PA ~ RE Pre-COVID

## Cumulative Link Mixed Model fitted with the Laplace approximation
## 
## formula: PA_avg ~ roaming_entropy + time_of_day + precipi + mean_temp +  
##     distance + dow + (1 | subject)
## data:    prelockdown_df
## 
##  link  threshold nobs logLik   AIC      niter     max.grad cond.H 
##  logit flexible  3641 -7125.25 14292.50 947(5694) 9.67e+02 4.4e+07
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  subject (Intercept) 1        1       
## Number of groups:  subject 235 
## 
## Coefficients:
##                   Estimate Std. Error z value   Pr(>|z|)    
## roaming_entropy  0.0652305  0.0382167   1.707   0.087848 .  
## time_of_day      0.0037489  0.0016821   2.229   0.025834 *  
## precipi          0.1878410  0.1889456   0.994   0.320148    
## mean_temp       -0.0003247  0.0043412  -0.075   0.940386    
## distance         0.0005124  0.0001761   2.909   0.003620 ** 
## dowMonday       -0.4157430  0.1212903  -3.428   0.000609 ***
## dowSaturday      0.3185232  0.1267141   2.514   0.011947 *  
## dowSunday        0.0221409  0.1248485   0.177   0.859239    
## dowThursday     -0.2321306  0.1120745  -2.071   0.038339 *  
## dowTuesday      -0.4907971  0.1084601  -4.525 0.00000604 ***
## dowWednesday    -0.5463119  0.1140096  -4.792 0.00000165 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##                  Estimate Std. Error z value
## [0,10]|(10,20]    -3.6150     0.3752  -9.634
## (10,20]|(20,30]   -2.7333     0.3678  -7.431
## (20,30]|(30,40]   -1.8912     0.3647  -5.185
## (30,40]|(40,50]   -1.1212     0.3636  -3.084
## (40,50]|(50,60]   -0.3159     0.3632  -0.870
## (50,60]|(60,70]    0.7518     0.3633   2.069
## (60,70]|(70,80]    1.5507     0.3640   4.260
## (70,80]|(80,90]    2.5294     0.3663   6.905
## (80,90]|(90,100]   3.8354     0.3765  10.187
## (5150 observations deleted due to missingness)
## Cumulative Link Mixed Model fitted with the Laplace approximation
## 
## formula: PA_avg ~ roaming_entropy + dow + (1 | subject)
## data:    prelockdown_df
## 
##  link  threshold nobs logLik   AIC      niter       max.grad cond.H 
##  logit flexible  3662 -7088.04 14210.07 3069(21879) 9.67e-03 5.4e+02
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  subject (Intercept) 1.433    1.197   
## Number of groups:  subject 235 
## 
## Coefficients:
##                 Estimate Std. Error z value Pr(>|z|)    
## roaming_entropy  0.11186    0.03905   2.864  0.00418 ** 
## dowMonday       -0.56784    0.11547  -4.918 8.76e-07 ***
## dowSaturday      0.32865    0.13034   2.521  0.01169 *  
## dowSunday        0.03934    0.12121   0.325  0.74552    
## dowThursday     -0.35165    0.11267  -3.121  0.00180 ** 
## dowTuesday      -0.65819    0.10665  -6.171 6.78e-10 ***
## dowWednesday    -0.73400    0.11452  -6.409 1.46e-10 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##                  Estimate Std. Error z value
## [0,10]|(10,20]    -4.3904     0.2006 -21.888
## (10,20]|(20,30]   -3.4224     0.1832 -18.678
## (20,30]|(30,40]   -2.4590     0.1718 -14.312
## (30,40]|(40,50]   -1.5430     0.1654  -9.331
## (40,50]|(50,60]   -0.5435     0.1614  -3.367
## (50,60]|(60,70]    0.7943     0.1598   4.971
## (60,70]|(70,80]    1.8006     0.1617  11.134
## (70,80]|(80,90]    2.9820     0.1688  17.667
## (80,90]|(90,100]   4.4422     0.1953  22.751
## (5129 observations deleted due to missingness)
##               df      BIC
## complex_PA_RE 21 14422.70
## simple_PA_RE  17 14315.57

PA ~ NL Pre_COVID

## Cumulative Link Mixed Model fitted with the Laplace approximation
## 
## formula: PA_avg ~ novel_locations + time_of_day + precipi + mean_temp +  
##     distance + dow + (1 | subject)
## data:    prelockdown_df
## 
##  link  threshold nobs logLik   AIC      niter     max.grad cond.H 
##  logit flexible  3420 -6665.85 13373.71 976(6833) 4.16e+02 4.2e+07
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  subject (Intercept) 1        1       
## Number of groups:  subject 235 
## 
## Coefficients:
##                   Estimate Std. Error z value   Pr(>|z|)    
## novel_locations  0.0028593  0.0008107   3.527    0.00042 ***
## time_of_day      0.0049121  0.0017398   2.823    0.00475 ** 
## precipi          0.1502531  0.1922590   0.782    0.43450    
## mean_temp       -0.0016945  0.0044388  -0.382    0.70264    
## distance         0.0003494  0.0001876   1.862    0.06256 .  
## dowMonday       -0.4026345  0.1298616  -3.100    0.00193 ** 
## dowSaturday      0.2596591  0.1292769   2.009    0.04458 *  
## dowSunday       -0.0381263  0.1270206  -0.300    0.76406    
## dowThursday     -0.2428680  0.1185636  -2.048    0.04052 *  
## dowTuesday      -0.4970509  0.1151696  -4.316 0.00001590 ***
## dowWednesday    -0.5531493  0.1228821  -4.501 0.00000675 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##                  Estimate Std. Error z value
## [0,10]|(10,20]    -3.7937     0.3761 -10.088
## (10,20]|(20,30]   -2.9061     0.3679  -7.899
## (20,30]|(30,40]   -2.0405     0.3644  -5.600
## (30,40]|(40,50]   -1.2555     0.3630  -3.459
## (40,50]|(50,60]   -0.4420     0.3625  -1.219
## (50,60]|(60,70]    0.6399     0.3627   1.764
## (60,70]|(70,80]    1.4554     0.3634   4.004
## (70,80]|(80,90]    2.4238     0.3659   6.624
## (80,90]|(90,100]   3.7318     0.3767   9.906
## (5371 observations deleted due to missingness)
## Cumulative Link Mixed Model fitted with the Laplace approximation
## 
## formula: PA_avg ~ novel_locations + dow + (1 | subject)
## data:    prelockdown_df
## 
##  link  threshold nobs logLik   AIC      niter       max.grad cond.H 
##  logit flexible  3437 -6625.87 13285.75 1858(10764) 4.81e-02 3.6e+05
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  subject (Intercept) 1.433    1.197   
## Number of groups:  subject 235 
## 
## Coefficients:
##                   Estimate Std. Error z value     Pr(>|z|)    
## novel_locations  0.0043990  0.0008069   5.452 0.0000000499 ***
## dowMonday       -0.5038750  0.1232876  -4.087 0.0000437006 ***
## dowSaturday      0.2528236  0.1323125   1.911      0.05603 .  
## dowSunday       -0.0233209  0.1222457  -0.191      0.84871    
## dowThursday     -0.3266762  0.1183636  -2.760      0.00578 ** 
## dowTuesday      -0.6040223  0.1128205  -5.354 0.0000000861 ***
## dowWednesday    -0.6861972  0.1227262  -5.591 0.0000000225 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##                  Estimate Std. Error z value
## [0,10]|(10,20]    -4.4981     0.1740 -25.856
## (10,20]|(20,30]   -3.5236     0.1511 -23.325
## (20,30]|(30,40]   -2.5390     0.1396 -18.185
## (30,40]|(40,50]   -1.6081     0.1344 -11.969
## (40,50]|(50,60]   -0.6027     0.1318  -4.574
## (50,60]|(60,70]    0.7521     0.1319   5.702
## (60,70]|(70,80]    1.7809     0.1355  13.145
## (70,80]|(80,90]    2.9515     0.1450  20.349
## (80,90]|(90,100]   4.4187     0.1776  24.880
## (5354 observations deleted due to missingness)
##               df      BIC
## complex_PA_NL 21 13502.59
## simple_PA_NL  17 13390.17

