December 8, 2020
Core Concept: Are the per capita CoC award amounts predictive of reduced populations of people experiencing homelessness over a five year period?
Dependent Variable: Population of people experiencing homelessness in a community
Independent Variable: Per capita amount of funding through the HUD Continuum of Care (CoC) program, by Continuums of Care in U.S. states and territories
Setting the Stage:
ggplot(pit, aes(avgFund, avgPop)) + geom_point() +
xlab("Average per Capita Funding (CoC)") + ylab("Average Population") +
geom_smooth(method='lm',formula= y~x) +
ggtitle("Homeless Population vs per capita CoC Funding")
ggplot(pitSub, aes(avgFund, avgPop)) + geom_point() +
xlab("Average per Capita Funding (CoC)") + ylab("Average Population") +
geom_smooth(method='lm',formula= y~x) +
ggtitle("Homeless Population vs per capita CoC Funding")
cor.test(pit$avgPop, pit$avgFund)
## ## Pearson's product-moment correlation ## ## data: pit$avgPop and pit$avgFund ## t = -1.4848, df = 381, p-value = 0.1384 ## alternative hypothesis: true correlation is not equal to 0 ## 95 percent confidence interval: ## -0.17472641 0.02454533 ## sample estimates: ## cor ## -0.07584781
cor.test(pitSub$avgPop, pitSub$avgFund)
## ## Pearson's product-moment correlation ## ## data: pitSub$avgPop and pitSub$avgFund ## t = -1.7494, df = 379, p-value = 0.08103 ## alternative hypothesis: true correlation is not equal to 0 ## 95 percent confidence interval: ## -0.1882776 0.0110680 ## sample estimates: ## cor ## -0.08950108
Cor: -0.090 (vs. -0.076 for All Communities)
pitModel <- lm(avgPop ~ avgFund, data = pit) summary(pitModel)
## ## Call: ## lm(formula = avgPop ~ avgFund, data = pit) ## ## Residuals: ## Min 1Q Median 3Q Max ## -1728 -1163 -794 -25 74794 ## ## Coefficients: ## Estimate Std. Error t value Pr(>|t|) ## (Intercept) 1864.24905 374.77714 4.974 9.93e-07 *** ## avgFund -0.08808 0.05932 -1.485 0.138 ## --- ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## Residual standard error: 4775 on 381 degrees of freedom ## Multiple R-squared: 0.005753, Adjusted R-squared: 0.003143 ## F-statistic: 2.205 on 1 and 381 DF, p-value: 0.1384
ggplot(pit, aes(avgFund, avgPop)) + geom_point() +
scale_x_log10() + scale_y_log10() +
xlab("perCapita CoC Funding") + ylab("Avg. Homeless Population") +
geom_smooth(method='glm',formula= y~x) +
ggtitle("Avg. Per Capita Funding by Avg. Total Homeless Population")
ggplot(pitSub , aes(avgFund, avgPop)) + geom_point() +
scale_x_log10() + scale_y_log10() +
xlab("Log of perCapita CoC Funding") + ylab("Log of Avg. Homeless Population") +
geom_smooth(method='glm',formula= y~x) +
ggtitle("Avg. Per Capita Funding by Avg. Total Homeless Population")
logmodel <- lm(log(avgFund) ~ log(avgPop), data = pit) summary(logmodel)
## ## Call: ## lm(formula = log(avgFund) ~ log(avgPop), data = pit) ## ## Residuals: ## Min 1Q Median 3Q Max ## -5.7937 -0.5134 0.1627 0.6306 2.0274 ## ## Coefficients: ## Estimate Std. Error t value Pr(>|t|) ## (Intercept) 8.59419 0.31459 27.319 <2e-16 *** ## log(avgPop) -0.07919 0.04788 -1.654 0.099 . ## --- ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## Residual standard error: 1.033 on 381 degrees of freedom ## Multiple R-squared: 0.007127, Adjusted R-squared: 0.004521 ## F-statistic: 2.735 on 1 and 381 DF, p-value: 0.099
Many limitations on these data…
Conclusion: Would have been surprised to see a significant and substantial connection between funding (at least this stream) and total homeless population. That’s just not the case as these data show. Useful as part of a larger model, however, with other facets and more influential factors, and annualized actual data.