5 | 63 |
| 8 | 3 | 48 |
| 9 | 4 | 59 |
| 10 | 2 | 46 |
| 11 | 3 | 45 |
| 12 | 2 | 48 |
2.2. Valor de correlación entre las varibles
r <- cor(datos$comerciales, datos$ventas)
r
## [1] 0.9006177
2.3. Gráfica de dispersión
ggplot(data = datos, aes(x = comerciales, y = ventas)) +
geom_point(colour = 'blue')
2.4. Generar el modelo regresión lineal Y=a+bx
modelo <- lm(data = datos, formula = ventas~comerciales)
modelo
##
## Call:
## lm(formula = ventas ~ comerciales, data = datos)
##
## Coefficients:
## (Intercept) comerciales
## 36.131 4.841
summary(modelo)
##
## Call:
## lm(formula = ventas ~ comerciales, data = datos)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.6534 -2.7331 0.1076 2.8357 4.1873
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 36.1315 2.3650 15.278 2.93e-08 ***
## comerciales 4.8406 0.7387 6.553 6.45e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.378 on 10 degrees of freedom
## Multiple R-squared: 0.8111, Adjusted R-squared: 0.7922
## F-statistic: 42.94 on 1 and 10 DF, p-value: 6.449e-05
paste("El coeficiente de determinación o Multiple R-squared: es igual al cuadrado del coeficiente de correlación: ", r^2)
## [1] "El coeficiente de determinación o Multiple R-squared: es igual al cuadrado del coeficiente de correlación: 0.811112191696598"
a <- modelo$coefficients[1]
b <- modelo$coefficients[2]
a ; b
## (Intercept)
## 36.13147
## comerciales
## 4.840637
Gráfica de tendencia
ggplot() +
geom_point(data = datos, aes(x = comerciales, y = ventas), colour='blue') +
geom_line(aes( x = datos$comerciales, y = predict(modelo, datos)), color = "red") +
xlab("Comerciales") +
ylab("Ventas") +
ggtitle("Linea de tendencia sobre Conjunto de Datos")
2.5. Predecir conforme al modelo
x <- c(4,3.5,2,0,1)
prediccion <- predict(object = modelo, newdata = data.frame(comerciales = x))
prediccion
## 1 2 3 4 5
## 55.49402 53.07371 45.81275 36.13147 40.97211
# Comprobar
y = a + b * x
y
## [1] 55.49402 53.07371 45.81275 36.13147 40.97211
3.1. Cargar o generar los datos
seq <- c(1:33)
solido <- c(3,7,11,15,18,27,29,30,30,31,31,32,33,33,34,36,36,36,37,38,39,39,39,40,41,42,42,43,44,45,46,47,50)
oxigeno <- c(5,11,21,16,16,28,27,25,35,30,40,32,34,32,34,37,38,34,36,38,37,36,45,39,41,40,44,37,44,46,46,49,51 )
datos <- data.frame(seq,solido,oxigeno)
kable(datos, caption = "Contaminante oxígeno en función de reducción de sólidos")
| seq | solido | oxigeno |
|---|---|---|
| 1 | 3 | 5 |
| 2 | 7 | 11 |
| 3 | 11 | 21 |
| 4 | 15 | 16 |
| 5 | 18 | 16 |
| 6 | 27 | 28 |
| 7 | 29 | 27 |
| 8 | 30 | 25 |
| 9 | 30 | 35 |
| 10 | 31 | 30 |
| 11 | 31 | 40 |
| 12 | 32 | 32 |
| 13 | 33 | 34 |
| 14 | 33 | 32 |
| 15 | 34 | 34 |
| 16 | 36 | 37 |
| 17 | 36 | 38 |
| 18 | 36 | 34 |
| 19 | 37 | 36 |
| 20 | 38 | 38 |
| 21 | 39 | 37 |
| 22 | 39 | 36 |
| 23 | 39 | 45 |
| 24 | 40 | 39 |
| 25 | 41 | 41 |
| 26 | 42 | 40 |
| 27 | 42 | 44 |
| 28 | 43 | 37 |
| 29 | 44 | 44 |
| 30 | 45 | 46 |
| 31 | 46 | 46 |
| 32 | 47 | 49 |
| 33 | 50 | 51 |
3.2. Valor de correlación entre las variables
r <- cor(datos$solido, datos$oxigeno)
r
## [1] 0.9554794
3.3. Gráfica de dispersión
ggplot(data = datos, aes(x = solido, y = oxigeno)) +
geom_point(colour = 'blue')
3.4. Generar el modelo regresión lineal Y=a+bx
modelo <- lm(data = datos, formula = oxigeno~solido)
modelo
##
## Call:
## lm(formula = oxigeno ~ solido, data = datos)
##
## Coefficients:
## (Intercept) solido
## 3.8296 0.9036
summary(modelo)
##
## Call:
## lm(formula = oxigeno ~ solido, data = datos)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.939 -1.783 -0.228 1.506 8.157
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.82963 1.76845 2.166 0.0382 *
## solido 0.90364 0.05012 18.030 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.23 on 31 degrees of freedom
## Multiple R-squared: 0.9129, Adjusted R-squared: 0.9101
## F-statistic: 325.1 on 1 and 31 DF, p-value: < 2.2e-16
paste("El coeficiente de determinación o Multiple R-squared: es igual al cuadrado del coeficiente de correlación :", r^2)
