SET UP AND CLEANING

DESCRIPTIVE PLOTS

# DESCRIPTIVES ====

#random sample for plots
sample = sample(data$ID, size = 100)
sample <- data %>% filter(ID %in% c(sample))

sample <- reshape(sample, direction = "long",
                varying = list(c("age_1", "age_2", "age_3"),
                               c("AC_1", "AC_2", "AC_3"),
                               c("AG_1", "AG_2", "AG_3"),
                               c("CON_1", "CON_2", "CON_3"),
                               c("HA_1", "HA_2", "HA_3"),
                               c("SP_1", "SP_2", "SP_3"),
                               c("TR_1", "TR_2", "TR_3")),
                timevar = "time",
                times = c(0,1,2),
                v.names = c("age","AC","AG","CON","HA","SP","TR"),
                idvar = c("ID"))
row.names(sample) <- 1:nrow(sample)

# > Plot of change over timepoints ----
pAC <- ggplot(data = sample,
               aes(x = time, y = AC, group = ID)) + 
   geom_line (linetype = "dashed")+ 
   geom_point(size = 0.5) + 
   theme_bw () +
   stat_summary(aes(data=sample$AC,group=1),fun=mean,geom="line",lwd = 1.5, color= "red")

pAG <- ggplot(data = sample,
               aes(x = time, y = AG, group = ID)) + 
    geom_line (linetype = "dashed")+ 
    geom_point(size = 0.5) +
    theme_bw () +
    stat_summary(aes(data=sample$AG,group=1),fun=mean,geom="line",lwd = 1.5, color= "red")

pCON <- ggplot(data = sample,
                aes(x = time, y = CON, group = ID)) + 
    geom_line (linetype = "dashed")+ 
    geom_point(size = 0.5) +
    theme_bw () +
    stat_summary(aes(data=sample$CON,group=1),fun=mean,geom="line",lwd = 1.5, color= "red")

pHA <- ggplot(data = sample,
               aes(x = time, y = HA, group = ID)) + 
    geom_line (linetype = "dashed")+ 
    geom_point(size = 0.5) +
    theme_bw () +
    stat_summary(aes(data=sample$HA,group=1),fun=mean,geom="line",lwd = 1.5, color= "red")

pSP <- ggplot(data = sample,
               aes(x = time, y = SP, group = ID)) + 
    geom_line (linetype = "dashed")+ 
    geom_point(size = 0.5) +
    theme_bw () +
    stat_summary(aes(data=sample$SP,group=1),fun=mean,geom="line",lwd = 1.5, color= "red")

pTR <- ggplot(data = sample,
               aes(x = time, y = TR, group = ID)) + 
    geom_line (linetype = "dashed")+ 
    geom_point(size = 0.5) +
    theme_bw () +
    stat_summary(aes(data=sample$TR,group=1),fun=mean,geom="line",lwd = 1.5, color= "red")

cowplot::plot_grid(pAC, pAG, pCON, pHA, pSP, pTR,
                   nrow = 3, ncol = 2)

# > Plot of change with age ----
paAC <- ggplot(data = sample,
               aes(x = age, y = AC, group = ID)) + 
   geom_line (linetype = "dashed")+ 
   geom_point(size = 0.25) + 
   theme_bw () +
   stat_smooth(aes(data=sample$AC,group=1),method="lm",formula=y ~ poly(x, 2),lwd = 1.5, color= "red")

paAG <- ggplot(data = sample,
               aes(x = age, y = AG, group = ID)) + 
    geom_line (linetype = "dashed")+ 
    geom_point(size = 0.25) + 
    theme_bw () +
    stat_smooth(aes(data=sample$AG,group=1),method="lm",formula=y ~ poly(x, 2),lwd = 1.5, color= "red")

paCON <- ggplot(data = sample,
                aes(x = age, y = CON, group = ID)) + 
    geom_line (linetype = "dashed")+ 
    geom_point(size = 0.25) +
    theme_bw () +
    stat_smooth(aes(data=sample$CON,group=1),method="lm",formula=y ~ poly(x, 2),lwd = 1.5, color= "red")

paHA <- ggplot(data = sample,
               aes(x = age, y = HA, group = ID)) + 
    geom_line (linetype = "dashed")+ 
    geom_point(size = 0.25) +
    theme_bw () +
    stat_smooth(aes(data=sample$HA,group=1),method="lm",formula=y ~ poly(x, 2),lwd = 1.5, color= "red")
  
paSP <- ggplot(data = sample,
               aes(x = age, y = SP, group = ID)) + 
    geom_line (linetype = "dashed")+ 
    geom_point(size = 0.25) +
    theme_bw () +
    stat_smooth(aes(data=sample$SP,group=1),method="lm",formula=y ~ poly(x, 2),lwd = 1.5, color= "red")

paTR <- ggplot(data = sample,
               aes(x = age, y = TR, group = ID)) + 
    geom_line (linetype = "dashed")+ 
    geom_point(size = 0.25) +
    theme_bw () +
    stat_smooth(aes(data=sample$TR,group=1),method="lm",formula=y ~ poly(x, 2),lwd = 1.5, color= "red")

cowplot::plot_grid(paAC, paAG, paCON, paHA, paSP, paTR,
                   nrow = 3, ncol = 2)

rm(sample, paAC, paAG, paCON, paHA, paSP, paTR, pAC, pAG, pCON, pHA, pSP, pTR)

MISSINGNESS

# MISSINGNESS ====

## patterns for response variables
data %>% dplyr::select(AC_1, AC_2, AC_3) %>% md.pattern()

##     AC_2 AC_3 AC_1     
## 132    1    1    1    0
## 352    1    1    0    1
## 66     1    0    1    1
## 217    1    0    0    2
## 47     0    1    1    1
## 159    0    1    0    2
## 49     0    0    1    2
## 52     0    0    0    3
##      307  384  780 1471
data %>% dplyr::select(AG_1, AG_2, AG_3) %>% md.pattern()

##     AG_2 AG_3 AG_1     
## 135    1    1    1    0
## 351    1    1    0    1
## 61     1    0    1    1
## 225    1    0    0    2
## 47     0    1    1    1
## 157    0    1    0    2
## 49     0    0    1    2
## 49     0    0    0    3
##      302  384  782 1468
data %>% dplyr::select(CON_1, CON_2, CON_3) %>% md.pattern()

##     CON_2 CON_3 CON_1     
## 133     1     1     1    0
## 353     1     1     0    1
## 65      1     0     1    1
## 223     1     0     0    2
## 47      0     1     1    1
## 157     0     1     0    2
## 48      0     0     1    2
## 48      0     0     0    3
##       300   384   781 1465
data %>% dplyr::select(HA_1, HA_2, HA_3) %>% md.pattern()

##     HA_2 HA_3 HA_1     
## 135    1    1    1    0
## 348    1    1    0    1
## 66     1    0    1    1
## 222    1    0    0    2
## 46     0    1    1    1
## 160    0    1    0    2
## 48     0    0    1    2
## 49     0    0    0    3
##      303  385  779 1467
data %>% dplyr::select(SP_1, SP_2, SP_3) %>% md.pattern()

##     SP_2 SP_3 SP_1     
## 127    1    1    1    0
## 356    1    1    0    1
## 66     1    0    1    1
## 219    1    0    0    2
## 47     0    1    1    1
## 158    0    1    0    2
## 50     0    0    1    2
## 51     0    0    0    3
##      306  386  784 1476
data %>% dplyr::select(TR_1, TR_2, TR_3) %>% md.pattern()

##     TR_2 TR_3 TR_1     
## 120    1    1    1    0
## 345    1    1    0    1
## 53     1    0    1    1
## 216    1    0    0    2
## 45     0    1    1    1
## 169    0    1    0    2
## 53     0    0    1    2
## 73     0    0    0    3
##      340  395  803 1538
## compare missing and non-missing
explanatory = c("IDAB", "IDSEX", "age")
long %>% 
  missing_compare("AC", explanatory)
long %>% 
  missing_compare("AG", explanatory)
long %>% 
  missing_compare("CON", explanatory)
long %>% 
  missing_compare("HA", explanatory)
long %>% 
  missing_compare("SP", explanatory)
long %>% 
  missing_compare("TR", explanatory)

