This is an R Markdown Notebook. When you execute code within the notebook, the results appear beneath the code.

Try executing this chunk by clicking the Run button within the chunk or by placing your cursor inside it and pressing Ctrl+Shift+Enter.

plot(cars)
library(tidyverse)
library(psych)
library(lme4)
library(haven)
X04275_0001_Data <- read_dta("ICPSR_04275-V1/ICPSR_04275/DS0001/04275-0001-Data.dta")
glimpse(X04275_0001_Data)
Rows: 15,362
Columns: 907
$ STU_ID   <dbl> 101101, 101102, 101104, 101105, 101106, 101107,...
$ SCH_ID   <dbl> 1011, 1011, 1011, 1011, 1011, 1011, 1011, 1011,...
$ STRAT_ID <dbl> 101, 101, 101, 101, 101, 101, 101, 101, 101, 10...
$ PSU      <dbl+lbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1...
$ BYSTUWT  <dbl> 178.9513, 28.2951, 589.7248, 235.7822, 178.9513...
$ SEX      <dbl+lbl> 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1...
$ RACE     <dbl+lbl> 5, 2, 7, 3, 4, 4, 4, 7, 4, 3, 3, 4, 3, 2, 2...
$ STLANG   <dbl+lbl> 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1...
$ HOMELANG <dbl+lbl> 1, 4, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1...
$ DOBIRTHP <dbl+lbl> 198512, 198605, 198601, 198607, 198511, 198...
$ PARACE   <dbl+lbl>  7,  2,  7, -9,  4,  5,  4,  7,  4,  3,  3,...
$ PARLANG  <dbl+lbl>  1,  4,  1, -9,  2,  1, -9,  1,  2,  1,  1,...
$ BYFCOMP  <dbl+lbl> 3, 1, 1, 5, 1, 5, 1, 1, 1, 1, 3, 5, 1, 2, 1...
$ PARED    <dbl+lbl> 5, 5, 2, 2, 1, 2, 6, 2, 2, 1, 6, 4, 4, 2, 7...
$ MOTHED   <dbl+lbl> 1, 5, 2, 2, 1, 2, 6, 2, 2, 1, 6, 4, 3, 2, 7...
$ FATHED   <dbl+lbl> 5, 5, 2, 2, 1, 1, 3, 2, 1, 1, 4, 2, 4, 2, 3...
$ OCCUMOTH <dbl+lbl>  8,  0,  5,  4,  8,  5, 14,  1,  5,  9, 15,...
$ OCCUFATH <dbl+lbl>  6,  9,  5,  6,  5,  8, 15, 12,  2,  5,  7,...
$ INCOME   <dbl+lbl> 10, 11, 10,  2,  6,  9, 10, 10,  8,  3,  8,...
$ SES1     <dbl> -0.25, 0.58, -0.85, -0.80, -1.41, -1.07, 0.27, ...
$ SES1QU   <dbl+lbl> 2, 4, 1, 1, 1, 1, 3, 2, 1, 1, 2, 2, 1, 2, 4...
$ SES2     <dbl> -0.23, 0.69, -0.68, -0.89, -1.28, -0.93, 0.36, ...
$ SES2QU   <dbl+lbl> 2, 4, 1, 1, 1, 1, 3, 2, 1, 1, 2, 3, 1, 1, 4...
$ STEXPECT <dbl+lbl>  3,  7, -1,  5,  5,  4, -1,  6,  7,  6, -1,...
$ PARASPIR <dbl+lbl> 5, 7, 7, 6, 2, 3, 5, 5, 5, 2, 5, 3, 6, 5, 6...
$ BYOCCHS  <dbl+lbl>  7, -3, -1, 15, 15, -3, -3, -1, -3,  9, -1,...
$ BYOCC30  <dbl+lbl> -1,  9, 10, 10, 16, 11,  9, -1, 10, -1,  9,...
$ SCHPROG  <dbl+lbl> 2, 2, 2, 2, 3, 1, 2, 2, 2, 2, 2, 3, 3, 2, 2...
$ BYSQSTAT <dbl+lbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1...
$ BYQXDATP <dbl> 200204, 200204, 200204, 200204, 200204, 200204,...
$ BYTXSTAT <dbl+lbl> 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3...
$ BYTEQFLG <dbl+lbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1...
$ BYPQSTAT <dbl+lbl> 2, 1, 2, 0, 2, 2, 4, 2, 2, 3, 1, 1, 1, 2, 0...
$ BYTXPAFG <dbl+lbl> 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0...
$ BYADMFLG <dbl+lbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1...
$ BYLMCFLG <dbl+lbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1...
$ BYIEPFLG <dbl+lbl> 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0...
$ BYTXACC  <dbl+lbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0...
$ BYTXCSTD <dbl> 56.21, 57.66, 66.50, 46.46, 36.17, 30.72, 45.46...
$ BYTXCQU  <dbl+lbl> 3, 4, 4, 2, 1, 1, 2, 4, 1, 2, 4, 2, 1, 3, 4...
$ BYNELS2M <dbl> 47.84, 55.30, 66.24, 35.33, 29.97, 24.28, 45.16...
$ BYNELS2R <dbl> 39.04, 36.35, 42.68, 27.86, 13.07, 11.70, 19.66...
$ BYNELS0M <dbl> 41.25, 47.30, 54.15, 30.17, 25.26, 20.02, 38.95...
$ BYPISARE <dbl> 616.89, 591.84, 654.43, 511.11, 379.17, 358.38,...
$ BYTXMIRR <dbl> 39.940, 47.361, 56.717, 29.603, 24.673, 19.458,...
$ BYTXMSTD <dbl> 52.11, 57.65, 66.44, 44.68, 40.57, 35.04, 50.71...
$ BYTXMQU  <dbl+lbl> 3, 4, 4, 2, 1, 1, 3, 4, 1, 2, 4, 2, 1, 4, 4...
$ BYTX1MPP <dbl> 0.998, 1.000, 1.000, 0.972, 0.906, 0.630, 0.997...
$ BYTX2MPP <dbl> 0.991, 1.000, 1.000, 0.298, 0.029, 0.001, 0.971...
$ BYTX3MPP <dbl> 0.729, 0.997, 1.000, 0.002, 0.000, 0.000, 0.345...
$ BYTX4MPP <dbl> 0.029, 0.287, 0.974, 0.001, 0.000, 0.000, 0.012...
$ BYTX5MPP <dbl> 0.000, 0.000, 0.020, 0.000, 0.000, 0.000, 0.000...
$ BYTXRIRR <dbl> 39.806, 37.121, 43.536, 27.854, 13.732, 11.698,...
$ BYTXRSTD <dbl> 59.53, 56.70, 64.46, 48.69, 33.53, 28.85, 40.80...
$ BYTXRQU  <dbl+lbl> 4, 3, 4, 2, 1, 1, 1, 4, 2, 1, 3, 1, 1, 1, 4...
$ BYTX1RPP <dbl> 1.000, 1.000, 1.000, 0.999, 0.098, 0.021, 0.930...
$ BYTX2RPP <dbl> 0.961, 0.890, 0.992, 0.276, 0.000, 0.000, 0.017...
$ BYTX3RPP <dbl> 0.079, 0.021, 0.406, 0.000, 0.000, 0.000, 0.000...
$ BYSF1RCE <dbl+lbl>  4,  2,  7,  3,  4,  4,  4,  3,  4,  7,  7,...
$ BYSF2RCE <dbl+lbl>  4,  2,  7,  3,  4,  3,  7,  3, -3,  4,  7,...
$ BYSF3RCE <dbl+lbl>  4,  3,  7, -9,  4,  3,  7,  7, -3,  3,  3,...
$ BYBASEBL <dbl+lbl>  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,...
$ BYSOFTBL <dbl+lbl>  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,...
$ BYBSKTBL <dbl+lbl> 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2...
$ BYFOOTBL <dbl+lbl>  2,  2,  2,  2,  2,  2,  2,  2,  2,  3,  4,...
$ BYSOCCER <dbl+lbl>  2,  1,  2,  2,  2,  2,  2,  2,  2,  2,  2,...
$ BYTEAMSP <dbl+lbl>  2,  2,  1,  2,  2,  4,  4,  3,  2,  2,  4,...
$ BYSOLOSP <dbl+lbl>  2,  2,  2,  2,  2,  2,  2,  3,  2,  2,  4,...
$ BYCHRDRL <dbl+lbl>  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,...
$ BYWORKSY <dbl+lbl>  1,  0,  0,  0,  1,  0,  1,  0, -9,  0,  0,...
$ BYERACE  <dbl+lbl>  3,  3,  7,  7,  7,  7,  7,  7,  6,  6,  7,...
$ BYTEHDEG <dbl+lbl>  3,  3,  3,  3,  3,  3,  5,  3,  3,  3,  3,...
$ BYMRACE  <dbl+lbl>  7,  7,  7,  7,  7,  7,  7,  7,  7,  7,  7,...