RE ~ Lockdown

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: roaming_entropy ~ lockdown + dow + (1 | subject)
##    Data: df
## 
## REML criterion at convergence: 46507.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6833 -0.6404  0.0222  0.6097  8.6211 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept) 0.1156   0.3401  
##  Residual             0.6390   0.7994  
## Number of obs: 19172, groups:  subject, 235
## 
## Fixed effects:
##                 Estimate  Std. Error          df  t value      Pr(>|t|)    
## (Intercept)      2.59260     0.02763   493.30891   93.842       < 2e-16 ***
## lockdown        -1.34856     0.01187 19054.67173 -113.589       < 2e-16 ***
## dowMonday       -0.20248     0.02165 18936.52818   -9.353       < 2e-16 ***
## dowSaturday     -0.20032     0.02202 18936.83937   -9.098       < 2e-16 ***
## dowSunday       -0.45077     0.02186 18936.88070  -20.625       < 2e-16 ***
## dowThursday     -0.08876     0.02128 18936.03837   -4.170 0.00003054320 ***
## dowTuesday      -0.18032     0.02136 18936.26949   -8.442       < 2e-16 ***
## dowWednesday    -0.12957     0.02141 18936.26352   -6.053 0.00000000145 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) lckdwn dwMndy dwStrd dwSndy dwThrs dwTsdy
## lockdown    -0.223                                          
## dowMonday   -0.385 -0.009                                   
## dowSaturday -0.374 -0.031  0.486                            
## dowSunday   -0.386  0.007  0.490  0.481                     
## dowThursday -0.392 -0.010  0.503  0.495  0.498              
## dowTuesday  -0.393  0.003  0.501  0.493  0.497  0.510       
## dowWednesdy -0.393  0.005  0.500  0.492  0.495  0.509  0.507

NL ~ Lockdown

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: novel_locations ~ lockdown + dow + (1 | subject)
##    Data: df
## 
## REML criterion at convergence: 185466.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.4387 -0.5147 -0.1926  0.2190 20.6703 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept)  290.3   17.04   
##  Residual             2189.2   46.79   
## Number of obs: 17564, groups:  subject, 235
## 
## Fixed effects:
##                Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     58.8001     1.5109   655.0832  38.918  < 2e-16 ***
## lockdown       -21.7792     0.7371 17488.2891 -29.547  < 2e-16 ***
## dowMonday      -16.2337     1.3244 17332.0708 -12.258  < 2e-16 ***
## dowSaturday      2.0289     1.3488 17332.7142   1.504    0.133    
## dowSunday       -9.1652     1.3381 17332.8055  -6.849 7.67e-12 ***
## dowThursday     -8.5521     1.2998 17331.3345  -6.579 4.86e-11 ***
## dowTuesday     -14.6391     1.3053 17331.7128 -11.215  < 2e-16 ***
## dowWednesday   -13.1107     1.3081 17331.6686 -10.023  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) lckdwn dwMndy dwStrd dwSndy dwThrs dwTsdy
## lockdown    -0.277                                          
## dowMonday   -0.430 -0.010                                   
## dowSaturday -0.415 -0.037  0.485                            
## dowSunday   -0.430  0.006  0.489  0.480                     
## dowThursday -0.438 -0.010  0.503  0.494  0.498              
## dowTuesday  -0.440  0.003  0.501  0.492  0.496  0.511       
## dowWednesdy -0.440  0.006  0.500  0.491  0.495  0.509  0.508

PA ~ Lockdown

## Cumulative Link Mixed Model fitted with the Laplace approximation
## 
## formula: PA_avg ~ lockdown + dow + (1 | subject)
## data:    df
## 
##  link  threshold nobs logLik    AIC      niter       max.grad cond.H 
##  logit flexible  6969 -13463.98 26961.95 3637(22125) 8.98e-03 4.5e+02
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  subject (Intercept) 1.519    1.232   
## Number of groups:  subject 235 
## 
## Coefficients:
##              Estimate Std. Error z value   Pr(>|z|)    
## lockdown     -0.48329    0.04443 -10.878    < 2e-16 ***
## dowMonday    -0.39208    0.08061  -4.864 0.00000115 ***
## dowSaturday   0.25640    0.08608   2.979    0.00289 ** 
## dowSunday     0.11099    0.08511   1.304    0.19219    
## dowThursday  -0.19452    0.08070  -2.410    0.01594 *  
## dowTuesday   -0.35268    0.07961  -4.430 0.00000943 ***
## dowWednesday -0.37547    0.08282  -4.534 0.00000580 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##                  Estimate Std. Error z value
## [0,10]|(10,20]    -4.3214     0.1238 -34.897
## (10,20]|(20,30]   -3.3904     0.1133 -29.912
## (20,30]|(30,40]   -2.5259     0.1084 -23.297
## (30,40]|(40,50]   -1.6373     0.1058 -15.477
## (40,50]|(50,60]   -0.6323     0.1044  -6.059
## (50,60]|(60,70]    0.6750     0.1044   6.462
## (60,70]|(70,80]    1.6953     0.1067  15.884
## (70,80]|(80,90]    2.8419     0.1133  25.079
## (80,90]|(90,100]   4.2599     0.1359  31.351
## (21317 observations deleted due to missingness)