## [1] "El coeficiente de determinación o Multiple R-squared: es igual al cuadrado del coeficiente de correlación : 0.912940801014387"
a <- modelo$coefficients[1]
b <- modelo$coefficients[2]
a ; b
## (Intercept)
## 3.829633
## solido
## 0.9036432
Gráfica de tendencia
ggplot() +
geom_point(data = datos, aes(x = solido, y = oxigeno), colour='blue') +
geom_line(aes( x = datos$solido, y = predict(modelo, datos)), color = "red") +
xlab("Reducción de sólido") +
ylab("% Oxígeno") +
ggtitle("Linea de tendencia sobre Conjunto de Datos")
3.5. Predecir conforme al modelo
x <- c(15,20,35,40,50)
prediccion <- predict(object = modelo, newdata = data.frame(solido = x))
prediccion
## 1 2 3 4 5
## 17.38428 21.90250 35.45715 39.97536 49.01179
# Comprobar
y = a + b * x
y
## [1] 17.38428 21.90250 35.45715 39.97536 49.01179
4.1. Cargar los datos
datos <- read.table("https://raw.githubusercontent.com/rpizarrog/probabilidad-y-estad-stica/master/datos/body.dat.txt", quote="\"", comment.char="")
datos <- as.data.frame(datos)
colnames(datos)[23:25] <- c("peso", "estatura", "genero")
# Solo nos interesan las tres últimas columnas
datos <- select(datos, estatura, peso, genero)
kable(head(datos, 10), caption = "Datos de pesos y etaturas de personas")
| estatura | peso | genero |
|---|---|---|
| 174.0 | 65.6 | 1 |
| 175.3 | 71.8 | 1 |
| 193.5 | 80.7 | 1 |
| 186.5 | 72.6 | 1 |
| 187.2 | 78.8 | 1 |
| 181.5 | 74.8 | 1 |
| 184.0 | 86.4 | 1 |
| 184.5 | 78.4 | 1 |
| 175.0 | 62.0 | 1 |
| 184.0 | 81.6 | 1 |
4.2. Valor de correlación entre las variables
r <- cor(datos$estatura, datos$peso)
r
## [1] 0.7173011
4.3. Gráfica de dispersión
ggplot(data = datos, aes(x = estatura, y = peso)) +
geom_point(colour = 'blue')
4.4. Generar el modelo regresión lineal Y=a+bx
modelo <- lm(data = datos, formula = peso~estatura)
modelo
##
## Call:
## lm(formula = peso ~ estatura, data = datos)
##
## Coefficients:
## (Intercept) estatura
## -105.011 1.018
summary(modelo)
##
## Call:
## lm(formula = peso ~ estatura, data = datos)
##
## Residuals:
## Min 1Q Median 3Q Max
## -18.743 -6.402 -1.231 5.059 41.103
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -105.01125 7.53941 -13.93 <2e-16 ***
## estatura 1.01762 0.04399 23.14 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 9.308 on 505 degrees of freedom
## Multiple R-squared: 0.5145, Adjusted R-squared: 0.5136
## F-statistic: 535.2 on 1 and 505 DF, p-value: < 2.2e-16
paste("El coeficiente de determinación o Multiple R-squared: es igual al cuadrado del coeficiente de correlación :", r^2)
## [1] "El coeficiente de determinación o Multiple R-squared: es igual al cuadrado del coeficiente de correlación : 0.514520837538849"
a <- modelo$coefficients[1]
b <- modelo$coefficients[2]
a ; b
## (Intercept)
## -105.0113
## estatura
## 1.017617
Gráfica de tendencia
ggplot() +
geom_point(data = datos, aes(x = estatura, y = peso), colour='blue') +
geom_line(aes( x = datos$estatura, y = predict(modelo, datos)), color = "red") +
xlab("Estarura") +
ylab("Peso") +
ggtitle("Linea de tendencia sobre Conjunto de Datos")
4.5. Predecir conforme al modelo
x <- c(150, 160, 170, 175, 185, 190)
prediccion <- predict(object = modelo, newdata = data.frame(estatura = x))
prediccion
## 1 2 3 4 5 6
## 47.63126 57.80743 67.98360 73.07168 83.24785 88.33593
# Comprobar
y = a + b * x
y
## [1] 47.63126 57.80743 67.98360 73.07168 83.24785 88.33593
###¿DE QUE TRATA EL EJERCICIO? Ejer1: Sobre una empresa que invierte tales cantidades de dinero en comerciales Ejer2: De las medidas de solidos y demanda del oxígeno químico Ejer3: Sobre peso y estatura de personas, sobre el cuerpo humano
###¿QUE SIGNIFICADO TIENE LAS VARIABLES? Ejer1: Las variables nos ayudan a saber las ventas que hubo de cada comercial semanal Ejer2: Las cantidades de Solido y Liquido que nos muestran Ejer3: Cada peso y estatura de la persona
###¿CUAL ES EL VALOR DEL COEFICIENTE DE LA CORRELACION Y QUE PRESENTA? Ejer1: 0.9006177 Ejer2: 0.9554794 Ejer3: 0.7173011
#¿QUE REPRESENTAN LOS COEFICIENTES A Y B EN LA ECUACION DE MINIMOS CUADRADOS? Ejer1: A= 36.13147 B=4.840637 Ejer2: A=3.829633 B=0.9036432 Ejer3: A=-105.0113 B=1.017617