$ BYTMHDEG <dbl+lbl>  3,  3,  5,  3,  5,  3,  4,  5,  3,  3,  5,...
$ BYG10EP  <dbl+lbl> 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6...
$ BYSCENP  <dbl+lbl> -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9,...
$ BYSCTRL  <dbl+lbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1...
$ BYURBAN  <dbl+lbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1...
$ BYREGION <dbl+lbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1...
$ BYSPANP  <dbl+lbl> 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3...
$ BY10FLP  <dbl+lbl> 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5...
$ SEXIM    <dbl+lbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0...
$ STLANGIM <dbl+lbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0...
$ FAMCMPIM <dbl+lbl> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1...
$ MOTHEDIM <dbl+lbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1...
$ FATHEDIM <dbl+lbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1...
$ OCCMOMIM <dbl+lbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0...
$ OCCFTHIM <dbl+lbl> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0...
$ INCOMEIM <dbl+lbl> 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1...
$ STEXPTIM <dbl+lbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0...
$ PARASPIM <dbl+lbl> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1...
$ SCHPRGIM <dbl+lbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0...
$ BYTESTIM <dbl+lbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0...
$ BYMATHIM <dbl+lbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0...
$ BYREADIM <dbl+lbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0...
$ BYS14    <dbl+lbl> 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1...
$ BYS15    <dbl+lbl> 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0...
$ BYS20A   <dbl+lbl>  2,  2,  3, -9,  2,  2,  3,  1,  3,  2,  2,...
$ BYS20B   <dbl+lbl> 3, 3, 3, 2, 2, 3, 3, 2, 3, 2, 3, 3, 3, 3, 3...
$ BYS20C   <dbl+lbl>  1,  2,  3, -9,  2,  2,  1,  2,  3,  2,  1,...
$ BYS20D   <dbl+lbl>  2,  2,  2, -9,  2,  1,  2,  2,  2,  2,  2,...
$ BYS20E   <dbl+lbl> 2, 3, 3, 1, 3, 1, 2, 2, 3, 1, 1, 2, 3, 1, 3...
$ BYS20F   <dbl+lbl> 2, 2, 2, 2, 2, 1, 2, 2, 3, 2, 1, 2, 3, 2, 4...
$ BYS20G   <dbl+lbl> 3, 2, 3, 2, 3, 2, 2, 2, 3, 1, 2, 2, 3, 2, 2...
$ BYS20H   <dbl+lbl>  1,  4,  3, -9,  3,  3,  4,  4,  3,  3,  3,...
$ BYS20I   <dbl+lbl>  3,  4,  3, -9,  3,  3,  4,  3,  3,  4,  3,...
$ BYS20J   <dbl+lbl>  3,  3, -9, -9,  3,  3,  3,  3,  2,  2,  3,...
$ BYS20K   <dbl+lbl> 3, 3, 2, 2, 2, 1, 2, 2, 2, 4, 2, 2, 1, 2, 3...
$ BYS20L   <dbl+lbl>  2,  2,  3, -9,  1,  4,  3,  2,  3,  1,  3,...
$ BYS20M   <dbl+lbl>  2,  3,  2,  2,  1,  1,  2,  2,  2,  1,  3,...
$ BYS20N   <dbl+lbl>  1,  4,  2, -9,  1,  2,  2, -9,  2,  1,  3,...
$ BYS21A   <dbl+lbl> 2, 2, 2, 1, 1, 1, 3, 3, 2, 3, 2, 2, 1, 3, 2...
$ BYS21B   <dbl+lbl>  3,  3,  3, -9,  4,  2,  3,  3,  3,  2,  3,...
$ BYS21C   <dbl+lbl> 4, 2, 2, 2, 3, 3, 2, 3, 3, 2, 3, 2, 2, 1, 3...
$ BYS21D   <dbl+lbl>  3,  2,  2,  2,  3,  2,  3,  3,  2,  3,  2,...
$ BYS21E   <dbl+lbl>  2,  1,  2, -9,  2,  1,  2,  3,  2,  2,  3,...
$ BYS22A   <dbl+lbl> 1, 2, 2, 2, 1, 1, 1, 1, 1, 3, 2, 1, 2, 2, 3...
$ BYS22B   <dbl+lbl> 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1...
$ BYS22C   <dbl+lbl> 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2...
$ BYS22D   <dbl+lbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1...
$ BYS22E   <dbl+lbl> 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 2, 2, 1...
$ BYS22F   <dbl+lbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1...
$ BYS22G   <dbl+lbl> 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1...
$ BYS22H   <dbl+lbl> 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2...
$ BYS23A   <dbl+lbl> 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1...
$ BYS23B   <dbl+lbl>  0,  0,  1, -9,  0,  0,  1,  1,  1,  0,  0,...
$ BYS23C   <dbl+lbl> 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1...
$ BYS23D   <dbl+lbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0...
$ BYS23E   <dbl+lbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0...
$ BYS23F   <dbl+lbl>  0,  0,  0, -9,  0,  0,  0,  0,  0,  0,  0,...
$ BYS24A   <dbl+lbl> 3, 3, 2, 2, 2, 5, 3, 1, 2, 1, 2, 1, 4, 2, 2...
$ BYS24B   <dbl+lbl> 3, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1...
$ BYS24C   <dbl+lbl> 3, 2, 2, 3, 2, 1, 1, 1, 2, 3, 1, 1, 4, 1, 1...
$ BYS24D   <dbl+lbl> 1, 1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 1, 2, 1, 2...
$ BYS24E   <dbl+lbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1...
$ BYS24F   <dbl+lbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1...
$ BYS24G   <dbl+lbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1...
$ BYS25AA  <dbl+lbl>  2,  2,  2, -9,  2,  1,  2,  1,  1,  2,  1,...
$ BYS25BA  <dbl+lbl>  1,  0,  0, -9,  1,  1,  1,  0,  1,  0,  0,...
$ BYS25DA  <dbl+lbl> 10, 10, 10, 10, 10, 10, 10, 10,  9, 10, 10,...
$ BYS25EA  <dbl+lbl>  2,  3,  2,  3,  3,  2,  2,  3,  2,  3,  3,...
$ BYS25FA  <dbl+lbl>  1,  1,  1,  1,  1,  1,  1,  0,  1,  1,  1,...
$ BYS25GA  <dbl+lbl>  0,  1,  1, -9,  1,  0,  1,  0,  1,  0,  0,...
$ BYS25AB  <dbl+lbl>  1,  2,  2,  2,  1,  1,  1,  1, -3,  1,  1,...
$ BYS25BB  <dbl+lbl>  1,  0,  0, -9,  1,  0,  0,  0, -3,  1,  0,...
$ BYS25DB  <dbl+lbl> 10, 10, 10, 10, 10, 10, 10, 10, -3, 10, 10,...
$ BYS25EB  <dbl+lbl>  2,  3,  3,  3,  3,  2,  2, -9, -3,  2,  3,...
$ BYS25FB  <dbl+lbl>  0,  1,  1,  0,  1,  1,  1,  0, -3,  1,  1,...
$ BYS25GB  <dbl+lbl>  0,  1,  1, -9, -9,  1,  1, -9, -3,  1,  1,...
$ BYS25AC  <dbl+lbl>  2,  2,  1, -9,  1,  1,  1,  1, -3,  1,  1,...
$ BYS25BC  <dbl+lbl>  1,  0,  0,  0,  1,  0,  0,  0, -3,  0,  0,...
$ BYS25DC  <dbl+lbl> 12, 10, 10, 10, 10,  9, -9, 10, -3, 10, 10,...
$ BYS25EC  <dbl+lbl>  3,  2,  2,  3,  3,  2,  2,  3, -3,  2,  3,...
$ BYS25FC  <dbl+lbl>  1,  0,  1,  1,  0,  1,  1,  1, -3,  0,  1,...
$ BYS25GC  <dbl+lbl>  1,  0,  1,  1,  0,  1,  1,  1, -3,  0,  0,...
$ BYS26    <dbl+lbl> 2, 2, 2, 2, 3, 1, 2, 2, 2, 2, 2, 3, 3, 2, 2...
$ BYS27A   <dbl+lbl> 2, 2, 3, 1, 1, 2, 2, 2, 3, 2, 1, 2, 2, 2, 4...
$ BYS27B   <dbl+lbl> 2, 2, 3, 1, 1, 1, 3, 2, 3, 2, 2, 2, 2, 2, 4...
$ BYS27C   <dbl+lbl> 3, 2, 3, 4, 1, 3, 3, 2, 3, 4, 2, 3, 3, 3, 2...
$ BYS27D   <dbl+lbl> 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1...
$ BYS27E   <dbl+lbl> 2, 1, 3, 2, 1, 4, 2, 1, 2, 4, 2, 3, 4, 3, 2...
$ BYS27F   <dbl+lbl> 3, 1, 2, 1, 2, 2, 2, 1, 3, 3, 1, 3, 4, 3, 2...
