Identificar los valores de la función de probabilidad bajo la fórmula de distribución de Poisson.
Otra variable aleatoria discreta que tiene numerosas aplicaciones prácticas es la variable aleatoria de Poisson. Su distribución de probabilidad da un buen modelo para datos que representa el número de sucesos de un evento especifi cado en una unidad determinada de tiempo o espacio (Mendenhall et al., 2006).
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 4.0.3
source("https://raw.githubusercontent.com/rpizarrog/probabilidad-y-estad-stica/master/funciones/funciones.distribuciones.r")
Suponga que desea saber el número de llegadas, en un lapso de 15 minutos, a la rampa del cajero automático de un banco.(Anderson et al., 2008)
prob <- round(f.prob.poisson(10, 5),4)
paste("La probabilidad de que sean exactamente 5 automóviles es de : ", prob)
## [1] "La probabilidad de que sean exactamente 5 automóviles es de : 0.0378"
prob2 <- round(dpois(x = 5, lambda = 10),4)
paste("La probabilida de que sean exactamente 5 automóviles es de : ", prob2)
## [1] "La probabilida de que sean exactamente 5 automóviles es de : 0.0378"
datos <- data.frame(x=1:20, f.prob.x = round(dpois(x = 1:20, lambda = 10),4))
datos <- cbind(datos, f.acum.x = cumsum(datos$f.prob.x))
datos
## x f.prob.x f.acum.x
## 1 1 0.0005 0.0005
## 2 2 0.0023 0.0028
## 3 3 0.0076 0.0104
## 4 4 0.0189 0.0293
## 5 5 0.0378 0.0671
## 6 6 0.0631 0.1302
## 7 7 0.0901 0.2203
## 8 8 0.1126 0.3329
## 9 9 0.1251 0.4580
## 10 10 0.1251 0.5831
## 11 11 0.1137 0.6968
## 12 12 0.0948 0.7916
## 13 13 0.0729 0.8645
## 14 14 0.0521 0.9166
## 15 15 0.0347 0.9513
## 16 16 0.0217 0.9730
## 17 17 0.0128 0.9858
## 18 18 0.0071 0.9929
## 19 19 0.0037 0.9966
## 20 20 0.0019 0.9985
ggplot(data = datos, aes(x,f.prob.x) ) +
geom_point(colour = "red") +
geom_line(colour = 'blue')
datos$f.acum[10]
## [1] 0.5831
paste("La probabilidad de que el valor de x sea menor o igua a 10 es: ", datos$f.acum[10])
## [1] "La probabilidad de que el valor de x sea menor o igua a 10 es: 0.5831"
En el ejemplo anterior se usó un lapso de 15 minutos, pero también se usan otros lapsos. Suponga que desea calcular la probabilidad de una llegada en un lapso de 3 minutos.
Entonces, la probabilidad de $x4 llegadas en un lapso de 3 minutos con μ=2 está dada por la siguiente nueva función de probabilidad de Poisson.
prob <- round(dpois(x = 1, lambda = 2),4)
paste("La probabilidad cuando x = 1 y media igual a 2 es del:", prob * 100, "%")
## [1] "La probabilidad cuando x = 1 y media igual a 2 es del: 27.07 %"
En ciertas instalaciones industriales los accidentes ocurren con muy poca frecuencia. Se sabe que la probabilidad de un accidente en cualquier día dado es 0.005 y los accidentes son independientes entre sí (Walpole et al., 2012).