ANALYSES

1. Linear change patterns

# ANALYSIS ====
# > Distinguishable dyads ----
# >> Mean-level change ----
## Achievement 
mACd <- lme(fixed = AC ~ -1 + young + young:age + old + old:age,
            random = ~ -1 + young + old| IDYRFAM,
            correlation = corAR1(), 
            weights=varIdent(form = ~1 | yo), 
            na.action = "na.omit",
            data = long,
            control = list(maxIter = 1000),
            method = "ML")
summary(mACd)
## Linear mixed-effects model fit by maximum likelihood
##  Data: long 
##        AIC      BIC    logLik
##   2436.448 2491.128 -1208.224
## 
## Random effects:
##  Formula: ~-1 + young + old | IDYRFAM
##  Structure: General positive-definite, Log-Cholesky parametrization
##          StdDev    Corr  
## young    0.3082724 young 
## old      0.3424229 -0.076
## Residual 0.3795695       
## 
## Correlation Structure: AR(1)
##  Formula: ~1 | IDYRFAM 
##  Parameter estimate(s):
##       Phi 
## 0.1387964 
## Variance function:
##  Structure: Different standard deviations per stratum
##  Formula: ~1 | yo 
##  Parameter estimates:
##       o       y 
## 1.00000 1.06258 
## Fixed effects: AC ~ -1 + young + young:age + old + old:age 
##               Value  Std.Error   DF  t-value p-value
## young     2.3276309 0.05869231 1214 39.65819       0
## old       2.2817953 0.04541684 1214 50.24117       0
## young:age 0.0202866 0.00229157 1214  8.85269       0
## age:old   0.0201256 0.00177022 1214 11.36898       0
##  Correlation: 
##           young  old    yong:g
## old        0.034              
## young:age -0.936 -0.045       
## age:old   -0.020 -0.901  0.036
## 
## Standardized Within-Group Residuals:
##          Min           Q1          Med           Q3          Max 
## -2.878617291 -0.548692802 -0.002274224  0.548885126  2.461665966 
## 
## Number of Observations: 1751
## Number of Groups: 534
## Aggression 
mAGd <- lme(fixed = AG ~ -1 + young + young:age + old + old:age,
            random = ~ -1 + young + old | IDYRFAM,
            correlation = corAR1(), 
            weights=varIdent(form = ~1 | yo), 
            na.action = "na.omit",
            data = long,
            control = list(maxIter = 1000),
            method = "ML")
summary(mAGd)
## Linear mixed-effects model fit by maximum likelihood
##  Data: long 
##        AIC      BIC    logLik
##   2617.876 2672.572 -1298.938
## 
## Random effects:
##  Formula: ~-1 + young + old | IDYRFAM
##  Structure: General positive-definite, Log-Cholesky parametrization
##          StdDev    Corr 
## young    0.4066366 young
## old      0.4141205 0.19 
## Residual 0.3961539      
## 
## Correlation Structure: AR(1)
##  Formula: ~1 | IDYRFAM 
##  Parameter estimate(s):
##       Phi 
## 0.1570479 
## Variance function:
##  Structure: Different standard deviations per stratum
##  Formula: ~1 | yo 
##  Parameter estimates:
##         o         y 
## 1.0000000 0.8878833 
## Fixed effects: AG ~ -1 + young + young:age + old + old:age 
##                Value  Std.Error   DF   t-value p-value
## young      2.4453938 0.05415273 1218  45.15735       0
## old        2.4577534 0.04829683 1218  50.88850       0
## young:age -0.0238512 0.00205628 1218 -11.59922       0
## age:old   -0.0212711 0.00185033 1218 -11.49583       0
##  Correlation: 
##           young  old    yong:g
## old        0.067              
## young:age -0.908 -0.051       
## age:old   -0.022 -0.884  0.041
## 
## Standardized Within-Group Residuals:
##        Min         Q1        Med         Q3        Max 
## -2.3280654 -0.5357146 -0.0746261  0.4416845  3.2080815 
## 
## Number of Observations: 1754
## Number of Groups: 533
## Control 
mCONd <- lme(fixed = CON ~ -1 + young + young:age + old + old:age,
            random = ~ -1 + young + old | IDYRFAM,
            correlation = corAR1(), 
            weights=varIdent(form = ~1 | yo), 
            na.action = "na.omit",
            data = long,
            control = list(maxIter = 1000),
            method = "ML")
summary(mCONd)
## Linear mixed-effects model fit by maximum likelihood
##  Data: long 
##        AIC      BIC    logLik
##   2017.453 2072.167 -998.7264
## 
## Random effects:
##  Formula: ~-1 + young + old | IDYRFAM
##  Structure: General positive-definite, Log-Cholesky parametrization
##          StdDev    Corr 
## young    0.2935685 young
## old      0.3127515 0.004
## Residual 0.3309577      
## 
## Correlation Structure: AR(1)
##  Formula: ~1 | IDYRFAM 
##  Parameter estimate(s):
##        Phi 
## 0.08152349 
## Variance function:
##  Structure: Different standard deviations per stratum
##  Formula: ~1 | yo 
##  Parameter estimates:
##        o        y 
## 1.000000 1.028143 
## Fixed effects: CON ~ -1 + young + young:age + old + old:age 
##               Value  Std.Error   DF  t-value p-value
## young     2.3325172 0.05059566 1221 46.10113       0
## old       2.2669570 0.04007293 1221 56.57078       0
## young:age 0.0198194 0.00197139 1221 10.05356       0
## age:old   0.0211922 0.00156048 1221 13.58056       0
##  Correlation: 
##           young  old    yong:g
## old        0.023              
## young:age -0.931 -0.026       
## age:old   -0.012 -0.898  0.021
## 
## Standardized Within-Group Residuals:
##         Min          Q1         Med          Q3         Max 
## -3.71577264 -0.50588692  0.01334313  0.55963014  2.63398308 
## 
## Number of Observations: 1757
## Number of Groups: 533
## Harm Avoidance
mHAd <- lme(fixed = HA ~ -1 + young + young:age + old + old:age,
            random = ~ -1 + young + old | IDYRFAM,
            correlation = corAR1(), 
            weights=varIdent(form = ~1 | yo), 
            na.action = "na.omit",
            data = long,
            control = list(maxIter = 1000),
            method = "ML")
summary(mHAd)
## Linear mixed-effects model fit by maximum likelihood
##  Data: long 
##        AIC      BIC   logLik
##   2932.339 2987.041 -1456.17
## 
## Random effects:
##  Formula: ~-1 + young + old | IDYRFAM
##  Structure: General positive-definite, Log-Cholesky parametrization
##          StdDev    Corr 
## young    0.3845670 young
## old      0.4909243 0.236
## Residual 0.3957237      
## 
## Correlation Structure: AR(1)
##  Formula: ~1 | IDYRFAM 
##  Parameter estimate(s):
##       Phi 
## 0.0515229 
## Variance function:
##  Structure: Different standard deviations per stratum
##  Formula: ~1 | yo 
##  Parameter estimates:
##        o        y 
## 1.000000 1.090358 
## Fixed effects: HA ~ -1 + young + young:age + old + old:age 
##               Value  Std.Error   DF  t-value p-value
## young     2.2111913 0.06482722 1218 34.10899       0
## old       2.2769154 0.05042065 1218 45.15839       0
## young:age 0.0262789 0.00252441 1218 10.40990       0
## age:old   0.0216881 0.00189909 1218 11.42026       0
##  Correlation: 
##           young  old    yong:g
## old        0.040              
## young:age -0.930 -0.017       
## age:old   -0.008 -0.866  0.014
## 
## Standardized Within-Group Residuals:
##         Min          Q1         Med          Q3         Max 
## -2.51064675 -0.51647705  0.02990568  0.55753397  2.42997097 
## 
## Number of Observations: 1755
## Number of Groups: 534
## Social Potency
mSPd <- lme(fixed = SP ~ -1 + young + young:age + old + old:age,
            random = ~ -1 + young + old | IDYRFAM,
            correlation = corAR1(), 
            weights=varIdent(form = ~1 | yo), 
            na.action = "na.omit",
            data = long,
            control = list(maxIter = 1000),
            method = "ML")
summary(mSPd)
## Linear mixed-effects model fit by maximum likelihood
##  Data: long 
##        AIC      BIC    logLik
##   2136.781 2191.432 -1058.391
## 
## Random effects:
##  Formula: ~-1 + young + old | IDYRFAM
##  Structure: General positive-definite, Log-Cholesky parametrization
##          StdDev    Corr 
## young    0.3155051 young
## old      0.4005251 0.026
## Residual 0.3200959      
## 
## Correlation Structure: AR(1)
##  Formula: ~1 | IDYRFAM 
##  Parameter estimate(s):
##     Phi 
## 0.08469 
## Variance function:
##  Structure: Different standard deviations per stratum
##  Formula: ~1 | yo 
##  Parameter estimates:
##        o        y 
## 1.000000 1.024266 
## Fixed effects: SP ~ -1 + young + young:age + old + old:age 
##                Value  Std.Error   DF  t-value p-value
## young      2.8902776 0.04987075 1210 57.95537       0
## old        2.8578113 0.04089201 1210 69.88678       0
## young:age -0.0135269 0.00192820 1210 -7.01527       0
## age:old   -0.0095613 0.00153728 1210 -6.21959       0
##  Correlation: 
##           young  old    yong:g
## old        0.026              
## young:age -0.925 -0.027       
## age:old   -0.013 -0.864  0.023
## 
## Standardized Within-Group Residuals:
##         Min          Q1         Med          Q3         Max 
## -2.75931141 -0.47887263  0.02941493  0.49507079  2.90521243 
## 
## Number of Observations: 1746
## Number of Groups: 533
## Traditionalism
mTRd <- lme(fixed = TR ~ -1 + young + young:age + old + old:age,
            random = ~ -1 + young + old | IDYRFAM,
            correlation = corAR1(), 
            weights=varIdent(form = ~1 | yo), 
            na.action = "na.omit",
            data = long,
            control = list(maxIter = 1000),
            method = "ML")
summary(mTRd)
## Linear mixed-effects model fit by maximum likelihood
##  Data: long 
##        AIC      BIC    logLik
##   1809.403 1863.693 -894.7017
## 
## Random effects:
##  Formula: ~-1 + young + old | IDYRFAM
##  Structure: General positive-definite, Log-Cholesky parametrization
##          StdDev    Corr 
## young    0.2739266 young
## old      0.3024467 0.454
## Residual 0.3447630      
## 
## Correlation Structure: AR(1)
##  Formula: ~1 | IDYRFAM 
##  Parameter estimate(s):
##       Phi 
## 0.1523673 
## Variance function:
##  Structure: Different standard deviations per stratum
##  Formula: ~1 | yo 
##  Parameter estimates:
##         o         y 
## 1.0000000 0.9270239 
## Fixed effects: TR ~ -1 + young + young:age + old + old:age 
##                Value  Std.Error   DF  t-value p-value
## young      2.8409146 0.04742318 1146 59.90562       0
## old        2.8077394 0.04182368 1146 67.13277       0
## young:age -0.0103666 0.00183418 1146 -5.65188       0
## age:old   -0.0083830 0.00162155 1146 -5.16978       0
##  Correlation: 
##           young  old    yong:g
## old        0.079              
## young:age -0.929 -0.050       
## age:old   -0.020 -0.904  0.039
## 
## Standardized Within-Group Residuals:
##        Min         Q1        Med         Q3        Max 
## -3.2997751 -0.5069002  0.0131458  0.4885317  3.2893505 
## 
## Number of Observations: 1684
## Number of Groups: 535