$ BYS27G   <dbl+lbl> 3, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 4...
$ BYS27H   <dbl+lbl>  2,  2, -9,  1,  1,  1,  1,  2,  2,  2,  2,...
$ BYS27I   <dbl+lbl> 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 2, 1, 2, 1...
$ BYS28    <dbl+lbl>  2,  2,  1,  3,  3,  3,  2,  2,  2,  3,  2,...
$ BYS29A   <dbl+lbl> 2, 4, 4, 5, 5, 5, 3, 2, 5, 4, 4, 5, 3, 3, 4...
$ BYS29B   <dbl+lbl> 2, 5, 4, 2, 5, 2, 2, 5, 4, 5, 5, 5, 2, 5, 3...
$ BYS29C   <dbl+lbl>  2,  5,  5, -9,  5, -9,  5,  5,  5,  4,  4,...
$ BYS29D   <dbl+lbl>  1,  2, -9,  4,  5,  3,  3,  1,  2,  3,  1,...
$ BYS29E   <dbl+lbl> 2, 3, 5, 3, 4, 4, 4, 4, 5, 4, 5, 5, 5, 5, 3...
$ BYS29F   <dbl+lbl>  5,  3,  3, -9,  2,  2,  3,  4,  5,  2,  5,...
$ BYS29G   <dbl+lbl> 1, 1, 4, 2, 1, 1, 2, 4, 2, 2, 5, 1, 1, 3, 5...
$ BYS29H   <dbl+lbl> 1, 1, 1, 3, 2, 1, 1, 1, 2, 3, 5, 5, 2, 4, 1...
$ BYS29I   <dbl+lbl> 1, 2, 1, 2, 4, 5, 2, 1, 4, 1, 2, 3, 2, 3, 1...
$ BYS29J   <dbl+lbl>  5,  2,  1, -9,  5,  2,  1,  1,  2,  5,  5,...
$ BYS30    <dbl+lbl>  0,  0,  0,  0,  1,  0,  1,  0,  0,  1,  0,...
$ BYS31A   <dbl+lbl> -3, -3, -3, -3,  1, -3,  1, -3, -3,  2, -3,...
$ BYS31B   <dbl+lbl> -3, -3, -3, -3,  3, -3,  4, -3, -3,  3, -3,...
$ BYS31C   <dbl+lbl> -3, -3, -3, -3,  1, -3,  1, -3, -3,  2, -3,...
$ BYS31D   <dbl+lbl> -3, -3, -3, -3,  3, -3,  4, -3, -3,  3, -3,...
$ BYS31E   <dbl+lbl> -3, -3, -3, -3,  1, -3,  1, -3, -3,  5, -3,...
$ BYS31F   <dbl+lbl> -3, -3, -3, -3,  1, -3,  4, -3, -3,  2, -3,...
$ BYS31G   <dbl+lbl> -3, -3, -3, -3,  1, -3,  1, -3, -3,  4, -3,...
$ BYS31H   <dbl+lbl> -3, -3, -3, -3,  2, -3,  1, -3, -3,  3, -3,...
$ BYS32AA  <dbl+lbl>  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,...
$ BYS32BA  <dbl+lbl>  1,  1,  1,  1,  1,  1,  0,  1,  1,  1,  1,...
$ BYS32CA  <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  1,  0,  0,  1,...
$ BYS32DA  <dbl+lbl>  0,  1,  0,  0,  0,  0,  0,  1,  0,  0,  1,...
$ BYS32EA  <dbl+lbl>  0,  0,  0,  1,  1,  0,  0,  0,  0,  1,  0,...
$ BYS32FA  <dbl+lbl>  0,  1,  0,  1,  1,  0,  0,  0,  0,  1,  0,...
$ BYS32GA  <dbl+lbl>  1,  1, -9,  1, -3, -9,  0,  1,  1,  1,  1,...
$ BYS32HA  <dbl+lbl>  1,  1,  1,  1, -3, -9,  0,  1,  1,  1,  1,...
$ BYS32AB  <dbl+lbl>  0,  1,  1,  1,  1,  1,  0,  1,  1,  1,  1,...
$ BYS32BB  <dbl+lbl>  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,...
$ BYS32CB  <dbl+lbl>  0,  1,  1,  0,  0,  0,  0,  1,  0,  0,  1,...
$ BYS32DB  <dbl+lbl>  0,  1,  0,  0,  0,  0,  1,  1,  0,  1,  1,...
$ BYS32EB  <dbl+lbl>  0,  0,  0,  1,  1,  0,  1,  0,  0,  1,  0,...
$ BYS32FB  <dbl+lbl>  0,  0,  0,  1,  1,  1,  1,  0,  1,  1,  0,...
$ BYS32GB  <dbl+lbl>  1,  1,  1,  0, -3,  1,  0,  1,  1,  0,  1,...
$ BYS32HB  <dbl+lbl>  1,  1,  1,  1, -3,  1,  0,  1,  1,  1,  1,...
$ BYS33A   <dbl+lbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0...
$ BYS33B   <dbl+lbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0...
$ BYS33C   <dbl+lbl> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0...
$ BYS33D   <dbl+lbl> 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0...
$ BYS33E   <dbl+lbl> 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0...
$ BYS33F   <dbl+lbl> 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0...
$ BYS33G   <dbl+lbl> 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0...
$ BYS33H   <dbl+lbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0...
$ BYS33I   <dbl+lbl> 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0...
$ BYS33J   <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,...
$ BYS33K   <dbl+lbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0...
$ BYS33L   <dbl+lbl> 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0...
$ BYS34A   <dbl+lbl>  1,  1, -9,  4,  8,  7,  1,  2, -9,  7,  4,...
$ BYS34B   <dbl+lbl>  6,  4, 18,  7,  2,  6, 11, 10, -9, 16,  5,...
$ BYS35A   <dbl+lbl>  0,  1,  5,  4,  1,  7,  1,  1, -9,  5,  2,...
$ BYS35B   <dbl+lbl>  2,  0,  4,  5,  3,  5,  1,  4, -9,  8,  2,...
$ BYS36A   <dbl+lbl>  0,  1,  1,  2,  1,  0,  1,  1, -9,  3,  3,...
$ BYS36B   <dbl+lbl>  4,  2,  5,  3,  3,  0,  1,  2, -9,  8,  2,...
$ BYS37    <dbl+lbl> 3, 4, 4, 4, 4, 3, 2, 4, 4, 4, 3, 4, 3, 4, 4...
$ BYS38A   <dbl+lbl>  2,  2,  1,  1,  4,  2,  3,  2,  4,  1,  2,...
$ BYS38B   <dbl+lbl>  3,  1,  1, -9,  4,  1,  4,  2,  4,  1,  2,...
$ BYS38C   <dbl+lbl>  2,  1,  2,  2,  4,  2,  3,  2,  4,  1,  2,...
$ BYS39A   <dbl+lbl> -9,  2,  2,  2,  3,  2,  2,  1,  2,  1,  2,...
$ BYS39B   <dbl+lbl> 3, 2, 2, 2, 3, 2, 2, 1, 2, 1, 2, 3, 2, 3, 1...
$ BYS39C   <dbl+lbl> 3, 2, 2, 3, 3, 2, 2, 1, 2, 1, 2, 2, 2, 2, 1...
$ BYS39D   <dbl+lbl> 3, 2, 2, 2, 3, 2, 2, 1, 2, 1, 2, 2, 2, 3, 1...
$ BYS39E   <dbl+lbl> -9,  2,  2,  2,  3,  2,  2,  1,  2,  1,  2,...
$ BYS39F   <dbl+lbl> 3, 2, 3, 3, 3, 3, 3, 3, 2, 1, 2, 2, 3, 3, 2...
$ BYS39G   <dbl+lbl>  3,  2,  2, -9,  3,  2,  2,  1,  2,  2,  2,...
$ BYS39H   <dbl+lbl> 2, 2, 2, 2, 2, 2, 2, 1, 2, 1, 2, 3, 3, 3, 1...
$ BYS40AA  <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,...
$ BYS40AB  <dbl+lbl>  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,...
$ BYS40AC  <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,...
$ BYS40AD  <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,...
$ BYS40AE  <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,...
$ BYS40BA  <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,...
$ BYS40BB  <dbl+lbl>  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,...
$ BYS40BC  <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,...
$ BYS40BD  <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,...
$ BYS40BE  <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,...
$ BYS40CA  <dbl+lbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0...
$ BYS40CB  <dbl+lbl> 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1...
$ BYS40CC  <dbl+lbl> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0...
$ BYS40CD  <dbl+lbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0...
$ BYS40CE  <dbl+lbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0...
$ BYS40DA  <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,...
$ BYS40DB  <dbl+lbl>  1,  1,  1,  1,  1,  1,  1,  1,  1,  0,  0,...
$ BYS40DC  <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  0,  0,  1,  1,...
$ BYS40DD  <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  1,...