NA ~ Lockdown

## Cumulative Link Mixed Model fitted with the Laplace approximation
## 
## formula: NA_avg ~ lockdown + dow + (1 | subject)
## data:    df
## 
##  link  threshold nobs logLik    AIC      niter       max.grad cond.H 
##  logit flexible  6969 -13373.03 26780.06 3122(31223) 1.17e-02 5.9e+02
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  subject (Intercept) 2.531    1.591   
## Number of groups:  subject 235 
## 
## Coefficients:
##              Estimate Std. Error z value      Pr(>|z|)    
## lockdown      0.26086    0.04411   5.914 0.00000000335 ***
## dowMonday     0.23095    0.08073   2.861       0.00423 ** 
## dowSaturday  -0.18561    0.08629  -2.151       0.03147 *  
## dowSunday    -0.13022    0.08506  -1.531       0.12579    
## dowThursday   0.10121    0.08121   1.246       0.21268    
## dowTuesday    0.24428    0.07954   3.071       0.00213 ** 
## dowWednesday  0.22206    0.08263   2.687       0.00720 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##                  Estimate Std. Error z value
## [0,10]|(10,20]    -3.3004     0.1325 -24.914
## (10,20]|(20,30]   -2.0596     0.1264 -16.289
## (20,30]|(30,40]   -1.0707     0.1243  -8.616
## (30,40]|(40,50]   -0.1516     0.1235  -1.228
## (40,50]|(50,60]    0.8460     0.1238   6.833
## (50,60]|(60,70]    2.0794     0.1258  16.523
## (60,70]|(70,80]    2.9564     0.1290  22.919
## (70,80]|(80,90]    4.0365     0.1367  29.523
## (80,90]|(90,100]   5.0682     0.1521  33.327
## (21317 observations deleted due to missingness)

PA ~ RE * Lockdown

## Cumulative Link Mixed Model fitted with the Laplace approximation
## 
## formula: PA_avg ~ roaming_entropy * lockdown + dow + (1 | subject)
## data:    df
## 
##  link  threshold nobs logLik    AIC      niter       max.grad cond.H 
##  logit flexible  6969 -13452.61 26943.22 3990(20588) 2.48e-02 7.7e+02
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  subject (Intercept) 1.517    1.232   
## Number of groups:  subject 235 
## 
## Coefficients:
##                          Estimate Std. Error z value   Pr(>|z|)    
## roaming_entropy           0.08164    0.03622   2.254    0.02420 *  
## lockdown                 -0.46561    0.10430  -4.464 0.00000803 ***
## dowMonday                -0.37077    0.08080  -4.589 0.00000446 ***
## dowSaturday               0.24824    0.08678   2.860    0.00423 ** 
## dowSunday                 0.14974    0.08666   1.728    0.08398 .  
## dowThursday              -0.19416    0.08066  -2.407    0.01608 *  
## dowTuesday               -0.34955    0.07964  -4.389 0.00001139 ***
## dowWednesday             -0.35776    0.08298  -4.311 0.00001623 ***
## roaming_entropy:lockdown  0.11651    0.05751   2.026    0.04278 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##                  Estimate Std. Error z value
## [0,10]|(10,20]    -4.1189     0.1538 -26.784
## (10,20]|(20,30]   -3.1881     0.1454 -21.926
## (20,30]|(30,40]   -2.3228     0.1415 -16.410
## (30,40]|(40,50]   -1.4329     0.1396 -10.264
## (40,50]|(50,60]   -0.4262     0.1386  -3.075
## (50,60]|(60,70]    0.8832     0.1389   6.357
## (60,70]|(70,80]    1.9057     0.1410  13.518
## (70,80]|(80,90]    3.0551     0.1463  20.882
## (80,90]|(90,100]   4.4754     0.1647  27.168
## (21317 observations deleted due to missingness)

PA ~ NL * Lockdown

## Cumulative Link Mixed Model fitted with the Laplace approximation
## 
## formula: PA_avg ~ novel_locations * lockdown + dow + (1 | subject)
## data:    df
## 
##  link  threshold nobs logLik    AIC      niter       max.grad cond.H 
##  logit flexible  6744 -12990.53 26019.05 2671(17433) 1.22e-01 4.4e+05
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  subject (Intercept) 1.526    1.235   
## Number of groups:  subject 235 
## 
## Coefficients:
##                            Estimate Std. Error z value      Pr(>|z|)    
## novel_locations           0.0040804  0.0007463   5.468 0.00000004556 ***
## lockdown                 -0.3626676  0.0599309  -6.051 0.00000000144 ***
## dowMonday                -0.3288594  0.0834296  -3.942 0.00008088560 ***
## dowSaturday               0.2421304  0.0879118   2.754      0.005883 ** 
## dowSunday                 0.1434223  0.0870682   1.647      0.099508 .  
## dowThursday              -0.1702053  0.0827707  -2.056      0.039749 *  
## dowTuesday               -0.3017349  0.0819795  -3.681      0.000233 ***
## dowWednesday             -0.3091023  0.0860209  -3.593      0.000326 ***
## novel_locations:lockdown -0.0008606  0.0012185  -0.706      0.480005    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##                  Estimate Std. Error z value
## [0,10]|(10,20]    -4.1289     0.1320 -31.284
## (10,20]|(20,30]   -3.1971     0.1217 -26.260
## (20,30]|(30,40]   -2.3275     0.1170 -19.895
## (30,40]|(40,50]   -1.4316     0.1145 -12.502
## (40,50]|(50,60]   -0.4220     0.1133  -3.726
## (50,60]|(60,70]    0.8959     0.1137   7.881
## (60,70]|(70,80]    1.9336     0.1162  16.635
## (70,80]|(80,90]    3.0776     0.1228  25.052
## (80,90]|(90,100]   4.5025     0.1451  31.024
## (21542 observations deleted due to missingness)

PA ~ RE * Pre_COVID_RE Post-Lockdown

## Cumulative Link Mixed Model fitted with the Laplace approximation
## 
## formula: PA_avg ~ roaming_entropy * pre_covid_re + dow + (1 | subject)
## data:    lockdown_df
## 
##  link  threshold nobs logLik   AIC      niter       max.grad cond.H 
##  logit flexible  3307 -6302.55 12643.11 3404(30545) 4.16e-03 2.0e+04
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  subject (Intercept) 2.458    1.568   
## Number of groups:  subject 232 
## 
## Coefficients:
##                              Estimate Std. Error z value Pr(>|z|)  
## roaming_entropy               0.11670    0.35668   0.327   0.7435  
## pre_covid_re                  0.25740    0.30019   0.857   0.3912  
## dowMonday                    -0.14353    0.11613  -1.236   0.2165  
## dowSaturday                   0.27287    0.12060   2.263   0.0237 *
## dowSunday                     0.31607    0.12606   2.507   0.0122 *
## dowThursday                  -0.04496    0.11792  -0.381   0.7030  
## dowTuesday                    0.07039    0.12372   0.569   0.5694  
## dowWednesday                  0.05943    0.12335   0.482   0.6300  
## roaming_entropy:pre_covid_re  0.06534    0.13747   0.475   0.6346  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##                  Estimate Std. Error z value
## [0,10]|(10,20]    -2.9789     0.7711  -3.863
## (10,20]|(20,30]   -1.9809     0.7689  -2.576
## (20,30]|(30,40]   -1.1062     0.7680  -1.440
## (30,40]|(40,50]   -0.1490     0.7678  -0.194
## (40,50]|(50,60]    0.9630     0.7680   1.254
## (50,60]|(60,70]    2.3573     0.7687   3.067
## (60,70]|(70,80]    3.4857     0.7700   4.527
## (70,80]|(80,90]    4.6628     0.7730   6.032
## (80,90]|(90,100]   6.1138     0.7827   7.811
## (7074 observations deleted due to missingness)