2. Quadratic change patterns

# >> Quad change ----
## Achievement 
mpACd <- lme(fixed = AC ~ -1 + young + young:poly(age,2) + old + old:poly(age,2),
            random = ~ -1 + young + old| IDYRFAM,
            correlation = corAR1(), 
            weights=varIdent(form = ~1 | yo), 
            na.action = "na.omit",
            data = long,
            control = list(maxIter = 1000),
            method = "ML")
summary(mpACd)
## Linear mixed-effects model fit by maximum likelihood
##  Data: long 
##       AIC      BIC   logLik
##   2429.76 2495.375 -1202.88
## 
## Random effects:
##  Formula: ~-1 + young + old | IDYRFAM
##  Structure: General positive-definite, Log-Cholesky parametrization
##          StdDev    Corr  
## young    0.3121907 young 
## old      0.3429936 -0.069
## Residual 0.3776353       
## 
## Correlation Structure: AR(1)
##  Formula: ~1 | IDYRFAM 
##  Parameter estimate(s):
##       Phi 
## 0.1306086 
## Variance function:
##  Structure: Different standard deviations per stratum
##  Formula: ~1 | yo 
##  Parameter estimates:
##        o        y 
## 1.000000 1.054796 
## Fixed effects: AC ~ -1 + young + young:poly(age, 2) + old + old:poly(age, 2) 
##                         Value Std.Error   DF   t-value p-value
## young                2.799580 0.0209869 1212 133.39657  0.0000
## old                  2.761010 0.0198052 1212 139.40814  0.0000
## young:poly(age, 2)1  5.073745 0.7289206 1212   6.96063  0.0000
## young:poly(age, 2)2 -2.030551 0.7920887 1212  -2.56354  0.0105
## poly(age, 2)1:old    6.158764 0.5329056 1212  11.55695  0.0000
## poly(age, 2)2:old   -1.147722 0.5438553 1212  -2.11034  0.0350
##  Correlation: 
##                     young  old    y:(,2)1 y:(,2)2 p(,2)1
## old                  0.031                              
## young:poly(age, 2)1  0.033 -0.026                       
## young:poly(age, 2)2  0.155 -0.002  0.420                
## poly(age, 2)1:old    0.037  0.069  0.018  -0.012        
## poly(age, 2)2:old   -0.014 -0.085  0.036   0.027  -0.268
## 
## Standardized Within-Group Residuals:
##         Min          Q1         Med          Q3         Max 
## -2.89559388 -0.55790965 -0.01570711  0.54187493  2.53836000 
## 
## Number of Observations: 1751
## Number of Groups: 534
anova(mACd, mpACd)
## Aggression 
mpAGd <- lme(fixed = AG ~ -1 + young + young:poly(age,2) + old + old:poly(age,2),
            random = ~ -1 + young + old | IDYRFAM,
            correlation = corAR1(), 
            weights=varIdent(form = ~1 | yo), 
            na.action = "na.omit",
            data = long,
            control = list(maxIter = 1000),
            method = "ML")
summary(mpAGd)
## Linear mixed-effects model fit by maximum likelihood
##  Data: long 
##        AIC      BIC    logLik
##   2588.275 2653.911 -1282.137
## 
## Random effects:
##  Formula: ~-1 + young + old | IDYRFAM
##  Structure: General positive-definite, Log-Cholesky parametrization
##          StdDev    Corr 
## young    0.4112961 young
## old      0.4147771 0.205
## Residual 0.3901300      
## 
## Correlation Structure: AR(1)
##  Formula: ~1 | IDYRFAM 
##  Parameter estimate(s):
##       Phi 
## 0.1451594 
## Variance function:
##  Structure: Different standard deviations per stratum
##  Formula: ~1 | yo 
##  Parameter estimates:
##         o         y 
## 1.0000000 0.8751877 
## Fixed effects: AG ~ -1 + young + young:poly(age, 2) + old + old:poly(age, 2) 
##                         Value Std.Error   DF   t-value p-value
## young                1.893169 0.0228966 1216  82.68357       0
## old                  1.948192 0.0225861 1216  86.25633       0
## young:poly(age, 2)1 -5.748114 0.6436813 1216  -8.93006       0
## young:poly(age, 2)2  2.948985 0.7245185 1216   4.07027       0
## poly(age, 2)1:old   -6.832697 0.5527507 1216 -12.36126       0
## poly(age, 2)2:old    2.425107 0.5611317 1216   4.32181       0
##  Correlation: 
##                     young  old    y:(,2)1 y:(,2)2 p(,2)1
## old                  0.181                              
## young:poly(age, 2)1  0.035 -0.026                       
## young:poly(age, 2)2  0.140  0.000  0.415                
## poly(age, 2)1:old    0.033  0.064  0.020  -0.014        
## poly(age, 2)2:old   -0.012 -0.074  0.044   0.034  -0.269
## 
## Standardized Within-Group Residuals:
##         Min          Q1         Med          Q3         Max 
## -2.39460769 -0.51895415 -0.07387035  0.45216285  3.10491171 
## 
## Number of Observations: 1754
## Number of Groups: 533
anova(mAGd, mpAGd)
## Control 
mpCONd <- lme(fixed = CON ~ -1 + young + young:poly(age,2) + old + old:poly(age,2),
            random = ~ -1 + young + old | IDYRFAM,
            correlation = corAR1(), 
            weights=varIdent(form = ~1 | yo), 
            na.action = "na.omit",
            data = long,
            control = list(maxIter = 1000),
            method = "ML")
summary(mpCONd)
## Linear mixed-effects model fit by maximum likelihood
##  Data: long 
##        AIC      BIC    logLik
##   2008.868 2074.525 -992.4341
## 
## Random effects:
##  Formula: ~-1 + young + old | IDYRFAM
##  Structure: General positive-definite, Log-Cholesky parametrization
##          StdDev    Corr 
## young    0.2965023 young
## old      0.3125449 0.015
## Residual 0.3309932      
## 
## Correlation Structure: AR(1)
##  Formula: ~1 | IDYRFAM 
##  Parameter estimate(s):
##        Phi 
## 0.08310539 
## Variance function:
##  Structure: Different standard deviations per stratum
##  Formula: ~1 | yo 
##  Parameter estimates:
##        o        y 
## 1.000000 1.010886 
## Fixed effects: CON ~ -1 + young + young:poly(age, 2) + old + old:poly(age, 2) 
##                         Value Std.Error   DF   t-value p-value
## young                2.791069 0.0186189 1219 149.90478  0.0000
## old                  2.768615 0.0177022 1219 156.39975  0.0000
## young:poly(age, 2)1  4.837273 0.6246079 1219   7.74450  0.0000
## young:poly(age, 2)2 -2.383480 0.6838614 1219  -3.48533  0.0005
## poly(age, 2)1:old    6.286252 0.4734497 1219  13.27755  0.0000
## poly(age, 2)2:old   -0.396581 0.4818648 1219  -0.82301  0.4107
##  Correlation: 
##                     young  old    y:(,2)1 y:(,2)2 p(,2)1
## old                  0.046                              
## young:poly(age, 2)1  0.036 -0.016                       
## young:poly(age, 2)2  0.149 -0.001  0.423                
## poly(age, 2)1:old    0.023  0.069  0.011  -0.008        
## poly(age, 2)2:old   -0.009 -0.078  0.024   0.019  -0.279
## 
## Standardized Within-Group Residuals:
##          Min           Q1          Med           Q3          Max 
## -3.721878321 -0.492422091  0.002128635  0.558578312  2.790272356 
## 
## Number of Observations: 1757
## Number of Groups: 533
anova(mCONd, mpCONd)