n <- 400
prob <- 0.005
media <- n * prob
datos <- data.frame(x=0:10, f.prob.x = round(dpois(x = 0:10, lambda = media),4))
datos <- cbind(datos, f.acum.x = cumsum(datos$f.prob.x))
datos
## x f.prob.x f.acum.x
## 1 0 0.1353 0.1353
## 2 1 0.2707 0.4060
## 3 2 0.2707 0.6767
## 4 3 0.1804 0.8571
## 5 4 0.0902 0.9473
## 6 5 0.0361 0.9834
## 7 6 0.0120 0.9954
## 8 7 0.0034 0.9988
## 9 8 0.0009 0.9997
## 10 9 0.0002 0.9999
## 11 10 0.0000 0.9999
ggplot(data = datos, aes(x,f.prob.x) ) +
geom_point(colour = "red") +
geom_line(colour = 'blue')
x <- 1
prob <- datos$f.prob.x[x+1]
paste("La probabiidad del valor de x=1 es: ", prob)
## [1] "La probabiidad del valor de x=1 es: 0.2707"
x <- 3
prob <- datos$f.acum.x[x+1]
paste("La probabiidad del valor de x<=3 es: ", prob)
## [1] "La probabiidad del valor de x<=3 es: 0.8571"
Un fabricante de automóviles se preocupa por una falla en el mecanismo de freno de un modelo específico. La falla puede causar en raras ocasiones una catástrofe a alta velocidad. Suponga que la distribución del número de automóviles por año que experimentará la falla es una variable aleatoria de Poisson con λ=5 (Walpole et al., 2012).
media <- 5
datos <- data.frame(x=0:20, f.prob.x = round(dpois(x = 0:20, lambda = media),8))
datos <- cbind(datos, f.acum.x = cumsum(datos$f.prob.x))
datos
## x f.prob.x f.acum.x
## 1 0 0.00673795 0.00673795
## 2 1 0.03368973 0.04042768
## 3 2 0.08422434 0.12465202
## 4 3 0.14037390 0.26502592
## 5 4 0.17546737 0.44049329
## 6 5 0.17546737 0.61596066
## 7 6 0.14622281 0.76218347
## 8 7 0.10444486 0.86662833
## 9 8 0.06527804 0.93190637
## 10 9 0.03626558 0.96817195
## 11 10 0.01813279 0.98630474
## 12 11 0.00824218 0.99454692
## 13 12 0.00343424 0.99798116
## 14 13 0.00132086 0.99930202
## 15 14 0.00047174 0.99977376
## 16 15 0.00015725 0.99993101
## 17 16 0.00004914 0.99998015
## 18 17 0.00001445 0.99999460
## 19 18 0.00000401 0.99999861
## 20 19 0.00000106 0.99999967
## 21 20 0.00000026 0.99999993
ggplot(data = datos, aes(x,f.prob.x) ) +
geom_point(colour = "red") +
geom_line(colour = 'blue')
x <- 3
prob <- datos$f.acum.x[x+1]
paste("La probabiidad del valor de x<=3 es: ", round(prob * 100,4), "%")
## [1] "La probabiidad del valor de x<=3 es: 26.5026 %"
x <- 1
prob <- 1 - datos$f.acum.x[x+1]
paste("La probabiidad del valor de x>1 es: ", round(prob * 100,4), "%")
## [1] "La probabiidad del valor de x>1 es: 95.9572 %"
En este caso se vio el tema distribuciones de poisson las cuales son las de las mas importantes distribuciones de la variable discreta, la cual se aplica a las ocurrebcias de algún suceso durante un intervalo determinado. Dado que nuestra variable aleatoria x representara el numero de ocurrencias de un suceso en dicho intervalo el cual en este caso se utilizo una unidad derivada del tiempo, volumen, area etc. De tal forma que se generaron ciertos datos los cuales en los ejercicos se queiso dar la probabilidad de un accidente y tambien sobre la catastrofe que puede causar un automovil por sus fallas de las forma que se dieron los resultados segun la pregunta planteada. Como seria en el inciso a el cal nos dio como resultado 0.378 de que llegue 5 automoviles en 15 minutos, y tambien para el ejercicio 3 en el inciso b el cual dio como resultado 26.5026 el cual es la probabilidad de que tres automoviles causen una catastrofe en el mismo año.