PA ~ NL * Pre_COVID_RE Post-Lockdown

## Cumulative Link Mixed Model fitted with the Laplace approximation
## 
## formula: PA_avg ~ novel_locations * pre_covid_re + dow + (1 | subject)
## data:    lockdown_df
## 
##  link  threshold nobs logLik   AIC      niter       max.grad cond.H 
##  logit flexible  3307 -6307.92 12653.84 2310(20662) 4.04e-01 3.6e+07
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  subject (Intercept) 2.447    1.564   
## Number of groups:  subject 232 
## 
## Coefficients:
##                               Estimate Std. Error z value Pr(>|z|)  
## novel_locations               0.008696   0.009272   0.938   0.3483  
## pre_covid_re                  0.358625   0.286474   1.252   0.2106  
## dowMonday                    -0.153099   0.116123  -1.318   0.1874  
## dowSaturday                   0.282818   0.120671   2.344   0.0191 *
## dowSunday                     0.316794   0.126113   2.512   0.0120 *
## dowThursday                  -0.043377   0.118140  -0.367   0.7135  
## dowTuesday                    0.078511   0.123663   0.635   0.5255  
## dowWednesday                  0.049843   0.123363   0.404   0.6862  
## novel_locations:pre_covid_re -0.001485   0.003501  -0.424   0.6714  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##                  Estimate Std. Error z value
## [0,10]|(10,20]   -2.87620    0.73844  -3.895
## (10,20]|(20,30]  -1.87875    0.73597  -2.553
## (20,30]|(30,40]  -1.00561    0.73505  -1.368
## (30,40]|(40,50]  -0.05008    0.73482  -0.068
## (40,50]|(50,60]   1.05913    0.73512   1.441
## (50,60]|(60,70]   2.45073    0.73593   3.330
## (60,70]|(70,80]   3.57897    0.73731   4.854
## (70,80]|(80,90]   4.75377    0.74042   6.420
## (80,90]|(90,100]  6.20007    0.75051   8.261
## (7074 observations deleted due to missingness)