## Harm Avoidance
mpHAd <- lme(fixed = HA ~ -1 + young + young:poly(age,2) + old + old:poly(age,2),
            random = ~ -1 + young + old | IDYRFAM,
            correlation = corAR1(), 
            weights=varIdent(form = ~1 | yo), 
            na.action = "na.omit",
            data = long,
            control = list(maxIter = 1000),
            method = "ML")
summary(mpHAd)
## Linear mixed-effects model fit by maximum likelihood
##  Data: long 
##        AIC      BIC    logLik
##   2933.898 2999.541 -1454.949
## 
## Random effects:
##  Formula: ~-1 + young + old | IDYRFAM
##  Structure: General positive-definite, Log-Cholesky parametrization
##          StdDev    Corr 
## young    0.3872230 young
## old      0.4912781 0.235
## Residual 0.3952571      
## 
## Correlation Structure: AR(1)
##  Formula: ~1 | IDYRFAM 
##  Parameter estimate(s):
##        Phi 
## 0.04932726 
## Variance function:
##  Structure: Different standard deviations per stratum
##  Formula: ~1 | yo 
##  Parameter estimates:
##        o        y 
## 1.000000 1.085256 
## Fixed effects: HA ~ -1 + young + young:poly(age, 2) + old + old:poly(age, 2) 
##                         Value Std.Error   DF   t-value p-value
## young                2.836869 0.0241031 1216 117.69722  0.0000
## old                  2.790452 0.0253431 1216 110.10698  0.0000
## young:poly(age, 2)1  8.099389 0.8073394 1216  10.03220  0.0000
## young:poly(age, 2)2  1.191161 0.8820982 1216   1.35037  0.1771
## poly(age, 2)1:old    6.435612 0.5767664 1216  11.15809  0.0000
## poly(age, 2)2:old   -0.454092 0.5908759 1216  -0.76851  0.4423
##  Correlation: 
##                     young  old    y:(,2)1 y:(,2)2 p(,2)1
## old                  0.158                              
## young:poly(age, 2)1  0.037 -0.009                       
## young:poly(age, 2)2  0.150  0.001  0.423                
## poly(age, 2)1:old    0.016  0.065  0.006  -0.005        
## poly(age, 2)2:old   -0.005 -0.067  0.019   0.017  -0.288
## 
## Standardized Within-Group Residuals:
##         Min          Q1         Med          Q3         Max 
## -2.48969460 -0.51135178  0.03285518  0.55725126  2.44945347 
## 
## Number of Observations: 1755
## Number of Groups: 534
anova(mHAd, mpHAd)
## Social Potency
mpSPd <- lme(fixed = SP ~ -1 + young + young:poly(age,2) + old + old:poly(age,2),
            random = ~ -1 + young + old | IDYRFAM,
            correlation = corAR1(), 
            weights=varIdent(form = ~1 | yo), 
            na.action = "na.omit",
            data = long,
            control = list(maxIter = 1000),
            method = "ML")
summary(mpSPd)
## Linear mixed-effects model fit by maximum likelihood
##  Data: long 
##        AIC      BIC    logLik
##   2134.065 2199.646 -1055.032
## 
## Random effects:
##  Formula: ~-1 + young + old | IDYRFAM
##  Structure: General positive-definite, Log-Cholesky parametrization
##          StdDev    Corr 
## young    0.3167144 young
## old      0.3998405 0.029
## Residual 0.3185928      
## 
## Correlation Structure: AR(1)
##  Formula: ~1 | IDYRFAM 
##  Parameter estimate(s):
##        Phi 
## 0.08167836 
## Variance function:
##  Structure: Different standard deviations per stratum
##  Formula: ~1 | yo 
##  Parameter estimates:
##        o        y 
## 1.000000 1.026258 
## Fixed effects: SP ~ -1 + young + young:poly(age, 2) + old + old:poly(age, 2) 
##                         Value Std.Error   DF   t-value p-value
## young                2.569510 0.0192103 1208 133.75660  0.0000
## old                  2.635566 0.0206057 1208 127.90496  0.0000
## young:poly(age, 2)1 -4.109017 0.6193898 1208  -6.63398  0.0000
## young:poly(age, 2)2 -0.388261 0.6844700 1208  -0.56724  0.5707
## poly(age, 2)1:old   -2.442685 0.4639074 1208  -5.26546  0.0000
## poly(age, 2)2:old   -1.210384 0.4764997 1208  -2.54016  0.0112
##  Correlation: 
##                     young  old    y:(,2)1 y:(,2)2 p(,2)1
## old                  0.048                              
## young:poly(age, 2)1  0.038 -0.013                       
## young:poly(age, 2)2  0.149 -0.001  0.429                
## poly(age, 2)1:old    0.021  0.066  0.011  -0.008        
## poly(age, 2)2:old   -0.008 -0.071  0.024   0.019  -0.283
## 
## Standardized Within-Group Residuals:
##         Min          Q1         Med          Q3         Max 
## -2.76506564 -0.48675424  0.02936957  0.50077625  2.86544205 
## 
## Number of Observations: 1746
## Number of Groups: 533
anova(mSPd, mpSPd)
## Traditionalism
mpTRd <- lme(fixed = TR ~ -1 + young + young:poly(age,2) + old + old:poly(age,2),
            random = ~ -1 + young + old | IDYRFAM,
            correlation = corAR1(), 
            weights=varIdent(form = ~1 | yo), 
            na.action = "na.omit",
            data = long,
            control = list(maxIter = 1000),
            method = "ML")
summary(mpTRd)
## Linear mixed-effects model fit by maximum likelihood
##  Data: long 
##        AIC      BIC    logLik
##   1812.759 1877.906 -894.3795
## 
## Random effects:
##  Formula: ~-1 + young + old | IDYRFAM
##  Structure: General positive-definite, Log-Cholesky parametrization
##          StdDev    Corr 
## young    0.2731863 young
## old      0.3020960 0.448
## Residual 0.3450778      
## 
## Correlation Structure: AR(1)
##  Formula: ~1 | IDYRFAM 
##  Parameter estimate(s):
##       Phi 
## 0.1552855 
## Variance function:
##  Structure: Different standard deviations per stratum
##  Formula: ~1 | yo 
##  Parameter estimates:
##         o         y 
## 1.0000000 0.9266525 
## Fixed effects: TR ~ -1 + young + young:poly(age, 2) + old + old:poly(age, 2) 
##                          Value Std.Error   DF   t-value p-value
## young                2.5968905 0.0177304 1144 146.46518  0.0000
## old                  2.6090080 0.0179969 1144 144.96977  0.0000
## young:poly(age, 2)1 -2.7847412 0.5785067 1144  -4.81367  0.0000
## young:poly(age, 2)2  0.4866105 0.6298540 1144   0.77258  0.4399
## poly(age, 2)1:old   -2.3764550 0.4826046 1144  -4.92423  0.0000
## poly(age, 2)2:old   -0.0913254 0.4888883 1144  -0.18680  0.8518
##  Correlation: 
##                     young  old    y:(,2)1 y:(,2)2 p(,2)1
## old                  0.297                              
## young:poly(age, 2)1  0.037 -0.032                       
## young:poly(age, 2)2  0.152  0.000  0.418                
## poly(age, 2)1:old    0.046  0.062  0.022  -0.012        
## poly(age, 2)2:old   -0.013 -0.089  0.050   0.049  -0.269
## 
## Standardized Within-Group Residuals:
##          Min           Q1          Med           Q3          Max 
## -3.283382781 -0.513444834  0.006709692  0.488324080  3.267275350 
## 
## Number of Observations: 1684
## Number of Groups: 535
anova(mTRd, mpTRd)

