Assignment Overview
I am interested in how those who graduated high school only versus those who graduated college (4 year institutions) (educ_2019) feel about women and their role in society. I will be analyzing the following variables:
- Feeling towards women on a scale from 1-100 (Women_2019)
- Gender equality issue importance (imiss_y_2019)
- Gender roles (sexism1_2019)
- Women should return to their traditional roles in society
- Modern sexism demands (sexism2_2019)
- Women often miss out on good jobs because of discrimination
Importing the data
library(dplyr)
## Warning: package 'dplyr' was built under R version 3.6.2
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(readr)
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 3.6.2
data<-read_csv("/Users/rebeccagibble/Downloads/Voter Data 2019 (1).csv")
## Parsed with column specification:
## cols(
## .default = col_double(),
## weight_18_24_2018 = col_logical(),
## izip_2019 = col_character(),
## housevote_other_2019 = col_character(),
## senatevote_other_2019 = col_character(),
## senatevote2_other_2019 = col_character(),
## SenCand1Name_2019 = col_character(),
## SenCand1Party_2019 = col_character(),
## SenCand2Name_2019 = col_character(),
## SenCand2Party_2019 = col_character(),
## SenCand3Name_2019 = col_character(),
## SenCand3Party_2019 = col_character(),
## SenCand1Name2_2019 = col_character(),
## SenCand1Party2_2019 = col_character(),
## SenCand2Name2_2019 = col_character(),
## SenCand2Party2_2019 = col_character(),
## SenCand3Name2_2019 = col_character(),
## SenCand3Party2_2019 = col_character(),
## governorvote_other_2019 = col_character(),
## GovCand1Name_2019 = col_character(),
## GovCand1Party_2019 = col_character()
## # ... with 108 more columns
## )
## See spec(...) for full column specifications.
## Warning: 800 parsing failures.
## row col expected actual file
## 2033 weight_18_24_2018 1/0/T/F/TRUE/FALSE .917710168467982 '/Users/rebeccagibble/Downloads/Voter Data 2019 (1).csv'
## 2828 weight_18_24_2018 1/0/T/F/TRUE/FALSE 1.41022291345592 '/Users/rebeccagibble/Downloads/Voter Data 2019 (1).csv'
## 4511 weight_18_24_2018 1/0/T/F/TRUE/FALSE 1.77501243840922 '/Users/rebeccagibble/Downloads/Voter Data 2019 (1).csv'
## 7264 weight_18_24_2018 1/0/T/F/TRUE/FALSE 1.29486870319614 '/Users/rebeccagibble/Downloads/Voter Data 2019 (1).csv'
## 7277 weight_18_24_2018 1/0/T/F/TRUE/FALSE 1.44972719707603 '/Users/rebeccagibble/Downloads/Voter Data 2019 (1).csv'
## .... ................. .................. ................ ........................................................
## See problems(...) for more details.
Recoding and selecting variables
Recoding variables from numeric form to their labeled form.
Selecting only necessary variables
newdata<-data%>%
mutate(GenderEquality = ifelse(imiss_y_2019==1,"Very Important",
ifelse(imiss_y_2019==2,"Somewhat Important",
ifelse(imiss_y_2019==3, "Not very Important",
ifelse(imiss_y_2019==4, "Unimportant", NA)))),
GenderRoles = ifelse(sexism1_2019==1, "Strongly Agree",
ifelse(sexism1_2019==2, "Somewhat Agee",
ifelse(sexism1_2019==3, "Somewhat Disagree",
ifelse(sexism1_2019==4, "Strongly Disagree",NA)))),
ModernSexism = ifelse(sexism2_2019==1, "Strongly Agree",
ifelse(sexism2_2019==2, "Somewhat Agree",
ifelse(sexism2_2019==3, "Somewhat Disagree",
ifelse(sexism2_2019==4, "Strongly Disagree",NA)))),
FeelingAboutWomen = ifelse(Women_2019>100,NA, Women_2019))%>%
select(GenderEquality,GenderRoles,ModernSexism,FeelingAboutWomen,educ_2019)
Filtering Data
Filtering data to only select two groups needed for analysis.
Previewing data to confirm changes.
newdata2<-newdata%>%
filter(educ_2019 %in% c("2","5"))%>%
mutate(EducationLevel = ifelse(educ_2019==2, "High school graduate",
ifelse(educ_2019==5, "College graduate",NA)))%>%
select(GenderEquality,GenderRoles,ModernSexism,FeelingAboutWomen,EducationLevel)
head(newdata2)
## # A tibble: 6 x 5
## GenderEquality GenderRoles ModernSexism FeelingAboutWom… EducationLevel
## <chr> <chr> <chr> <dbl> <chr>
## 1 Very Important Strongly Dis… Strongly Disa… 80 College gradua…
## 2 Very Important Strongly Dis… Somewhat Disa… 71 High school gr…
## 3 Somewhat Import… Strongly Dis… Somewhat Disa… 95 College gradua…
## 4 Very Important Strongly Dis… Strongly Disa… 99 College gradua…
## 5 Very Important Strongly Dis… Strongly Disa… 82 College gradua…
## 6 Very Important Strongly Dis… Strongly Disa… 99 College gradua…