Notch Analysis

## Cumulative Link Mixed Model fitted with the Laplace approximation
## 
## formula: PA_avg ~ bs(novel_locations, knots = c(1, 26), degree = 1) +  
##     dow + (1 | subject)
## data:    prelockdown_df
## 
##  link  threshold nobs logLik   AIC      niter       max.grad cond.H 
##  logit flexible  3437 -6625.63 13289.26 2899(17401) 9.17e-03 1.7e+03
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  subject (Intercept) 1.435    1.198   
## Number of groups:  subject 235 
## 
## Coefficients:
##                                                    Estimate Std. Error z value
## bs(novel_locations, knots = c(1, 26), degree = 1)1 -0.06694    0.20048  -0.334
## bs(novel_locations, knots = c(1, 26), degree = 1)2 -0.00211    0.17952  -0.012
## bs(novel_locations, knots = c(1, 26), degree = 1)3  4.50400    0.90412   4.982
## dowMonday                                          -0.50281    0.12335  -4.076
## dowSaturday                                         0.24958    0.13264   1.882
## dowSunday                                          -0.03350    0.12336  -0.272
## dowThursday                                        -0.32257    0.11859  -2.720
## dowTuesday                                         -0.60041    0.11296  -5.315
## dowWednesday                                       -0.68443    0.12286  -5.571
##                                                        Pr(>|z|)    
## bs(novel_locations, knots = c(1, 26), degree = 1)1      0.73847    
## bs(novel_locations, knots = c(1, 26), degree = 1)2      0.99062    
## bs(novel_locations, knots = c(1, 26), degree = 1)3 0.0000006305 ***
## dowMonday                                          0.0000457559 ***
## dowSaturday                                             0.05988 .  
## dowSunday                                               0.78598    
## dowThursday                                             0.00653 ** 
## dowTuesday                                         0.0000001066 ***
## dowWednesday                                       0.0000000254 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##                  Estimate Std. Error z value
## [0,10]|(10,20]    -4.5966     0.2396 -19.184
## (10,20]|(20,30]   -3.6219     0.2233 -16.221
## (20,30]|(30,40]   -2.6371     0.2155 -12.234
## (30,40]|(40,50]   -1.7061     0.2123  -8.036
## (40,50]|(50,60]   -0.7007     0.2108  -3.324
## (50,60]|(60,70]    0.6543     0.2106   3.107
## (60,70]|(70,80]    1.6833     0.2126   7.918
## (70,80]|(80,90]    2.8541     0.2185  13.061
## (80,90]|(90,100]   4.3215     0.2411  17.927
## (5354 observations deleted due to missingness)
## Cumulative Link Mixed Model fitted with the Laplace approximation
## 
## formula: PA_avg ~ bs(novel_locations, knots = c(1, 26), degree = 1) +  
##     dow + (1 | subject)
## data:    lockdown_df
## 
##  link  threshold nobs logLik   AIC      niter       max.grad cond.H 
##  logit flexible  3307 -6299.69 12637.37 3416(30979) 2.61e-03 3.3e+03
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  subject (Intercept) 2.479    1.575   
## Number of groups:  subject 232 
## 
## Coefficients:
##                                                    Estimate Std. Error z value
## bs(novel_locations, knots = c(1, 26), degree = 1)1  0.23613    0.09754   2.421
## bs(novel_locations, knots = c(1, 26), degree = 1)2  0.50247    0.09785   5.135
## bs(novel_locations, knots = c(1, 26), degree = 1)3  2.36716    1.37679   1.719
## dowMonday                                          -0.12631    0.11631  -1.086
## dowSaturday                                         0.28738    0.12071   2.381
## dowSunday                                           0.33071    0.12616   2.621
## dowThursday                                        -0.02875    0.11798  -0.244
## dowTuesday                                          0.08326    0.12373   0.673
## dowWednesday                                        0.06001    0.12352   0.486
##                                                       Pr(>|z|)    
## bs(novel_locations, knots = c(1, 26), degree = 1)1     0.01549 *  
## bs(novel_locations, knots = c(1, 26), degree = 1)2 0.000000282 ***
## bs(novel_locations, knots = c(1, 26), degree = 1)3     0.08555 .  
## dowMonday                                              0.27748    
## dowSaturday                                            0.01727 *  
## dowSunday                                              0.00876 ** 
## dowThursday                                            0.80746    
## dowTuesday                                             0.50099    
## dowWednesday                                           0.62707    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##                  Estimate Std. Error z value
## [0,10]|(10,20]    -3.5972     0.1719 -20.927
## (10,20]|(20,30]   -2.6000     0.1583 -16.425
## (20,30]|(30,40]   -1.7244     0.1526 -11.303
## (30,40]|(40,50]   -0.7649     0.1499  -5.103
## (40,50]|(50,60]    0.3494     0.1495   2.336
## (50,60]|(60,70]    1.7472     0.1527  11.441
## (60,70]|(70,80]    2.8783     0.1592  18.080
## (70,80]|(80,90]    4.0553     0.1726  23.489
## (80,90]|(90,100]   5.5058     0.2119  25.989
## (7074 observations deleted due to missingness)
## Cumulative Link Mixed Model fitted with the Laplace approximation
## 
## formula: PA_avg ~ bs(novel_locations, knots = c(1, 26), degree = 1) *  
##     lockdown + dow + (1 | subject)
## data:    df
## 
##  link  threshold nobs logLik    AIC      niter       max.grad cond.H 
##  logit flexible  6744 -12982.51 26011.02 4648(23910) 3.98e-02 1.1e+04
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  subject (Intercept) 1.53     1.237   
## Number of groups:  subject 235 
## 
## Coefficients:
##                                                             Estimate Std. Error
## bs(novel_locations, knots = c(1, 26), degree = 1)1          -0.08912    0.19318
## bs(novel_locations, knots = c(1, 26), degree = 1)2          -0.10604    0.17205
## bs(novel_locations, knots = c(1, 26), degree = 1)3           4.57550    0.86392
## lockdown                                                    -0.67316    0.17128
## dowMonday                                                   -0.31614    0.08353
## dowSaturday                                                  0.24369    0.08801
## dowSunday                                                    0.13761    0.08753
## dowThursday                                                 -0.15849    0.08285
## dowTuesday                                                  -0.29557    0.08208
## dowWednesday                                                -0.30317    0.08612
## bs(novel_locations, knots = c(1, 26), degree = 1)1:lockdown  0.29651    0.21154
## bs(novel_locations, knots = c(1, 26), degree = 1)2:lockdown  0.47558    0.18958
## bs(novel_locations, knots = c(1, 26), degree = 1)3:lockdown -3.52081    1.57372
##                                                             z value    Pr(>|z|)
## bs(novel_locations, knots = c(1, 26), degree = 1)1           -0.461    0.644560
## bs(novel_locations, knots = c(1, 26), degree = 1)2           -0.616    0.537677
## bs(novel_locations, knots = c(1, 26), degree = 1)3            5.296 0.000000118
## lockdown                                                     -3.930 0.000084881
## dowMonday                                                    -3.785    0.000154
## dowSaturday                                                   2.769    0.005623
## dowSunday                                                     1.572    0.115906
## dowThursday                                                  -1.913    0.055760
## dowTuesday                                                   -3.601    0.000317
## dowWednesday                                                 -3.520    0.000431
## bs(novel_locations, knots = c(1, 26), degree = 1)1:lockdown   1.402    0.161015
## bs(novel_locations, knots = c(1, 26), degree = 1)2:lockdown   2.509    0.012121
## bs(novel_locations, knots = c(1, 26), degree = 1)3:lockdown  -2.237    0.025270
##                                                                
## bs(novel_locations, knots = c(1, 26), degree = 1)1             
## bs(novel_locations, knots = c(1, 26), degree = 1)2             
## bs(novel_locations, knots = c(1, 26), degree = 1)3          ***
## lockdown                                                    ***
## dowMonday                                                   ***
## dowSaturday                                                 ** 
## dowSunday                                                      
## dowThursday                                                 .  
## dowTuesday                                                  ***
## dowWednesday                                                ***
## bs(novel_locations, knots = c(1, 26), degree = 1)1:lockdown    
## bs(novel_locations, knots = c(1, 26), degree = 1)2:lockdown *  
## bs(novel_locations, knots = c(1, 26), degree = 1)3:lockdown *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##                  Estimate Std. Error z value
## [0,10]|(10,20]    -4.2984     0.2065 -20.813
## (10,20]|(20,30]   -3.3655     0.1997 -16.850
## (20,30]|(30,40]   -2.4943     0.1967 -12.682
## (30,40]|(40,50]   -1.5966     0.1952  -8.178
## (40,50]|(50,60]   -0.5848     0.1946  -3.006
## (50,60]|(60,70]    0.7353     0.1947   3.776
## (60,70]|(70,80]    1.7740     0.1961   9.046
## (70,80]|(80,90]    2.9188     0.2000  14.595
## (80,90]|(90,100]   4.3445     0.2144  20.268
## (21542 observations deleted due to missingness)