$ BYS40DE  <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,...
$ BYS40EA  <dbl+lbl>  0,  1,  0,  0,  0,  0,  0,  0,  0,  0,  0,...
$ BYS40EB  <dbl+lbl>  1,  0,  1,  1,  1,  1,  1,  1,  1,  1,  1,...
$ BYS40EC  <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,...
$ BYS40ED  <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,...
$ BYS40EE  <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,...
$ BYS40FA  <dbl+lbl>  0,  0,  1,  0,  0,  0,  0,  0,  0,  0,  0,...
$ BYS40FB  <dbl+lbl>  1,  1,  0,  1,  1,  0,  0,  0,  1,  1,  0,...
$ BYS40FC  <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  1,  0,  0,  1,...
$ BYS40FD  <dbl+lbl>  0,  0,  0,  0,  0,  1,  1,  0,  0,  0,  1,...
$ BYS40FE  <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,...
$ BYS40GA  <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,...
$ BYS40GB  <dbl+lbl>  1,  1,  1,  1,  1,  1,  1,  0,  1,  1,  0,...
$ BYS40GC  <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  1,  0,  0,  1,...
$ BYS40GD  <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  1,...
$ BYS40GE  <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,...
$ BYS40HA  <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,...
$ BYS40HB  <dbl+lbl>  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,...
$ BYS40HC  <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,...
$ BYS40HD  <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,...
$ BYS40HE  <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,...
$ BYS41A   <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,...
$ BYS41B   <dbl+lbl> 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0...
$ BYS41C   <dbl+lbl> 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0...
$ BYS41D   <dbl+lbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0...
$ BYS41E   <dbl+lbl> 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0...
$ BYS41F   <dbl+lbl> 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1...
$ BYS41G   <dbl+lbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0...
$ BYS41H   <dbl+lbl>  0,  1,  1,  0,  0,  0,  0,  0,  1,  0,  0,...
$ BYS41I   <dbl+lbl>  0,  0,  0, -9,  0,  0,  0,  0,  0,  0,  0,...
$ BYS42    <dbl+lbl>  0,  2,  2, 14,  0,  8,  5, 18, -9,  2, 18,...
$ BYS43    <dbl+lbl>  2,  2,  3,  5,  2, 12, -9,  0, -9,  2,  0,...
$ BYS44A   <dbl+lbl> 4, 2, 3, 3, 2, 4, 4, 2, 2, 2, 2, 3, 3, 2, 4...
$ BYS44B   <dbl+lbl>  4,  2,  2,  1,  2,  1,  3,  3,  3,  3,  4,...
$ BYS44C   <dbl+lbl>  1,  3,  1,  1,  1,  1,  4,  1,  1,  1,  1,...
$ BYS44D   <dbl+lbl> 4, 3, 3, 3, 4, 1, 2, 1, 2, 4, 1, 3, 3, 1, 2...
$ BYS44E   <dbl+lbl>  4,  4,  1,  4,  1,  4,  3, -9,  3,  3,  1,...
$ BYS44F   <dbl+lbl>  3,  1,  3,  1,  3,  1,  1,  1,  1,  1,  1,...
$ BYS44G   <dbl+lbl>  1,  1,  1,  1,  1,  4,  2, -9,  1,  2,  1,...
$ BYS44H   <dbl+lbl>  1,  1,  3,  1, -9,  1,  3, -9,  3,  2,  1,...
$ BYS45A   <dbl+lbl> 4, 5, 5, 5, 5, 3, 5, 5, 5, 3, 5, 5, 2, 3, 5...
$ BYS45B   <dbl+lbl> 2, 4, 4, 4, 4, 2, 4, 4, 5, 4, 4, 4, 3, 4, 5...
$ BYS45C   <dbl+lbl> 4, 4, 4, 5, 5, 1, 4, 4, 5, 5, 5, 5, 2, 4, 4...
$ BYS46A   <dbl+lbl>  1,  1,  1,  2,  3,  0,  1,  2, -9,  2,  3,...
$ BYS46B   <dbl+lbl>  3,  5,  1,  4,  3,  0,  3,  6, -9,  3,  6,...
$ BYS47A   <dbl+lbl> 4, 5, 5, 5, 5, 3, 5, 5, 5, 4, 5, 5, 3, 5, 5...
$ BYS47B   <dbl+lbl> 3, 2, 3, 3, 3, 2, 3, 5, 5, 3, 3, 4, 3, 5, 3...
$ BYS47C   <dbl+lbl> 2, 2, 2, 2, 2, 2, 3, 2, 5, 2, 2, 2, 2, 4, 2...
$ BYS47D   <dbl+lbl> 2, 3, 2, 2, 2, 2, 3, 3, 2, 2, 2, 3, 3, 3, 3...
$ BYS47E   <dbl+lbl>  3,  2,  2, -9,  2,  2,  3,  2,  2,  2,  2,...
$ BYS48A   <dbl+lbl>  6,  2,  1,  6,  4,  3,  1,  2, -9,  3,  6,...
$ BYS48B   <dbl+lbl>  6,  4,  6,  6,  4,  6,  1,  6, -9,  2,  6,...
$ BYS49A   <dbl+lbl>  0,  2,  0,  1,  0,  0,  1,  1, -9,  0,  6,...
$ BYS49B   <dbl+lbl>  1,  3,  2,  3,  0,  2,  1,  5, -9,  2,  6,...
$ BYS50    <dbl+lbl> 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1...
$ BYS51A   <dbl+lbl> -3,  4,  2,  3,  1,  1,  3,  2,  3,  2,  3,...
$ BYS51B   <dbl+lbl> -3,  2,  2,  3,  2,  2,  3,  2,  4,  3,  2,...
$ BYS51C   <dbl+lbl> -3,  1,  1,  3,  2,  1,  3,  2,  2,  3,  1,...
$ BYS51D   <dbl+lbl> -3,  4,  4,  4,  2,  1,  4,  3,  3,  4,  3,...
$ BYS51E   <dbl+lbl> -3,  1,  1,  4,  1,  1,  2,  1,  2,  2,  1,...
$ BYS51F   <dbl+lbl> -3,  1,  1,  4,  1,  1,  1,  1,  1,  2,  1,...
$ BYS51G   <dbl+lbl> -3,  2,  1, -9,  1,  1,  1,  1,  3,  1,  1,...
$ BYS51H   <dbl+lbl> -3,  1,  1, -9,  1,  1,  1,  1,  3,  1,  1,...
$ BYS51I   <dbl+lbl> -3,  1,  1, -9,  2,  1,  2,  2,  3,  2,  2,...
$ BYS52    <dbl+lbl> -3,  2,  2,  1,  2,  1,  2,  2,  2,  2,  2,...
$ BYS53A   <dbl+lbl> -3,  3,  2,  1,  2,  2,  1,  2,  3,  3,  2,...
$ BYS53B   <dbl+lbl> -3,  4,  2,  2,  2,  2,  2,  4,  3,  3,  2,...
$ BYS53C   <dbl+lbl> -3,  4,  4,  1,  2,  2,  2,  4,  3,  2,  2,...
$ BYS54A   <dbl+lbl> 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3...
$ BYS54B   <dbl+lbl> 1, 3, 3, 3, 3, 3, 2, 3, 3, 1, 3, 3, 3, 3, 3...
$ BYS54C   <dbl+lbl> 1, 2, 2, 3, 2, 3, 2, 3, 3, 2, 3, 2, 3, 3, 2...
$ BYS54D   <dbl+lbl> 3, 3, 3, 3, 3, 2, 3, 3, 2, 1, 3, 3, 3, 3, 3...
$ BYS54E   <dbl+lbl>  3,  3,  3,  3,  3,  3,  2, -9,  3,  3,  3,...
$ BYS54F   <dbl+lbl> 3, 2, 2, 3, 3, 2, 2, 2, 1, 3, 2, 2, 3, 3, 2...
$ BYS54G   <dbl+lbl> 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3...
$ BYS54H   <dbl+lbl> 1, 2, 2, 3, 3, 2, 3, 2, 2, 1, 2, 2, 3, 3, 2...
$ BYS54I   <dbl+lbl> 3, 2, 2, 1, 3, 1, 1, 3, 2, 3, 2, 3, 3, 2, 1...
$ BYS54J   <dbl+lbl> 2, 2, 2, 3, 3, 2, 2, 2, 1, 2, 2, 2, 3, 3, 1...
$ BYS54K   <dbl+lbl> 1, 2, 2, 3, 3, 1, 1, 3, 2, 1, 2, 3, 1, 3, 2...
$ BYS54L   <dbl+lbl> 3, 3, 3, 3, 3, 3, 2, 3, 2, 3, 2, 3, 3, 3, 3...
$ BYS54N   <dbl+lbl> 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2...
$ BYS54O   <dbl+lbl>  3,  3,  3,  3,  3,  3,  2, -9,  3,  3,  3,...