3. Gender as moderator

# >> Gender as moderators ----
#male = 0, female = 1
long <- long %>% mutate(
  IDSEX = ifelse(IDSEX == 1, 0, 1)) 

## Achievement 
mgACd <- lme(fixed = AC ~ -1 + young + young:age + old + old:age + young:age:IDSEX + old:age:IDSEX,
            random = ~ -1 + young + old | IDYRFAM,
            correlation = corAR1(), 
            weights=varIdent(form = ~1 | yo), 
            na.action = "na.omit",
            data = long,
            control = list(maxIter = 1000),
            method = "ML")
summary(mgACd)
## Linear mixed-effects model fit by maximum likelihood
##  Data: long 
##        AIC      BIC    logLik
##   2433.174 2498.789 -1204.587
## 
## Random effects:
##  Formula: ~-1 + young + old | IDYRFAM
##  Structure: General positive-definite, Log-Cholesky parametrization
##          StdDev    Corr  
## young    0.3094524 young 
## old      0.3396406 -0.082
## Residual 0.3796024       
## 
## Correlation Structure: AR(1)
##  Formula: ~1 | IDYRFAM 
##  Parameter estimate(s):
##       Phi 
## 0.1361955 
## Variance function:
##  Structure: Different standard deviations per stratum
##  Formula: ~1 | yo 
##  Parameter estimates:
##        o        y 
## 1.000000 1.057253 
## Fixed effects: AC ~ -1 + young + young:age + old + old:age + young:age:IDSEX +      old:age:IDSEX 
##                      Value  Std.Error   DF  t-value p-value
## young            2.3203930 0.05867007 1212 39.54986  0.0000
## old              2.2902508 0.04560664 1212 50.21748  0.0000
## young:age        0.0224357 0.00258605 1212  8.67567  0.0000
## age:old          0.0179794 0.00206450 1212  8.70883  0.0000
## young:age:IDSEX -0.0029714 0.00168110 1212 -1.76753  0.0774
## age:old:IDSEX    0.0031680 0.00156042 1212  2.03023  0.0426
##  Correlation: 
##                 young  old    yong:g age:ld y::IDS
## old              0.032                            
## young:age       -0.856 -0.039                     
## age:old         -0.015 -0.818  0.027              
## young:age:IDSEX  0.067  0.001 -0.468 -0.003       
## age:old:IDSEX   -0.002  0.094 -0.001 -0.514  0.007
## 
## Standardized Within-Group Residuals:
##          Min           Q1          Med           Q3          Max 
## -2.882196992 -0.562386413 -0.008149212  0.550027059  2.458071124 
## 
## Number of Observations: 1751
## Number of Groups: 534
anova(mACd, mgACd)
## Aggression 
mgAGd <- lme(fixed = AG ~ -1 + young + young:age + old + old:age + young:age:IDSEX + old:age:IDSEX,
            random = ~ -1 + young + old | IDYRFAM,
            correlation = corAR1(), 
            weights=varIdent(form = ~1 | yo), 
            na.action = "na.omit",
            data = long,
            control = list(maxIter = 1000),
            method = "ML")
summary(mgAGd)
## Linear mixed-effects model fit by maximum likelihood
##  Data: long 
##       AIC      BIC   logLik
##   2545.44 2611.076 -1260.72
## 
## Random effects:
##  Formula: ~-1 + young + old | IDYRFAM
##  Structure: General positive-definite, Log-Cholesky parametrization
##          StdDev    Corr 
## young    0.3677290 young
## old      0.3705066 0.18 
## Residual 0.4040065      
## 
## Correlation Structure: AR(1)
##  Formula: ~1 | IDYRFAM 
##  Parameter estimate(s):
##       Phi 
## 0.1680723 
## Variance function:
##  Structure: Different standard deviations per stratum
##  Formula: ~1 | yo 
##  Parameter estimates:
##         o         y 
## 1.0000000 0.9038783 
## Fixed effects: AG ~ -1 + young + young:age + old + old:age + young:age:IDSEX +      old:age:IDSEX 
##                      Value  Std.Error   DF  t-value p-value
## young            2.4369854 0.05482332 1216 44.45162       0
## old              2.4315246 0.04839687 1216 50.24136       0
## young:age       -0.0173274 0.00242022 1216 -7.15940       0
## age:old         -0.0134539 0.00218266 1216 -6.16396       0
## young:age:IDSEX -0.0098510 0.00171292 1216 -5.75100       0
## age:old:IDSEX   -0.0120394 0.00165776 1216 -7.26245       0
##  Correlation: 
##                 young  old    yong:g age:ld y::IDS
## old              0.066                            
## young:age       -0.824 -0.048                     
## age:old         -0.019 -0.813  0.038              
## young:age:IDSEX  0.056  0.001 -0.495 -0.014       
## age:old:IDSEX   -0.003  0.093 -0.013 -0.516  0.033
## 
## Standardized Within-Group Residuals:
##         Min          Q1         Med          Q3         Max 
## -2.24414925 -0.52867121 -0.08375458  0.46239279  3.24808954 
## 
## Number of Observations: 1754
## Number of Groups: 533
anova(mAGd, mgAGd)
## Control 
mgCONd <- lme(fixed = CON ~ -1 + young + young:age + old + old:age + young:age:IDSEX + old:age:IDSEX,
            random = ~ -1 + young + old | IDYRFAM,
            correlation = corAR1(), 
            weights=varIdent(form = ~1 | yo), 
            na.action = "na.omit",
            data = long,
            control = list(maxIter = 1000),
            method = "ML")
summary(mgCONd)
## Linear mixed-effects model fit by maximum likelihood
##  Data: long 
##        AIC      BIC    logLik
##   1993.489 2059.145 -984.7445
## 
## Random effects:
##  Formula: ~-1 + young + old | IDYRFAM
##  Structure: General positive-definite, Log-Cholesky parametrization
##          StdDev    Corr 
## young    0.2840547 young
## old      0.3026628 0    
## Residual 0.3316112      
## 
## Correlation Structure: AR(1)
##  Formula: ~1 | IDYRFAM 
##  Parameter estimate(s):
##        Phi 
## 0.08177836 
## Variance function:
##  Structure: Different standard deviations per stratum
##  Formula: ~1 | yo 
##  Parameter estimates:
##        o        y 
## 1.000000 1.032462 
## Fixed effects: CON ~ -1 + young + young:age + old + old:age + young:age:IDSEX +      old:age:IDSEX 
##                     Value  Std.Error   DF  t-value p-value
## young           2.3414594 0.05074763 1219 46.13928  0.0000
## old             2.2822596 0.04013875 1219 56.85927  0.0000
## young:age       0.0164638 0.00224194 1219  7.34355  0.0000
## age:old         0.0172461 0.00181921 1219  9.48004  0.0000
## young:age:IDSEX 0.0047699 0.00147827 1219  3.22670  0.0013
## age:old:IDSEX   0.0058750 0.00137537 1219  4.27154  0.0000
##  Correlation: 
##                 young  old    yong:g age:ld y::IDS
## old              0.023                            
## young:age       -0.851 -0.024                     
## age:old         -0.009 -0.818  0.017              
## young:age:IDSEX  0.063  0.001 -0.471 -0.004       
## age:old:IDSEX   -0.001  0.093 -0.002 -0.513  0.008
## 
## Standardized Within-Group Residuals:
##         Min          Q1         Med          Q3         Max 
## -3.72295264 -0.50998111  0.01620036  0.54920625  2.56960557 
## 
## Number of Observations: 1757
## Number of Groups: 533
anova(mCONd, mgCONd)