## Cumulative Link Mixed Model fitted with the Laplace approximation
## 
## formula: PA_avg ~ bs(novel_locations, knots = c(1, 26), degree = 1) *  
##     lockdown + dow + (1 | subject)
## data:    distance_less_than_100_km
## 
##  link  threshold nobs logLik    AIC      niter       max.grad cond.H 
##  logit flexible  6566 -12604.55 25255.09 4790(24353) 9.31e-03 2.5e+03
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  subject (Intercept) 1.575    1.255   
## Number of groups:  subject 235 
## 
## Coefficients:
##                                                             Estimate Std. Error
## bs(novel_locations, knots = c(1, 26), degree = 1)1          -0.08145    0.19351
## bs(novel_locations, knots = c(1, 26), degree = 1)2          -0.13334    0.17346
## bs(novel_locations, knots = c(1, 26), degree = 1)3           1.39159    0.37713
## lockdown                                                    -0.68355    0.17134
## dowMonday                                                   -0.30736    0.08462
## dowSaturday                                                  0.26608    0.09021
## dowSunday                                                    0.11782    0.08962
## dowThursday                                                 -0.16323    0.08397
## dowTuesday                                                  -0.29063    0.08323
## dowWednesday                                                -0.31261    0.08707
## bs(novel_locations, knots = c(1, 26), degree = 1)1:lockdown  0.28481    0.21205
## bs(novel_locations, knots = c(1, 26), degree = 1)2:lockdown  0.55291    0.19300
## bs(novel_locations, knots = c(1, 26), degree = 1)3:lockdown -1.38521    0.70027
##                                                             z value  Pr(>|z|)
## bs(novel_locations, knots = c(1, 26), degree = 1)1           -0.421  0.673840
## bs(novel_locations, knots = c(1, 26), degree = 1)2           -0.769  0.442061
## bs(novel_locations, knots = c(1, 26), degree = 1)3            3.690  0.000224
## lockdown                                                     -3.989 0.0000663
## dowMonday                                                    -3.632  0.000281
## dowSaturday                                                   2.950  0.003182
## dowSunday                                                     1.315  0.188623
## dowThursday                                                  -1.944  0.051916
## dowTuesday                                                   -3.492  0.000479
## dowWednesday                                                 -3.590  0.000330
## bs(novel_locations, knots = c(1, 26), degree = 1)1:lockdown   1.343  0.179226
## bs(novel_locations, knots = c(1, 26), degree = 1)2:lockdown   2.865  0.004172
## bs(novel_locations, knots = c(1, 26), degree = 1)3:lockdown  -1.978  0.047914
##                                                                
## bs(novel_locations, knots = c(1, 26), degree = 1)1             
## bs(novel_locations, knots = c(1, 26), degree = 1)2             
## bs(novel_locations, knots = c(1, 26), degree = 1)3          ***
## lockdown                                                    ***
## dowMonday                                                   ***
## dowSaturday                                                 ** 
## dowSunday                                                      
## dowThursday                                                 .  
## dowTuesday                                                  ***
## dowWednesday                                                ***
## bs(novel_locations, knots = c(1, 26), degree = 1)1:lockdown    
## bs(novel_locations, knots = c(1, 26), degree = 1)2:lockdown ** 
## bs(novel_locations, knots = c(1, 26), degree = 1)3:lockdown *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##                  Estimate Std. Error z value
## [0,10]|(10,20]    -4.3294     0.2077 -20.844
## (10,20]|(20,30]   -3.3894     0.2007 -16.885
## (20,30]|(30,40]   -2.5141     0.1976 -12.722
## (30,40]|(40,50]   -1.6074     0.1961  -8.195
## (40,50]|(50,60]   -0.5880     0.1954  -3.009
## (50,60]|(60,70]    0.7415     0.1956   3.791
## (60,70]|(70,80]    1.7957     0.1971   9.112
## (70,80]|(80,90]    2.9515     0.2013  14.664
## (80,90]|(90,100]   4.4033     0.2171  20.281
## (21720 observations deleted due to missingness)

##                                      df      BIC
## PA_NL_PreLD_notch                    19 13405.97
## PA_NL_PostLD_notch                   19 12753.35
## PA_NL_LD_notch                       23 26167.80
## PA_NL_LD_notch_controldistance_100KM 23 25411.26

Z Notch Analysis

## Cumulative Link Mixed Model fitted with the Laplace approximation
## 
## formula: 
## PA_avg ~ bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1) *  
##     lockdown + dow + (1 | subject)
## data:    distance_less_than_100_km
## 
##  link  threshold nobs logLik    AIC      niter       max.grad cond.H 
##  logit flexible  6566 -12609.92 25265.83 5264(26697) 5.18e-03 9.3e+03
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  subject (Intercept) 1.576    1.255   
## Number of groups:  subject 235 
## 
## Coefficients:
##                                                                         Estimate
## bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1)1           0.63641
## bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1)2           0.50598
## bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1)3           2.21033
## lockdown                                                                -0.27149
## dowMonday                                                               -0.31327
## dowSaturday                                                              0.26219
## dowSunday                                                                0.11963
## dowThursday                                                             -0.17322
## dowTuesday                                                              -0.29749
## dowWednesday                                                            -0.31952
## bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1)1:lockdown -0.24666
## bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1)2:lockdown  0.06114
## bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1)3:lockdown -1.34389
##                                                                         Std. Error
## bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1)1             0.40621
## bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1)2             0.35995
## bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1)3             0.58717
## lockdown                                                                   0.41226
## dowMonday                                                                  0.08464
## dowSaturday                                                                0.09024
## dowSunday                                                                  0.08963
## dowThursday                                                                0.08400
## dowTuesday                                                                 0.08321
## dowWednesday                                                               0.08704
## bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1)1:lockdown    0.47432
## bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1)2:lockdown    0.41612
## bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1)3:lockdown    1.04221
##                                                                         z value
## bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1)1            1.567
## bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1)2            1.406
## bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1)3            3.764
## lockdown                                                                 -0.659
## dowMonday                                                                -3.701
## dowSaturday                                                               2.906
## dowSunday                                                                 1.335
## dowThursday                                                              -2.062
## dowTuesday                                                               -3.575
## dowWednesday                                                             -3.671
## bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1)1:lockdown  -0.520
## bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1)2:lockdown   0.147
## bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1)3:lockdown  -1.289
##                                                                         Pr(>|z|)
## bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1)1          0.117180
## bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1)2          0.159814
## bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1)3          0.000167
## lockdown                                                                0.510189
## dowMonday                                                               0.000214
## dowSaturday                                                             0.003667
## dowSunday                                                               0.181938
## dowThursday                                                             0.039191
## dowTuesday                                                              0.000350
## dowWednesday                                                            0.000242
## bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1)1:lockdown 0.603044
## bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1)2:lockdown 0.883195
## bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1)3:lockdown 0.197235
##                                                                            
## bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1)1             
## bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1)2             
## bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1)3          ***
## lockdown                                                                   
## dowMonday                                                               ***
## dowSaturday                                                             ** 
## dowSunday                                                                  
## dowThursday                                                             *  
## dowTuesday                                                              ***
## dowWednesday                                                            ***
## bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1)1:lockdown    
## bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1)2:lockdown    
## bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1)3:lockdown    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##                  Estimate Std. Error z value
## [0,10]|(10,20]   -3.69795    0.38009  -9.729
## (10,20]|(20,30]  -2.75958    0.37661  -7.327
## (20,30]|(30,40]  -1.88515    0.37514  -5.025
## (30,40]|(40,50]  -0.97915    0.37458  -2.614
## (40,50]|(50,60]   0.03911    0.37447   0.104
## (50,60]|(60,70]   1.36687    0.37471   3.648
## (60,70]|(70,80]   2.41999    0.37557   6.444
## (70,80]|(80,90]   3.57535    0.37804   9.458
## (80,90]|(90,100]  5.02717    0.38704  12.989
## (21720 observations deleted due to missingness)