$ BYS55A   <dbl+lbl> 1, 4, 4, 4, 4, 4, 3, 3, 2, 4, 4, 4, 4, 1, 3...
$ BYS55B   <dbl+lbl> 5, 4, 5, 1, 4, 1, 5, 4, 5, 4, 5, 4, 2, 1, 4...
$ BYS55C   <dbl+lbl> 1, 4, 1, 1, 4, 2, 2, 4, 2, 4, 4, 1, 2, 1, 4...
$ BYS55D   <dbl+lbl> 4, 1, 1, 1, 3, 2, 2, 1, 2, 4, 5, 1, 3, 1, 2...
$ BYS56    <dbl+lbl>  3,  7, -1,  5,  5,  4, -1,  6,  7,  6, -1,...
$ BYS57    <dbl+lbl>  3,  1,  1,  1,  4,  1,  2,  1,  1,  1,  1,...
$ BYS58    <dbl+lbl>  3,  1,  1,  2,  1,  1,  1,  1,  1,  1,  1,...
$ BYS59A   <dbl+lbl>  1,  0,  1,  1,  1,  1,  0,  0,  1,  1,  1,...
$ BYS59B   <dbl+lbl>  0,  0,  1,  0,  1,  0,  0,  0,  1,  1,  1,...
$ BYS59C   <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  1,...
$ BYS59D   <dbl+lbl>  0,  1,  0,  1,  1,  0,  0,  0,  1,  1,  0,...
$ BYS59E   <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  0,  1,  0,  1,...
$ BYS59F   <dbl+lbl>  0,  0,  0,  1,  1,  0,  0,  0,  0,  0,  0,...
$ BYS59G   <dbl+lbl>  0,  0,  0,  1,  0,  0,  0,  0,  1,  0,  0,...
$ BYS59H   <dbl+lbl>  1,  0,  1,  0,  1,  0,  0,  1,  1,  1,  1,...
$ BYS59I   <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  0,  0,  1,  0,...
$ BYS59J   <dbl+lbl>  0,  0,  0,  0,  1,  0,  0,  1,  1,  1,  1,...
$ BYS59K   <dbl+lbl>  0,  0,  0,  0,  0,  0,  1,  0,  0,  0,  0,...
$ BYS60    <dbl+lbl>  0,  0,  0,  1,  1,  1,  1,  1,  0,  1,  1,...
$ BYS61    <dbl+lbl> -3, -3, -3,  1,  0,  1,  1,  1, -3,  1,  1,...
$ BYS62A   <dbl+lbl> -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3,...
$ BYS62B   <dbl+lbl> -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3,...
$ BYS62C   <dbl+lbl> -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3,...
$ BYS62D   <dbl+lbl> -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3,...
$ BYS62E   <dbl+lbl> -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3,...
$ BYS62F   <dbl+lbl> -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3,...
$ BYS62G   <dbl+lbl> -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3,...
$ BYS62H   <dbl+lbl> -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3,...
$ BYS65A   <dbl+lbl> -9,  7,  5,  3,  1, -9, -1,  5,  7,  7, -9,...
$ BYS65B   <dbl+lbl>  3,  7,  5,  4,  1, -9, -1, -9,  7, -9,  5,...
$ BYS66A   <dbl+lbl>  4,  1,  1,  1,  1,  6,  1,  1,  1,  4, -9,...
$ BYS66B   <dbl+lbl>  6,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,...
$ BYS66C   <dbl+lbl>  3, -1, -1,  6,  1, -3, -1,  6,  1,  6,  1,...
$ BYS66D   <dbl+lbl>  3,  1, -1,  1,  1, -9,  1,  1,  1, -1,  1,...
$ BYS66E   <dbl+lbl>  1, -1, -1,  1, -9, -3,  1,  1,  1,  1,  1,...
$ BYS66F   <dbl+lbl>  1,  1, -1,  1,  1, -3,  1,  1,  1,  1,  1,...
$ BYS66G   <dbl+lbl> -3, -3, -1,  1, -3, -9,  1,  1, -3, -1,  1,...
$ BYS67    <dbl+lbl> 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1...
$ BYS69A   <dbl+lbl> -3,  4, -3, -3,  4,  2, -3, -3, -3, -3, -3,...
$ BYS69B   <dbl+lbl> -3,  2, -3, -3,  4,  2, -3, -3, -3, -3, -3,...
$ BYS69C   <dbl+lbl> -3,  2, -3, -3,  4,  2, -3, -3, -3, -3, -3,...
$ BYS69D   <dbl+lbl> -3,  1, -3, -3,  2,  2, -3, -3, -3, -3, -3,...
$ BYS70A   <dbl+lbl> -3,  1, -3, -3,  1,  1, -3, -3, -3, -3, -3,...
$ BYS70B   <dbl+lbl> -3,  1, -3, -3,  1,  1, -3, -3, -3, -3, -3,...
$ BYS70C   <dbl+lbl> -3,  1, -3, -3,  1,  1, -3, -3, -3, -3, -3,...
$ BYS70D   <dbl+lbl> -3,  1, -3, -3,  1,  1, -3, -3, -3, -3, -3,...
$ BYS71A   <dbl+lbl>  0,  0,  0,  0,  1,  0,  0,  0,  0,  0,  0,...
$ BYS71B   <dbl+lbl>  0,  0,  0,  0,  0,  0,  1,  0,  0,  0,  0,...
$ BYS71C   <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  0,  0,  1,  0,...
$ BYS71D   <dbl+lbl>  0,  0,  0,  0,  0,  0,  1,  0,  0,  0,  0,...
$ BYS71E   <dbl+lbl>  0,  1,  0,  0,  0,  0,  0,  0,  0,  0,  0,...
$ BYS71F   <dbl+lbl>  0,  0,  1,  0,  0,  0,  1,  0,  0,  0,  0,...
$ BYS71G   <dbl+lbl>  1,  0,  0,  1,  0,  1,  0,  1,  1,  0,  1,...
$ BYS72    <dbl+lbl> 2, 1, 1, 1, 2, 1, 2, 1, 3, 3, 1, 1, 2, 1, 1...
$ BYS73    <dbl+lbl>     -3,     -3,     -3,     -3,     -3,    ...
$ BYS74    <dbl+lbl> 200203,     -3,     -3,     -3, 200105,    ...
$ BYS75    <dbl+lbl> 27, -3, -3, -3, 14, -3,  5, -3, -9, -9, -3,...
$ BYS76    <dbl+lbl> 17, -3, -3, -3, 15, -3,  0, -3, -9, -9, -3,...
$ BYS77    <dbl+lbl>  1, -3, -3, -3,  4, -3, -9, -3, -6,  9, -3,...
$ BYS79    <dbl+lbl>  3, -3, -3, -3,  3, -3,  1, -3, -6,  1, -3,...
$ BYS80    <dbl+lbl>  3, -3, -3, -3,  2, -3,  3, -3,  3,  3, -3,...
$ BYS83A   <dbl+lbl>  2,  5,  2,  2,  1, -9, -1, -1, -1,  2, -1,...
$ BYS83B   <dbl+lbl>  4,  7,  4,  2,  1, -9, -1, -1, -1,  2, -1,...
$ BYS84A   <dbl+lbl> 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0...
$ BYS84B   <dbl+lbl> 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1...
$ BYS84C   <dbl+lbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1...
$ BYS84D   <dbl+lbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1...
$ BYS84E   <dbl+lbl> 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1...
$ BYS84F   <dbl+lbl> 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1...
$ BYS84G   <dbl+lbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1...
$ BYS84H   <dbl+lbl> 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1...
$ BYS84I   <dbl+lbl> 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1...
$ BYS84J   <dbl+lbl> 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1...
$ BYS85A   <dbl+lbl>  4,  4,  4,  4,  4,  4,  2,  4,  4,  4,  2,...
$ BYS85B   <dbl+lbl>  3,  4,  2,  4,  4,  4,  3,  2,  4,  3,  2,...
$ BYS85C   <dbl+lbl>  3,  4,  3,  4,  4,  4,  4,  2,  4,  4,  4,...
$ BYS85D   <dbl+lbl>  3,  4, -9, -9,  2,  4,  4,  2,  4,  2,  3,...
$ BYS85E   <dbl+lbl>  3,  2,  3, -9,  4,  4,  4,  3,  4,  3,  4,...
$ BYS85F   <dbl+lbl>  2,  2,  3,  2,  2,  1,  3,  2,  3,  1,  3,...
$ BYS85G   <dbl+lbl>  3,  3,  4,  2,  3,  3,  4,  2,  4,  4,  3,...
$ BYS86A   <dbl+lbl>  2,  3,  1,  3,  2,  1,  3,  2,  3,  3,  2,...
$ BYS86B   <dbl+lbl>  2,  2,  2,  3,  2,  1,  3,  3,  3,  2,  2,...
$ BYS86C   <dbl+lbl>  2,  3,  2,  3,  2, -9,  3,  3,  3,  2,  2,...