## Harm Avoidance
mgHAd <- lme(fixed = HA ~ -1 + young + young:age + old + old:age + young:age:IDSEX + old:age:IDSEX,
            random = ~ -1 + young + old | IDYRFAM,
            correlation = corAR1(), 
            weights=varIdent(form = ~1 | yo), 
            na.action = "na.omit",
            data = long,
            control = list(maxIter = 1000),
            method = "ML")
summary(mgHAd)
## Linear mixed-effects model fit by maximum likelihood
##  Data: long 
##        AIC      BIC    logLik
##   2848.246 2913.889 -1412.123
## 
## Random effects:
##  Formula: ~-1 + young + old | IDYRFAM
##  Structure: General positive-definite, Log-Cholesky parametrization
##          StdDev    Corr 
## young    0.3666552 young
## old      0.4611298 0.271
## Residual 0.3928596      
## 
## Correlation Structure: AR(1)
##  Formula: ~1 | IDYRFAM 
##  Parameter estimate(s):
##        Phi 
## 0.04188171 
## Variance function:
##  Structure: Different standard deviations per stratum
##  Formula: ~1 | yo 
##  Parameter estimates:
##        o        y 
## 1.000000 1.089754 
## Fixed effects: HA ~ -1 + young + young:age + old + old:age + young:age:IDSEX +      old:age:IDSEX 
##                     Value  Std.Error   DF  t-value p-value
## young           2.2326849 0.06413936 1216 34.80990       0
## old             2.3120205 0.04976422 1216 46.45949       0
## young:age       0.0183513 0.00282369 1216  6.49906       0
## age:old         0.0124002 0.00225294 1216  5.50400       0
## young:age:IDSEX 0.0112708 0.00185331 1216  6.08144       0
## age:old:IDSEX   0.0139600 0.00184318 1216  7.57383       0
##  Correlation: 
##                 young  old    yong:g age:ld y::IDS
## old              0.039                            
## young:age       -0.851 -0.013                     
## age:old         -0.005 -0.780  0.015              
## young:age:IDSEX  0.059  0.000 -0.465 -0.015       
## age:old:IDSEX    0.000  0.097 -0.013 -0.550  0.032
## 
## Standardized Within-Group Residuals:
##         Min          Q1         Med          Q3         Max 
## -2.63968997 -0.52424576  0.04285149  0.54519800  2.42287784 
## 
## Number of Observations: 1755
## Number of Groups: 534
anova(mHAd, mgHAd)
## Social Potency
mgSPd <- lme(fixed = SP ~ -1 + young + young:age + old + old:age + young:age:IDSEX + old:age:IDSEX,
            random = ~ -1 + young + old | IDYRFAM,
            correlation = corAR1(), 
            weights=varIdent(form = ~1 | yo), 
            na.action = "na.omit",
            data = long,
            control = list(maxIter = 1000),
            method = "ML")
summary(mgSPd)
## Linear mixed-effects model fit by maximum likelihood
##  Data: long 
##        AIC      BIC   logLik
##   2139.061 2204.642 -1057.53
## 
## Random effects:
##  Formula: ~-1 + young + old | IDYRFAM
##  Structure: General positive-definite, Log-Cholesky parametrization
##          StdDev    Corr 
## young    0.3151553 young
## old      0.4010750 0.029
## Residual 0.3196475      
## 
## Correlation Structure: AR(1)
##  Formula: ~1 | IDYRFAM 
##  Parameter estimate(s):
##        Phi 
## 0.08860991 
## Variance function:
##  Structure: Different standard deviations per stratum
##  Formula: ~1 | yo 
##  Parameter estimates:
##       o       y 
## 1.00000 1.02675 
## Fixed effects: SP ~ -1 + young + young:age + old + old:age + young:age:IDSEX +      old:age:IDSEX 
##                      Value  Std.Error   DF  t-value p-value
## young            2.8897802 0.04997101 1208 57.82913  0.0000
## old              2.8526775 0.04105981 1208 69.47614  0.0000
## young:age       -0.0133706 0.00220375 1208 -6.06721  0.0000
## age:old         -0.0081902 0.00185899 1208 -4.40572  0.0000
## young:age:IDSEX -0.0002194 0.00152445 1208 -0.14394  0.8856
## age:old:IDSEX   -0.0020622 0.00157535 1208 -1.30902  0.1908
##  Correlation: 
##                 young  old    yong:g age:ld y::IDS
## old              0.027                            
## young:age       -0.834 -0.025                     
## age:old         -0.010 -0.764  0.019              
## young:age:IDSEX  0.053  0.001 -0.483 -0.005       
## age:old:IDSEX   -0.002  0.096 -0.003 -0.564  0.011
## 
## Standardized Within-Group Residuals:
##         Min          Q1         Med          Q3         Max 
## -2.76631806 -0.47146696  0.02929323  0.49217553  2.85531402 
## 
## Number of Observations: 1746
## Number of Groups: 533
anova(mSPd, mgSPd)
## Traditionalism
mgTRd <- lme(fixed = TR ~ -1 + young + young:age + old + old:age + young:age:IDSEX + old:age:IDSEX,
            random = ~ -1 + young + old | IDYRFAM,
            correlation = corAR1(), 
            weights=varIdent(form = ~1 | yo), 
            na.action = "na.omit",
            data = long,
            control = list(maxIter = 1000),
            method = "ML")
summary(mgTRd)
## Linear mixed-effects model fit by maximum likelihood
##  Data: long 
##        AIC      BIC    logLik
##   1809.354 1874.501 -892.6769
## 
## Random effects:
##  Formula: ~-1 + young + old | IDYRFAM
##  Structure: General positive-definite, Log-Cholesky parametrization
##          StdDev    Corr 
## young    0.2702731 young
## old      0.3009721 0.459
## Residual 0.3451784      
## 
## Correlation Structure: AR(1)
##  Formula: ~1 | IDYRFAM 
##  Parameter estimate(s):
##       Phi 
## 0.1522969 
## Variance function:
##  Structure: Different standard deviations per stratum
##  Formula: ~1 | yo 
##  Parameter estimates:
##         o         y 
## 1.0000000 0.9296463 
## Fixed effects: TR ~ -1 + young + young:age + old + old:age + young:age:IDSEX +      old:age:IDSEX 
##                      Value  Std.Error   DF  t-value p-value
## young            2.8460719 0.04762873 1144 59.75537  0.0000
## old              2.8121352 0.04208072 1144 66.82717  0.0000
## young:age       -0.0120355 0.00208378 1144 -5.77578  0.0000
## age:old         -0.0094375 0.00187888 1144 -5.02291  0.0000
## young:age:IDSEX  0.0023393 0.00135433 1144  1.72726  0.0844
## age:old:IDSEX    0.0015487 0.00135496 1144  1.14296  0.2533
##  Correlation: 
##                 young  old    yong:g age:ld y::IDS
## old              0.077                            
## young:age       -0.851 -0.043                     
## age:old         -0.016 -0.829  0.037              
## young:age:IDSEX  0.068  0.000 -0.470 -0.023       
## age:old:IDSEX   -0.002  0.102 -0.020 -0.503  0.057
## 
## Standardized Within-Group Residuals:
##          Min           Q1          Med           Q3          Max 
## -3.332172791 -0.516147629  0.009496759  0.494548221  3.259495394 
## 
## Number of Observations: 1684
## Number of Groups: 535
anova(mTRd, mgTRd)