## [1] "100km did not converge so the following model is all data"
## Cumulative Link Mixed Model fitted with the Laplace approximation
## 
## formula: PA_avg ~ bs(within_subjects_lockdown_z_NL, knots = c(-0.725,  
##     -0.3), degree = 1) * lockdown + dow + (1 | subject)
## data:    df
## 
##  link  threshold nobs logLik    AIC      niter       max.grad cond.H 
##  logit flexible  6738 -12972.21 25990.42 5523(29008) 1.10e-02 1.2e+04
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  subject (Intercept) 1.538    1.24    
## Number of groups:  subject 235 
## 
## Coefficients:
##                                                                                  Estimate
## bs(within_subjects_lockdown_z_NL, knots = c(-0.725, -0.3), degree = 1)1          -0.06150
## bs(within_subjects_lockdown_z_NL, knots = c(-0.725, -0.3), degree = 1)2          -0.07005
## bs(within_subjects_lockdown_z_NL, knots = c(-0.725, -0.3), degree = 1)3           2.40839
## lockdown                                                                         -1.38783
## dowMonday                                                                        -0.32390
## dowSaturday                                                                       0.24222
## dowSunday                                                                         0.13979
## dowThursday                                                                      -0.16673
## dowTuesday                                                                       -0.29845
## dowWednesday                                                                     -0.30187
## bs(within_subjects_lockdown_z_NL, knots = c(-0.725, -0.3), degree = 1)1:lockdown  0.89758
## bs(within_subjects_lockdown_z_NL, knots = c(-0.725, -0.3), degree = 1)2:lockdown  1.04571
## bs(within_subjects_lockdown_z_NL, knots = c(-0.725, -0.3), degree = 1)3:lockdown -0.60860
##                                                                                  Std. Error
## bs(within_subjects_lockdown_z_NL, knots = c(-0.725, -0.3), degree = 1)1             0.43092
## bs(within_subjects_lockdown_z_NL, knots = c(-0.725, -0.3), degree = 1)2             0.39273
## bs(within_subjects_lockdown_z_NL, knots = c(-0.725, -0.3), degree = 1)3             0.59112
## lockdown                                                                            0.61049
## dowMonday                                                                           0.08344
## dowSaturday                                                                         0.08801
## dowSunday                                                                           0.08765
## dowThursday                                                                         0.08276
## dowTuesday                                                                          0.08198
## dowWednesday                                                                        0.08601
## bs(within_subjects_lockdown_z_NL, knots = c(-0.725, -0.3), degree = 1)1:lockdown    0.66411
## bs(within_subjects_lockdown_z_NL, knots = c(-0.725, -0.3), degree = 1)2:lockdown    0.60729
## bs(within_subjects_lockdown_z_NL, knots = c(-0.725, -0.3), degree = 1)3:lockdown    0.84734
##                                                                                  z value
## bs(within_subjects_lockdown_z_NL, knots = c(-0.725, -0.3), degree = 1)1           -0.143
## bs(within_subjects_lockdown_z_NL, knots = c(-0.725, -0.3), degree = 1)2           -0.178
## bs(within_subjects_lockdown_z_NL, knots = c(-0.725, -0.3), degree = 1)3            4.074
## lockdown                                                                          -2.273
## dowMonday                                                                         -3.882
## dowSaturday                                                                        2.752
## dowSunday                                                                          1.595
## dowThursday                                                                       -2.015
## dowTuesday                                                                        -3.640
## dowWednesday                                                                      -3.510
## bs(within_subjects_lockdown_z_NL, knots = c(-0.725, -0.3), degree = 1)1:lockdown   1.352
## bs(within_subjects_lockdown_z_NL, knots = c(-0.725, -0.3), degree = 1)2:lockdown   1.722
## bs(within_subjects_lockdown_z_NL, knots = c(-0.725, -0.3), degree = 1)3:lockdown  -0.718
##                                                                                   Pr(>|z|)
## bs(within_subjects_lockdown_z_NL, knots = c(-0.725, -0.3), degree = 1)1           0.886523
## bs(within_subjects_lockdown_z_NL, knots = c(-0.725, -0.3), degree = 1)2           0.858443
## bs(within_subjects_lockdown_z_NL, knots = c(-0.725, -0.3), degree = 1)3          0.0000462
## lockdown                                                                          0.023008
## dowMonday                                                                         0.000104
## dowSaturday                                                                       0.005923
## dowSunday                                                                         0.110737
## dowThursday                                                                       0.043950
## dowTuesday                                                                        0.000272
## dowWednesday                                                                      0.000448
## bs(within_subjects_lockdown_z_NL, knots = c(-0.725, -0.3), degree = 1)1:lockdown  0.176520
## bs(within_subjects_lockdown_z_NL, knots = c(-0.725, -0.3), degree = 1)2:lockdown  0.085085
## bs(within_subjects_lockdown_z_NL, knots = c(-0.725, -0.3), degree = 1)3:lockdown  0.472603
##                                                                                     
## bs(within_subjects_lockdown_z_NL, knots = c(-0.725, -0.3), degree = 1)1             
## bs(within_subjects_lockdown_z_NL, knots = c(-0.725, -0.3), degree = 1)2             
## bs(within_subjects_lockdown_z_NL, knots = c(-0.725, -0.3), degree = 1)3          ***
## lockdown                                                                         *  
## dowMonday                                                                        ***
## dowSaturday                                                                      ** 
## dowSunday                                                                           
## dowThursday                                                                      *  
## dowTuesday                                                                       ***
## dowWednesday                                                                     ***
## bs(within_subjects_lockdown_z_NL, knots = c(-0.725, -0.3), degree = 1)1:lockdown    
## bs(within_subjects_lockdown_z_NL, knots = c(-0.725, -0.3), degree = 1)2:lockdown .  
## bs(within_subjects_lockdown_z_NL, knots = c(-0.725, -0.3), degree = 1)3:lockdown    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##                  Estimate Std. Error z value
## [0,10]|(10,20]    -4.2854     0.4122 -10.396
## (10,20]|(20,30]   -3.3524     0.4091  -8.195
## (20,30]|(30,40]   -2.4823     0.4076  -6.089
## (30,40]|(40,50]   -1.5839     0.4070  -3.891
## (40,50]|(50,60]   -0.5739     0.4067  -1.411
## (50,60]|(60,70]    0.7471     0.4068   1.837
## (60,70]|(70,80]    1.7855     0.4073   4.383
## (70,80]|(80,90]    2.9311     0.4090   7.166
## (80,90]|(90,100]   4.3530     0.4161  10.462
## (21548 observations deleted due to missingness)

Symptom Analysis

## Cumulative Link Mixed Model fitted with the Laplace approximation
## 
## formula: PA_avg ~ pre_covid_dep * lockdown + (1 | subject)
## data:    df
## 
##  link  threshold nobs logLik    AIC      niter       max.grad cond.H 
##  logit flexible  6938 -13434.30 26894.60 2058(14066) 2.36e-02 3.1e+03
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  subject (Intercept) 1.272    1.128   
## Number of groups:  subject 234 
## 
## Coefficients:
##                        Estimate Std. Error z value      Pr(>|z|)    
## pre_covid_dep          -0.09174    0.01665  -5.512 0.00000003555 ***
## lockdown               -0.35751    0.06205  -5.761 0.00000000835 ***
## pre_covid_dep:lockdown -0.01807    0.00925  -1.954        0.0507 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##                  Estimate Std. Error z value
## [0,10]|(10,20]    -4.5650     0.1341 -34.046
## (10,20]|(20,30]   -3.6420     0.1243 -29.297
## (20,30]|(30,40]   -2.7792     0.1195 -23.249
## (30,40]|(40,50]   -1.8910     0.1168 -16.190
## (40,50]|(50,60]   -0.8939     0.1152  -7.762
## (50,60]|(60,70]    0.3998     0.1149   3.480
## (60,70]|(70,80]    1.4086     0.1166  12.082
## (70,80]|(80,90]    2.5466     0.1223  20.820
## (80,90]|(90,100]   3.9527     0.1432  27.610
## (21348 observations deleted due to missingness)