$ BYS86D   <dbl+lbl>  3,  2,  2,  3,  3, -9,  3,  3,  3,  3,  2,...
$ BYS86E   <dbl+lbl>  1,  1,  1,  1,  2, -9,  1,  1,  2,  2,  1,...
$ BYS86F   <dbl+lbl>  1,  3,  1,  1,  2, -9,  2,  3,  3,  2,  2,...
$ BYS86G   <dbl+lbl>  2,  3,  2,  3,  2,  3,  3,  3,  3,  3,  2,...
$ BYS86H   <dbl+lbl>  2,  2,  2,  2,  2,  1,  1,  3,  1,  1,  1,...
$ BYS86I   <dbl+lbl>  2,  1,  2,  3,  2,  1,  2,  2,  3,  3, -9,...
$ BYS87A   <dbl+lbl> 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4...
$ BYS87B   <dbl+lbl> 3, 2, 1, 2, 2, 2, 3, 3, 2, 3, 3, 2, 3, 3, 4...
$ BYS87C   <dbl+lbl> 3, 2, 3, 2, 2, 2, 3, 3, 3, 3, 3, 2, 3, 2, 4...
$ BYS87D   <dbl+lbl>  3,  2,  1,  2,  2,  3,  3,  3,  2,  2, -9,...
$ BYS87E   <dbl+lbl>  2,  2,  1,  2,  2, -9,  2,  2,  2,  2,  1,...
$ BYS87F   <dbl+lbl> 3, 2, 3, 1, 2, 1, 3, 1, 2, 1, 2, 2, 2, 2, 4...
$ BYS88A   <dbl+lbl> 3, 1, 2, 1, 1, 1, 1, 2, 2, 1, 2, 2, 2, 2, 1...
$ BYS88B   <dbl+lbl> 2, 3, 3, 3, 2, 4, 4, 3, 3, 4, 3, 3, 4, 3, 4...
$ BYS89A   <dbl+lbl> 2, 4, 3, 4, 2, 2, 2, 4, 3, 4, 1, 2, 2, 2, 4...
$ BYS89B   <dbl+lbl> 1, 3, 2, 3, 2, 2, 1, 3, 3, 3, 2, 2, 2, 2, 3...
$ BYS89C   <dbl+lbl> 2, 3, 2, 3, 2, 4, 1, 3, 3, 3, 2, 2, 2, 2, 2...
$ BYS89D   <dbl+lbl>  1,  3,  2,  4,  3, -9,  2,  2,  3,  4,  2,...
$ BYS89E   <dbl+lbl> 1, 3, 3, 4, 3, 3, 3, 3, 3, 4, 2, 1, 4, 4, 3...
$ BYS89F   <dbl+lbl> 1, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 2, 3, 3, 1...
$ BYS89G   <dbl+lbl> 2, 3, 3, 4, 3, 3, 4, 2, 3, 3, 3, 1, 4, 4, 2...
$ BYS89H   <dbl+lbl> 1, 3, 2, 4, 3, 3, 3, 2, 3, 4, 2, 1, 4, 3, 4...
$ BYS89I   <dbl+lbl> 3, 3, 2, 4, 3, 3, 3, 3, 3, 4, 3, 1, 4, 2, 4...
$ BYS89J   <dbl+lbl> 1, 4, 3, 4, 3, 3, 3, 2, 3, 4, 3, 1, 4, 4, 3...
$ BYS89K   <dbl+lbl> 3, 3, 2, 4, 3, 3, 2, 3, 3, 4, 3, 1, 4, 2, 3...
$ BYS89L   <dbl+lbl> 2, 4, 2, 3, 3, 3, 2, 3, 3, 3, 2, 1, 2, 3, 3...
$ BYS89M   <dbl+lbl> 2, 3, 2, 4, 3, 3, 2, 3, 3, 3, 3, 1, 4, 2, 2...
$ BYS89N   <dbl+lbl> 3, 3, 3, 4, 3, 3, 3, 4, 3, 3, 2, 1, 4, 3, 3...
$ BYS89O   <dbl+lbl>  2,  4,  3,  3,  3,  3,  3,  4,  3,  3,  2,...
$ BYS89P   <dbl+lbl>  2,  4,  3,  4,  3,  3,  4,  2,  3,  4,  3,...
$ BYS89Q   <dbl+lbl>  1,  3,  2,  1,  3,  3,  3,  4,  3,  3,  2,...
$ BYS89R   <dbl+lbl>  2,  4,  3,  3,  3,  3,  3,  3,  3,  3,  2,...
$ BYS89S   <dbl+lbl>  2,  3,  3,  4,  3,  3,  4,  3,  3,  3,  2,...
$ BYS89T   <dbl+lbl>  2,  3,  3, -9,  3, -9,  3,  4,  3,  3,  2,...
$ BYS89U   <dbl+lbl>  1,  4,  2,  4,  3, -9,  3,  3,  3,  3,  1,...
$ BYS89V   <dbl+lbl>  2,  3,  3,  4,  3, -9,  4,  2,  3,  4,  3,...
$ BYS90A   <dbl+lbl> 2, 3, 2, 3, 3, 3, 3, 2, 3, 2, 2, 3, 3, 3, 2...
$ BYS90B   <dbl+lbl> 2, 3, 2, 3, 3, 3, 2, 2, 3, 2, 2, 2, 3, 3, 2...
$ BYS90C   <dbl+lbl> 3, 1, 1, 2, 3, 3, 2, 3, 1, 2, 2, 3, 2, 2, 2...
$ BYS90D   <dbl+lbl> 2, 2, 2, 3, 3, 3, 3, 2, 3, 3, 2, 3, 2, 3, 2...
$ BYS90E   <dbl+lbl> 2, 3, 1, 3, 3, 3, 2, 3, 1, 1, 2, 2, 1, 1, 3...
$ BYS90F   <dbl+lbl>  3,  3,  3,  3,  3,  3,  3,  2,  3,  3,  2,...
$ BYS90G   <dbl+lbl> 2, 3, 1, 3, 1, 1, 2, 2, 1, 1, 2, 3, 2, 3, 1...
$ BYS90H   <dbl+lbl> 2, 3, 2, 2, 3, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3...
$ BYS90J   <dbl+lbl> 1, 2, 2, 2, 3, 3, 2, 2, 1, 1, 2, 2, 2, 2, 1...
$ BYS90K   <dbl+lbl> 3, 2, 2, 3, 3, 3, 2, 2, 1, 2, 2, 3, 3, 2, 1...
$ BYS90L   <dbl+lbl> 3, 3, 2, 3, 2, 3, 3, 3, 2, 2, 2, 3, 3, 2, 3...
$ BYS90M   <dbl+lbl>  3,  3,  2,  3,  1, -9,  3,  3,  1,  1,  2,...
$ BYS90Q   <dbl+lbl> 3, 3, 2, 3, 2, 3, 2, 3, 1, 2, 2, 3, 3, 3, 2...
$ BYS91    <dbl+lbl> 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1...
$ BYS92A   <dbl+lbl> 1, 2, 1, 1, 3, 1, 2, 1, 2, 2, 2, 1, 1, 2, 3...
$ BYS92B   <dbl+lbl> 4, 3, 2, 2, 3, 1, 2, 3, 2, 3, 2, 3, 4, 3, 2...
$ BYS92C   <dbl+lbl> 1, 2, 2, 1, 3, 1, 1, 1, 2, 2, 2, 2, 3, 2, 2...
$ BYS92D   <dbl+lbl>  1,  2, -9,  3,  3,  3,  3,  4,  2,  2,  1,...
$ BYS94    <dbl+lbl> 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1...
$ BYS96    <dbl+lbl>  0,  1,  0,  1,  1,  1,  1,  1,  0,  0,  1,...
$ BYS97A   <dbl+lbl> -3,  1, -3,  1,  0,  1,  1,  1, -3, -3,  1,...
$ BYS97B   <dbl+lbl> -3,  0, -3,  0,  1,  0,  0,  0, -3, -3,  0,...
$ BYS97C   <dbl+lbl> -3,  0, -3,  0,  0,  0,  0,  0, -3, -3,  0,...
$ BYS97D   <dbl+lbl> -3,  0, -3,  0,  0,  0,  0,  0, -3, -3,  0,...
$ BYS97E   <dbl+lbl> -3,  0, -3,  0,  0,  0,  0,  0, -3, -3,  0,...
$ BYP01    <dbl+lbl>  2,  2,  1, -4,  1,  1,  1,  1,  2,  1,  2,...
$ BYP02    <dbl+lbl> -3, -3, -3, -4, -3, -3, -3, -3, -3, -3, -3,...
$ BYP03    <dbl+lbl>  1, -9,  1, -4,  1, -9,  1,  1,  1,  1,  1,...
$ BYP04    <dbl+lbl>  5,  1,  2, -4,  2, -9,  2,  2,  1,  2,  5,...