4. Adoption status as moderator

# >> Adoption status as moderators ----
#bio = 0, adop = 1
long <- long %>% mutate(
  IDAB = ifelse(IDAB == 1, 1, 0)) 

## Achievement 
maACd <- lme(fixed = AC ~ -1 + young + young:age + old + old:age + young:age:IDAB + old:age:IDAB,
            random = ~ -1 + young + old | IDYRFAM,
            correlation = corAR1(), 
            weights=varIdent(form = ~1 | yo), 
            na.action = "na.omit",
            data = long,
            control = list(maxIter = 1000),
            method = "ML")
summary(maACd)
## Linear mixed-effects model fit by maximum likelihood
##  Data: long 
##        AIC      BIC    logLik
##   2439.379 2504.994 -1207.689
## 
## Random effects:
##  Formula: ~-1 + young + old | IDYRFAM
##  Structure: General positive-definite, Log-Cholesky parametrization
##          StdDev    Corr 
## young    0.3069992 young
## old      0.3426590 -0.07
## Residual 0.3792424      
## 
## Correlation Structure: AR(1)
##  Formula: ~1 | IDYRFAM 
##  Parameter estimate(s):
##       Phi 
## 0.1358322 
## Variance function:
##  Structure: Different standard deviations per stratum
##  Formula: ~1 | yo 
##  Parameter estimates:
##        o        y 
## 1.000000 1.064094 
## Fixed effects: AC ~ -1 + young + young:age + old + old:age + young:age:IDAB +      old:age:IDAB 
##                     Value  Std.Error   DF  t-value p-value
## young           2.3271299 0.05876186 1212 39.60273  0.0000
## old             2.2822807 0.04543903 1212 50.22732  0.0000
## young:age       0.0210291 0.00243841 1212  8.62412  0.0000
## age:old         0.0196357 0.00204059 1212  9.62257  0.0000
## young:age:IDAB -0.0014606 0.00161553 1212 -0.90409  0.3661
## age:old:IDAB    0.0007625 0.00158341 1212  0.48158  0.6302
##  Correlation: 
##                young  old    yong:g age:ld y::IDA
## old             0.033                            
## young:age      -0.884 -0.041                     
## age:old        -0.015 -0.792  0.032              
## young:age:IDAB  0.011  0.001 -0.338 -0.012       
## age:old:IDAB   -0.003  0.022 -0.006 -0.497  0.026
## 
## Standardized Within-Group Residuals:
##          Min           Q1          Med           Q3          Max 
## -2.875425684 -0.555607053 -0.004827308  0.546583548  2.462914858 
## 
## Number of Observations: 1751
## Number of Groups: 534
anova(mACd, maACd)
## Aggression 
maAGd <- lme(fixed = AG ~ -1 + young + young:age + old + old:age + young:age:IDAB + old:age:IDAB,
            random = ~ -1 + young + old | IDYRFAM,
            correlation = corAR1(), 
            weights=varIdent(form = ~1 | yo), 
            na.action = "na.omit",
            data = long,
            control = list(maxIter = 1000),
            method = "ML")
summary(maAGd)
## Linear mixed-effects model fit by maximum likelihood
##  Data: long 
##        AIC      BIC    logLik
##   2605.949 2671.585 -1290.974
## 
## Random effects:
##  Formula: ~-1 + young + old | IDYRFAM
##  Structure: General positive-definite, Log-Cholesky parametrization
##          StdDev    Corr 
## young    0.4076677 young
## old      0.4111097 0.216
## Residual 0.3941475      
## 
## Correlation Structure: AR(1)
##  Formula: ~1 | IDYRFAM 
##  Parameter estimate(s):
##       Phi 
## 0.1570875 
## Variance function:
##  Structure: Different standard deviations per stratum
##  Formula: ~1 | yo 
##  Parameter estimates:
##         o         y 
## 1.0000000 0.8896306 
## Fixed effects: AG ~ -1 + young + young:age + old + old:age + young:age:IDAB +      old:age:IDAB 
##                     Value  Std.Error   DF   t-value p-value
## young           2.4435980 0.05405320 1216  45.20728  0.0000
## old             2.4617407 0.04806207 1216  51.22003  0.0000
## young:age      -0.0248564 0.00222326 1216 -11.18014  0.0000
## age:old        -0.0256783 0.00215387 1216 -11.92191  0.0000
## young:age:IDAB  0.0021288 0.00171108 1216   1.24415  0.2137
## age:old:IDAB    0.0068843 0.00175186 1216   3.92970  0.0001
##  Correlation: 
##                young  old    yong:g age:ld y::IDA
## old             0.070                            
## young:age      -0.839 -0.047                     
## age:old        -0.014 -0.766  0.050              
## young:age:IDAB  0.004  0.000 -0.386 -0.053       
## age:old:IDAB   -0.010  0.020 -0.035 -0.519  0.109
## 
## Standardized Within-Group Residuals:
##        Min         Q1        Med         Q3        Max 
## -2.3113230 -0.5335534 -0.0730538  0.4522537  3.2018594 
## 
## Number of Observations: 1754
## Number of Groups: 533
anova(mAGd, maAGd)
## Control 
maCONd <- lme(fixed = CON ~ -1 + young + young:age + old + old:age + young:age:IDAB + old:age:IDAB,
            random = ~ -1 + young + old | IDYRFAM,
            correlation = corAR1(), 
            weights=varIdent(form = ~1 | yo), 
            na.action = "na.omit",
            data = long,
            control = list(maxIter = 1000),
            method = "ML")
summary(maCONd)
## Linear mixed-effects model fit by maximum likelihood
##  Data: long 
##        AIC      BIC    logLik
##   2020.507 2086.163 -998.2533
## 
## Random effects:
##  Formula: ~-1 + young + old | IDYRFAM
##  Structure: General positive-definite, Log-Cholesky parametrization
##          StdDev    Corr 
## young    0.2939346 young
## old      0.3132572 0.008
## Residual 0.3305191      
## 
## Correlation Structure: AR(1)
##  Formula: ~1 | IDYRFAM 
##  Parameter estimate(s):
##        Phi 
## 0.07993586 
## Variance function:
##  Structure: Different standard deviations per stratum
##  Formula: ~1 | yo 
##  Parameter estimates:
##        o        y 
## 1.000000 1.028306 
## Fixed effects: CON ~ -1 + young + young:age + old + old:age + young:age:IDAB +      old:age:IDAB 
##                     Value  Std.Error   DF  t-value p-value
## young           2.3324060 0.05059898 1219 46.09591  0.0000
## old             2.2663642 0.04007329 1219 56.55548  0.0000
## young:age       0.0202174 0.00210266 1219  9.61514  0.0000
## age:old         0.0219229 0.00180234 1219 12.16355  0.0000
## young:age:IDAB -0.0007945 0.00143698 1219 -0.55292  0.5804
## age:old:IDAB   -0.0011508 0.00141292 1219 -0.81449  0.4155
##  Correlation: 
##                young  old    yong:g age:ld y::IDA
## old             0.023                            
## young:age      -0.877 -0.024                     
## age:old        -0.009 -0.787  0.020              
## young:age:IDAB  0.011  0.000 -0.348 -0.012       
## age:old:IDAB   -0.002  0.021 -0.007 -0.501  0.026
## 
## Standardized Within-Group Residuals:
##         Min          Q1         Med          Q3         Max 
## -3.72044349 -0.49981642  0.01178782  0.56415046  2.63060411 
## 
## Number of Observations: 1757
## Number of Groups: 533
anova(mCONd, maCONd)