## Cumulative Link Mixed Model fitted with the Laplace approximation
## 
## formula: PA_avg ~ novel_locations * pre_covid_dep * lockdown + (1 | subject)
## data:    df
## 
##  link  threshold nobs logLik    AIC      niter       max.grad cond.H 
##  logit flexible  6713 -12942.01 25918.01 2544(16649) 1.34e+02 2.0e+07
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  subject (Intercept) 1.284    1.133   
## Number of groups:  subject 234 
## 
## Coefficients:
##                                          Estimate Std. Error z value
## novel_locations                         0.0047477  0.0010988   4.321
## pre_covid_dep                          -0.0912139  0.0173469  -5.258
## lockdown                               -0.2810953  0.0840870  -3.343
## novel_locations:pre_covid_dep           0.0000206  0.0001507   0.137
## novel_locations:lockdown                0.0022700  0.0017240   1.317
## pre_covid_dep:lockdown                 -0.0062192  0.0125484  -0.496
## novel_locations:pre_covid_dep:lockdown -0.0006571  0.0002528  -2.599
##                                           Pr(>|z|)    
## novel_locations                        0.000015551 ***
## pre_covid_dep                          0.000000145 ***
## lockdown                                  0.000829 ***
## novel_locations:pre_covid_dep             0.891300    
## novel_locations:lockdown                  0.187933    
## pre_covid_dep:lockdown                    0.620163    
## novel_locations:pre_covid_dep:lockdown    0.009345 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##                  Estimate Std. Error z value
## [0,10]|(10,20]    -4.3889     0.1362 -32.227
## (10,20]|(20,30]   -3.4610     0.1257 -27.525
## (20,30]|(30,40]   -2.5902     0.1205 -21.502
## (30,40]|(40,50]   -1.6922     0.1173 -14.430
## (40,50]|(50,60]   -0.6879     0.1152  -5.971
## (50,60]|(60,70]    0.6201     0.1140   5.440
## (60,70]|(70,80]    1.6491     0.1145  14.400
## (70,80]|(80,90]    2.7873     0.1187  23.480
## (80,90]|(90,100]   4.2025     0.1406  29.892
## (21573 observations deleted due to missingness)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: PA_avg_num ~ novel_locations * anx_change + (1 | subject)
##    Data: lockdown_df
## 
## REML criterion at convergence: 25413.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5900 -0.5340  0.0401  0.5614  3.9237 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept) 148.2    12.17   
##  Residual             259.6    16.11   
## Number of obs: 2972, groups:  subject, 205
## 
## Fixed effects:
##                               Estimate  Std. Error          df t value
## (Intercept)                  47.339420    0.934490  222.825662  50.658
## novel_locations               0.055055    0.009970 2922.821082   5.522
## anx_change                   -0.283729    0.228367  227.664892  -1.242
## novel_locations:anx_change   -0.005113    0.002522 2903.286826  -2.027
##                                Pr(>|t|)    
## (Intercept)                     < 2e-16 ***
## novel_locations            0.0000000364 ***
## anx_change                       0.2154    
## novel_locations:anx_change       0.0427 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) nvl_lc anx_ch
## novel_lctns -0.224              
## anx_change  -0.059  0.031       
## nvl_lctns:_  0.026 -0.176 -0.252

## Cumulative Link Mixed Model fitted with the Laplace approximation
## 
## formula: PA_avg ~ awayFromHome * lockdown * anx_change + (1 | subject)
## data:    df
## 
##  link  threshold nobs logLik    AIC      niter       max.grad cond.H 
##  logit flexible  6243 -12123.03 24280.06 3393(20892) 3.41e-02 9.6e+02
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  subject (Intercept) 1.344    1.159   
## Number of groups:  subject 208 
## 
## Coefficients:
##                                   Estimate Std. Error z value Pr(>|z|)    
## awayFromHome1                      0.02054    0.06783   0.303  0.76205    
## lockdown                          -0.48568    0.06379  -7.614 2.67e-14 ***
## anx_change                         0.01396    0.02310   0.604  0.54563    
## awayFromHome1:lockdown             0.16849    0.10398   1.620  0.10514    
## awayFromHome1:anx_change           0.02013    0.01676   1.201  0.22964    
## lockdown:anx_change               -0.03215    0.01649  -1.949  0.05124 .  
## awayFromHome1:lockdown:anx_change -0.07094    0.02452  -2.894  0.00381 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##                  Estimate Std. Error z value
## [0,10]|(10,20]   -4.08207    0.11837 -34.487
## (10,20]|(20,30]  -3.16624    0.10605 -29.857
## (20,30]|(30,40]  -2.31632    0.10023 -23.110
## (30,40]|(40,50]  -1.45359    0.09718 -14.957
## (40,50]|(50,60]  -0.47763    0.09574  -4.989
## (50,60]|(60,70]   0.82699    0.09631   8.587
## (60,70]|(70,80]   1.85071    0.09933  18.632
## (70,80]|(80,90]   2.97685    0.10740  27.718
## (80,90]|(90,100]  4.39916    0.13464  32.674
## (22043 observations deleted due to missingness)

## [1] "BIC: DEP_on_PA_by_lockdown, NL_on_PA_by_DEP_by_lockdown, NL_on_PA_by_anxiety_change"
##    df      BIC
## d1 13 26983.59
## d2 17 26033.81
## d3  6 25461.36

BIC Analysis

##                                      df       BIC
## complex_PA_RE                        21  14422.70
## simple_PA_RE                         17  14315.57
## complex_PA_NL                        21  13502.59
## simple_PA_NL                         17  13390.17
## RE_LD                                10  46605.93
## NL_LD                                10 185564.30
## PA_LD                                17  27078.39
## NA_LD                                17  26896.49
## PA_RE_LD                             19  27073.36
## PA_NL_LD                             19  26148.56
## PA_RE_PreLDRE_PostLD                 19  12759.08
## PA_RE_PreLDNL_PostLD                 19  12769.82
## PA_NL_PreLD_notch                    19  13405.97
## PA_NL_PostLD_notch                   19  12753.35
## PA_NL_LD_notch                       23  26167.80
## PA_NL_LD_notch_controldistance_100KM 23  25411.26
## Z_within_sub                         23  25421.99
## Z_within_sub_LD                      23  26147.17
## d1                                   13  26983.59
## d2                                   17  26033.81
## d3                                    6  25461.36