$ BYP05    <dbl+lbl>  1,  1,  1, -4,  1,  1,  1,  1,  1,  1,  1,...
$ BYP06    <dbl+lbl>  1,  8,  2, -4,  3,  3, -7,  4,  2, -7,  3,...
$ BYP07A   <dbl+lbl>  0, -9,  1, -4,  1,  1, -7,  2,  0, -7,  1,...
$ BYP07B   <dbl+lbl>  0, -9,  0, -4,  0,  0, -7,  0,  0, -7,  0,...
$ BYP07C   <dbl+lbl>  0, -9,  0, -4,  0,  0, -7,  0,  0, -7,  0,...
$ BYP07D   <dbl+lbl>  0, -9,  0, -4,  2,  1, -7,  1,  1, -7,  1,...
$ BYP07E   <dbl+lbl>  0, -9,  0, -4,  0,  0, -7,  0,  0, -7,  0,...
$ BYP07F   <dbl+lbl>  0, -9,  0, -4,  0,  0, -7,  0,  0, -7,  0,...
$ BYP07G   <dbl+lbl>  0, -9,  0, -4,  0,  0, -7,  0,  2, -7,  0,...
$ BYP07H   <dbl+lbl>  0, -9,  0, -4,  0,  0, -7,  0,  0, -7,  0,...
$ BYP07I   <dbl+lbl>  0, -9,  0, -4,  0,  0, -7,  0,  0, -7,  0,...
$ BYP07J   <dbl+lbl>  0, -9,  0, -4,  0,  0, -7,  0,  0, -7,  1,...
$ BYP07K   <dbl+lbl>  0, -9,  0, -4,  0,  0, -7,  0,  0, -7,  0,...
$ BYP07L   <dbl+lbl>  0, -9,  0, -4,  0,  0, -7,  0,  0, -7,  0,...
$ BYP08    <dbl+lbl>  6,  5,  1, -4,  5,  2, -7,  3,  2, -7,  2,...
$ BYP09    <dbl+lbl>  3,  0, -1, -4,  0,  0, -7,  0,  0, -7,  0,...
$ BYP10    <dbl+lbl>  1,  1,  1, -4,  1,  2,  1,  1,  1,  1,  1,...
$ BYP11    <dbl+lbl> 1959, 1953, 1965,   -4, 1964, 1970, 1962, 1...
$ BYP12    <dbl+lbl> 1945, 1964, 1963,   -4, 1955, 1966, 1960, 1...
$ BYP13    <dbl+lbl>  0,  0,  0, -4,  1,  1,  1,  0,  1,  0,  0,...
$ BYP17    <dbl+lbl>  2,  3,  1, -4,  2,  1,  2,  1,  2,  1, -1,...
$ BYP18    <dbl+lbl> 25, 13, -3, -4, 30, -3, -7, -3, 21, -3, -3,...
$ BYP20    <dbl+lbl>  1,  3,  1, -4,  2,  1,  1,  1,  2,  1, -1,...
$ BYP21    <dbl+lbl> -3, 13, -3, -4, 40, -3, -3, -3, 43, -3, -3,...
$ BYP23    <dbl+lbl>  1,  3,  1, -4,  1,  1,  1,  1,  1,  1,  3,...
$ BYP24    <dbl+lbl> -3,  2, -3, -4, -3, -3, -3, -3, -3, -3, 11,...
$ BYP25    <dbl+lbl>  0,  0,  0, -4,  0,  0, -7,  0,  0, -7,  0,...
$ BYP26A   <dbl+lbl> -3, -3, -3, -4, -3, -3, -7, -3, -3, -7, -3,...
$ BYP26B   <dbl+lbl> -3, -3, -3, -4, -3, -3, -7, -3, -3, -7, -3,...
$ BYP26C   <dbl+lbl> -3, -3, -3, -4, -3, -3, -7, -3, -3, -7, -3,...
$ BYP26D   <dbl+lbl> -3, -3, -3, -4, -3, -3, -7, -3, -3, -7, -3,...
$ BYP26E   <dbl+lbl> -3, -3, -3, -4, -3, -3, -7, -3, -3, -7, -3,...
$ BYP26F   <dbl+lbl> -3, -3, -3, -4, -3, -3, -7, -3, -3, -7, -3,...
$ BYP26G   <dbl+lbl> -3, -3, -3, -4, -3, -3, -7, -3, -3, -7, -3,...
$ BYP26H   <dbl+lbl> -3, -3, -3, -4, -3, -3, -7, -3, -3, -7, -3,...
$ BYP26I   <dbl+lbl> -3, -3, -3, -4, -3, -3, -7, -3, -3, -7, -3,...
$ BYP26J   <dbl+lbl> -3, -3, -3, -4, -3, -3, -7, -3, -3, -7, -3,...
$ BYP26K   <dbl+lbl> -3, -3, -3, -4, -3, -3, -7, -3, -3, -7, -3,...
$ BYP26L   <dbl+lbl> -3, -3, -3, -4, -3, -3, -7, -3, -3, -7, -3,...
$ BYP27    <dbl+lbl> -3, -3, -3, -4, -3, -3, -7, -3, -3, -7, -3,...
$ BYP28    <dbl+lbl>  1,  0,  1, -4,  0,  1,  0,  1,  0,  1,  1,...
$ BYP30A   <dbl+lbl> -3,  3, -3, -4,  4, -3, -7, -3,  4, -3, -3,...
$ BYP30B   <dbl+lbl> -3,  1, -3, -4,  4, -3, -7, -3,  2, -3, -3,...
$ BYP30C   <dbl+lbl> -3,  2, -3, -4,  4, -3, -7, -3,  4, -3, -3,...
$ BYP30D   <dbl+lbl> -3,  2, -3, -4,  4, -3, -7, -3,  4, -3, -3,...
$ BYP31A   <dbl+lbl> -3,  1, -3, -4,  2, -3, -7, -3,  1, -3, -3,...
$ BYP31B   <dbl+lbl> -3,  1, -3, -4,  2, -3, -7, -3,  1, -3, -3,...
$ BYP31C   <dbl+lbl> -3,  1, -3, -4,  2, -3, -7, -3,  3, -3, -3,...
$ BYP31D   <dbl+lbl> -3,  1, -3, -4,  2, -3, -7, -3,  4, -3, -3,...
$ BYP32A   <dbl+lbl> -3,  0, -3, -4,  0, -3, -7, -3,  1, -3, -3,...
$ BYP32B   <dbl+lbl> -3,  0, -3, -4,  0, -3, -7, -3,  1, -3, -3,...
$ BYP32C   <dbl+lbl> -3,  0, -3, -4,  0, -3, -7, -3,  0, -3, -3,...
$ BYP32D   <dbl+lbl> -3,  0, -3, -4,  0, -3, -7, -3,  0, -3, -3,...
$ BYP32E   <dbl+lbl> -3,  0, -3, -4,  0, -3, -7, -3,  0, -3, -3,...
$ BYP33    <dbl+lbl>  6,  8, -1, -4,  1,  2, -7,  1,  1, -7,  2,...
$ BYP34A   <dbl+lbl>  5,  5,  2, -4,  1,  2,  6,  2,  1,  1,  4,...
$ BYP34B   <dbl+lbl>  1, -9,  2, -4,  1,  1,  3,  2,  2,  1,  6,...
$ BYP35A   <dbl+lbl>  1,  1,  1, -4, -1, -2, -7,  2,  1, -7, -1,...
$ BYP35B   <dbl+lbl>  2,  7,  1, -4,  2, -2, -7,  2,  1, -7, -1,...
$ BYP35C   <dbl+lbl> -1,  1,  2, -4, -1, -2, -7,  2, -1, -7, -1,...
$ BYP35D   <dbl+lbl> -1,  8,  2, -4, -1, -2, -7,  2, -1, -7, -1,...
$ BYP36    <dbl+lbl>  1,  1,  1, -4,  3,  3,  1,  3,  1,  1,  1,...
$ BYP37    <dbl+lbl> -3, -3, -3, -4,  2,  2, -3,  1, -3, -3, -3,...
$ BYP38    <dbl+lbl>  1,  1,  1, -4,  1,  1,  1,  1,  1,  1,  1,...
$ BYP39C   <dbl+lbl>  6,  9,  5, -4,  8,  5, 14,  1, -9,  9,  7,...
$ BYP40    <dbl+lbl>  1,  3,  1, -4,  1,  3,  1,  1,  1,  3, -3,...
$ BYP41    <dbl+lbl> -3, -9, -3, -4, -3,  1, -3, -3, -3,  4, -3,...
$ BYP42    <dbl+lbl>  1,  0,  1, -4,  1,  1,  1,  1,  1,  1, -3,...
$ BYP43C   <dbl+lbl>  8, -3,  5, -4,  5,  8, 15, 12,  5,  5, -3,...
$ BYP44A   <dbl+lbl>  0,  1,  0, -4,  0,  0, -7,  1,  0, -7,  0,...