## Harm Avoidance
maHAd <- lme(fixed = HA ~ -1 + young + young:age + old + old:age + young:age:IDAB + old:age:IDAB,
            random = ~ -1 + young + old | IDYRFAM,
            correlation = corAR1(), 
            weights=varIdent(form = ~1 | yo), 
            na.action = "na.omit",
            data = long,
            control = list(maxIter = 1000),
            method = "ML")
summary(maHAd)
## Linear mixed-effects model fit by maximum likelihood
##  Data: long 
##        AIC      BIC   logLik
##   2928.541 2994.183 -1452.27
## 
## Random effects:
##  Formula: ~-1 + young + old | IDYRFAM
##  Structure: General positive-definite, Log-Cholesky parametrization
##          StdDev    Corr 
## young    0.3787724 young
## old      0.4916011 0.236
## Residual 0.3954184      
## 
## Correlation Structure: AR(1)
##  Formula: ~1 | IDYRFAM 
##  Parameter estimate(s):
##        Phi 
## 0.05255881 
## Variance function:
##  Structure: Different standard deviations per stratum
##  Formula: ~1 | yo 
##  Parameter estimates:
##        o        y 
## 1.000000 1.091461 
## Fixed effects: HA ~ -1 + young + young:age + old + old:age + young:age:IDAB +      old:age:IDAB 
##                     Value  Std.Error   DF  t-value p-value
## young           2.2133566 0.06472351 1216 34.19710  0.0000
## old             2.2764548 0.05043363 1216 45.13764  0.0000
## young:age       0.0237705 0.00268666 1216  8.84758  0.0000
## age:old         0.0223201 0.00225819 1216  9.88406  0.0000
## young:age:IDAB  0.0049314 0.00182795 1216  2.69778  0.0071
## age:old:IDAB   -0.0009851 0.00194708 1216 -0.50592  0.6130
##  Correlation: 
##                young  old    yong:g age:ld y::IDA
## old             0.040                            
## young:age      -0.878 -0.016                     
## age:old        -0.003 -0.733  0.025              
## young:age:IDAB  0.010 -0.001 -0.344 -0.046       
## age:old:IDAB   -0.007  0.009 -0.025 -0.541  0.089
## 
## Standardized Within-Group Residuals:
##         Min          Q1         Med          Q3         Max 
## -2.51150701 -0.50682618  0.03016124  0.55083881  2.42784070 
## 
## Number of Observations: 1755
## Number of Groups: 534
anova(mHAd, maHAd)
## Social Potency
maSPd <- lme(fixed = SP ~ -1 + young + young:age + old + old:age + young:age:IDAB + old:age:IDAB,
            random = ~ -1 + young + old | IDYRFAM,
            correlation = corAR1(), 
            weights=varIdent(form = ~1 | yo), 
            na.action = "na.omit",
            data = long,
            control = list(maxIter = 1000),
            method = "ML")
summary(maSPd)
## Linear mixed-effects model fit by maximum likelihood
##  Data: long 
##        AIC      BIC    logLik
##   2137.567 2203.148 -1056.784
## 
## Random effects:
##  Formula: ~-1 + young + old | IDYRFAM
##  Structure: General positive-definite, Log-Cholesky parametrization
##          StdDev    Corr 
## young    0.3154804 young
## old      0.3998781 0.036
## Residual 0.3195298      
## 
## Correlation Structure: AR(1)
##  Formula: ~1 | IDYRFAM 
##  Parameter estimate(s):
##        Phi 
## 0.08242774 
## Variance function:
##  Structure: Different standard deviations per stratum
##  Formula: ~1 | yo 
##  Parameter estimates:
##        o        y 
## 1.000000 1.025885 
## Fixed effects: SP ~ -1 + young + young:age + old + old:age + young:age:IDAB +      old:age:IDAB 
##                     Value  Std.Error   DF  t-value p-value
## young           2.8901595 0.04990754 1208 57.91028  0.0000
## old             2.8586357 0.04085335 1208 69.97311  0.0000
## young:age      -0.0135404 0.00206339 1208 -6.56221  0.0000
## age:old        -0.0113605 0.00183446 1208 -6.19287  0.0000
## young:age:IDAB  0.0000323 0.00146563 1208  0.02206  0.9824
## age:old:IDAB    0.0028552 0.00159077 1208  1.79484  0.0729
##  Correlation: 
##                young  old    yong:g age:ld y::IDA
## old             0.027                            
## young:age      -0.867 -0.024                     
## age:old        -0.009 -0.730  0.022              
## young:age:IDAB  0.004  0.000 -0.354 -0.017       
## age:old:IDAB   -0.003  0.012 -0.010 -0.547  0.033
## 
## Standardized Within-Group Residuals:
##        Min         Q1        Med         Q3        Max 
## -2.7585751 -0.4817614  0.0363319  0.4981193  2.8692835 
## 
## Number of Observations: 1746
## Number of Groups: 533
anova(mSPd, maSPd)
## Traditionalism
maTRd <- lme(fixed = TR ~ -1 + young + young:age + old + old:age + young:age:IDAB + old:age:IDAB,
            random = ~ -1 + young + old | IDYRFAM,
            correlation = corAR1(), 
            weights=varIdent(form = ~1 | yo), 
            na.action = "na.omit",
            data = long,
            control = list(maxIter = 1000),
            method = "ML")
summary(maTRd)
## Linear mixed-effects model fit by maximum likelihood
##  Data: long 
##        AIC      BIC    logLik
##   1801.908 1867.055 -888.9538
## 
## Random effects:
##  Formula: ~-1 + young + old | IDYRFAM
##  Structure: General positive-definite, Log-Cholesky parametrization
##          StdDev    Corr 
## young    0.2744407 young
## old      0.2934818 0.447
## Residual 0.3456808      
## 
## Correlation Structure: AR(1)
##  Formula: ~1 | IDYRFAM 
##  Parameter estimate(s):
##      Phi 
## 0.151767 
## Variance function:
##  Structure: Different standard deviations per stratum
##  Formula: ~1 | yo 
##  Parameter estimates:
##         o         y 
## 1.0000000 0.9234463 
## Fixed effects: TR ~ -1 + young + young:age + old + old:age + young:age:IDAB +      old:age:IDAB 
##                     Value  Std.Error   DF  t-value p-value
## young           2.8432494 0.04744580 1144 59.92626  0.0000
## old             2.8040473 0.04178600 1144 67.10494  0.0000
## young:age      -0.0105412 0.00195439 1144 -5.39361  0.0000
## age:old        -0.0053664 0.00185259 1144 -2.89670  0.0038
## young:age:IDAB  0.0002262 0.00132638 1144  0.17054  0.8646
## age:old:IDAB   -0.0045942 0.00137490 1144 -3.34151  0.0009
##  Correlation: 
##                young  old    yong:g age:ld y::IDA
## old             0.077                            
## young:age      -0.877 -0.045                     
## age:old        -0.012 -0.806  0.053              
## young:age:IDAB  0.013 -0.002 -0.345 -0.074       
## age:old:IDAB   -0.011  0.023 -0.050 -0.481  0.170
## 
## Standardized Within-Group Residuals:
##         Min          Q1         Med          Q3         Max 
## -3.28738460 -0.52365551  0.01386345  0.50601908  3.30210265 
## 
## Number of Observations: 1684
## Number of Groups: 535
anova(mTRd, maTRd)