$ BYP44B   <dbl+lbl>  1,  1,  1, -4,  0,  0, -7,  1,  1, -7,  1,...
$ BYP44C   <dbl+lbl>  0,  0,  0, -4,  1,  0, -7,  0,  0, -7,  0,...
$ BYP44D   <dbl+lbl>  1,  1,  1, -4,  1,  1, -7,  1,  1, -7,  1,...
$ BYP45    <dbl+lbl>  4,  0,  2, -4,  0,  0, -7,  2,  0, -7,  4,...
$ BYP46    <dbl+lbl>  0,  0,  0, -4,  0,  0, -7,  0,  0, -7,  0,...
$ BYP47A   <dbl+lbl> -3, -3, -3, -4, -3, -3, -7, -3, -3, -7, -3,...
$ BYP47B   <dbl+lbl> -3, -3, -3, -4, -3, -3, -7, -3, -3, -7, -3,...
$ BYP47C   <dbl+lbl> -3, -3, -3, -4, -3, -3, -7, -3, -3, -7, -3,...
$ BYP48A   <dbl+lbl> -3, -3, -3, -4, -3, -3, -7, -3, -3, -7, -3,...
$ BYP48B   <dbl+lbl> -3, -3, -3, -4, -3, -3, -7, -3, -3, -7, -3,...
$ BYP48C   <dbl+lbl> -3, -3, -3, -4, -3, -3, -7, -3, -3, -7, -3,...
$ BYP48D   <dbl+lbl> -3, -3, -3, -4, -3, -3, -7, -3, -3, -7, -3,...
$ BYP48E   <dbl+lbl> -3, -3, -3, -4, -3, -3, -7, -3, -3, -7, -3,...
$ BYP48F   <dbl+lbl> -3, -3, -3, -4, -3, -3, -7, -3, -3, -7, -3,...
$ BYP48G   <dbl+lbl> -3, -3, -3, -4, -3, -3, -7, -3, -3, -7, -3,...
$ BYP48H   <dbl+lbl> -3, -3, -3, -4, -3, -3, -7, -3, -3, -7, -3,...
$ BYP48I   <dbl+lbl> -3, -3, -3, -4, -3, -3, -7, -3, -3, -7, -3,...
$ BYP48J   <dbl+lbl> -3, -3, -3, -4, -3, -3, -7, -3, -3, -7, -3,...
$ BYP48K   <dbl+lbl> -3, -3, -3, -4, -3, -3, -7, -3, -3, -7, -3,...
$ BYP49    <dbl+lbl>  0,  0,  0, -4,  0,  0, -7,  0,  0, -7,  0,...
$ BYP50A   <dbl+lbl> -3, -3, -3, -4, -3, -3, -7, -3, -3, -7, -3,...
$ BYP50B   <dbl+lbl> -3, -3, -3, -4, -3, -3, -7, -3, -3, -7, -3,...
$ BYP50C   <dbl+lbl> -3, -3, -3, -4, -3, -3, -7, -3, -3, -7, -3,...
$ BYP50D   <dbl+lbl> -3, -3, -3, -4, -3, -3, -7, -3, -3, -7, -3,...
$ BYP50E   <dbl+lbl> -3, -3, -3, -4, -3, -3, -7, -3, -3, -7, -3,...
$ BYP50F   <dbl+lbl> -3, -3, -3, -4, -3, -3, -7, -3, -3, -7, -3,...
$ BYP50G   <dbl+lbl> -3, -3, -3, -4, -3, -3, -7, -3, -3, -7, -3,...
$ BYP50H   <dbl+lbl> -3, -3, -3, -4, -3, -3, -7, -3, -3, -7, -3,...
$ BYP51    <dbl+lbl>  0,  0,  0, -4,  0,  0, -7,  0,  0, -7,  0,...
$ BYP52A   <dbl+lbl>  1,  1,  1, -4,  1,  1, -7,  2,  2, -7,  1,...
$ BYP52B   <dbl+lbl>  1,  1,  1, -4,  1,  1, -7,  3,  1, -7,  3,...
$ BYP52C   <dbl+lbl>  1,  1,  1, -4,  1,  1, -7,  1,  1, -7,  2,...
$ BYP52D   <dbl+lbl>  2,  1,  1, -4,  1,  1, -7,  1,  1, -7,  2,...
$ BYP52E   <dbl+lbl>  1,  1,  1, -4,  1,  1, -7,  1,  1, -7,  1,...
$ BYP52F   <dbl+lbl>  1,  1,  1, -4,  1,  1, -7,  1,  1, -7,  1,...
$ BYP52G   <dbl+lbl>  1,  1, -1, -4,  1,  1, -7,  1,  4, -7,  1,...
$ BYP52H   <dbl+lbl>  1,  2,  1, -4,  1,  1, -7,  1,  1, -7,  1,...
$ BYP52I   <dbl+lbl>  1,  1,  1, -4,  1,  1, -7,  1,  1, -7,  1,...
$ BYP52J   <dbl+lbl>  1,  1,  2, -4,  2,  1, -7,  1,  1, -7,  2,...
$ BYP53A   <dbl+lbl>  1,  1,  1, -4,  1,  1, -7,  2,  1, -7,  1,...
$ BYP53B   <dbl+lbl>  1,  1,  1, -4,  1,  1, -7,  2,  1, -7,  3,...
$ BYP53C   <dbl+lbl>  1,  1,  1, -4,  1,  1, -7,  2,  1, -7,  2,...
$ BYP53D   <dbl+lbl>  1,  1,  1, -4,  1,  1, -7,  2,  1, -7,  2,...
$ BYP53E   <dbl+lbl>  1,  1,  1, -4,  1,  1, -7,  2,  1, -7,  1,...
$ BYP53F   <dbl+lbl>  1,  1,  1, -4,  1,  1, -7,  2,  2, -7,  1,...
$ BYP53G   <dbl+lbl>  1,  2,  1, -4,  1,  1, -7,  2,  1, -7,  1,...
$ BYP53H   <dbl+lbl>  1,  2,  1, -4,  1,  1, -7,  2,  1, -7,  1,...
$ BYP53I   <dbl+lbl>  1,  2,  1, -4,  1,  1, -7,  2,  1, -7,  1,...
$ BYP53J   <dbl+lbl>  1,  1,  2, -4,  1,  1, -7,  2,  1, -7,  2,...
$ BYP54A   <dbl+lbl>  0,  0,  0, -4,  0,  0, -7,  0,  0, -7,  0,...
$ BYP54B   <dbl+lbl>  0,  1,  0, -4,  1,  0, -7,  0,  0, -7,  0,...
$ BYP54C   <dbl+lbl>  0,  1,  0, -4,  0,  0, -7,  0,  0, -7,  0,...
$ BYP54D   <dbl+lbl>  0,  1,  0, -4,  0,  0, -7,  0,  0, -7,  0,...
$ BYP54E   <dbl+lbl>  1,  0,  0, -4,  0,  0, -7,  0,  0, -7,  0,...
$ BYP55A   <dbl+lbl>  3,  2,  4, -4,  4,  2, -7,  4,  4, -7,  2,...
$ BYP55B   <dbl+lbl>  4,  2,  4, -4,  4,  4, -7,  4,  4, -7,  4,...
$ BYP55C   <dbl+lbl>  4,  3,  4, -4,  4,  4, -7,  4,  4, -7,  3,...
$ BYP55D   <dbl+lbl>  4,  1,  4, -4,  4,  4, -7,  4,  4, -7,  4,...
$ BYP56A   <dbl+lbl>  2,  3, -1, -4,  3,  3, -7,  3,  3, -7,  1,...
$ BYP56B   <dbl+lbl>  2,  3,  2, -4,  3,  3, -7,  3,  3, -7,  1,...
$ BYP56C   <dbl+lbl>  2,  2, -1, -4,  3,  3, -7,  2,  3, -7,  2,...
$ BYP56D   <dbl+lbl>  3,  3,  1, -4,  3,  3, -7,  2,  1, -7,  2,...
$ BYP56E   <dbl+lbl>  2,  3,  1, -4,  1,  3, -7,  2,  2, -7,  1,...
$ BYP56F   <dbl+lbl>  2,  2,  3, -4,  1,  3, -7,  2,  1, -7,  1,...
$ BYP57A   <dbl+lbl>  2,  4,  1, -4,  4,  4, -7,  3,  3, -7,  3,...
$ BYP57B   <dbl+lbl>  2,  4,  1, -4,  4,  4, -7,  3,  4, -7,  3,...
$ BYP57C   <dbl+lbl>  1,  4,  3, -4,  4,  4, -7,  1,  3, -7,  3,...
$ BYP57D   <dbl+lbl>  4,  3,  1, -4,  2,  4, -7,  3,  2, -7,  1,...
$ BYP57E   <dbl+lbl>  4,  3,  1, -4,  4,  4, -7,  3,  4, -7,  1,...
$ BYP57F   <dbl+lbl>  4,  4,  4, -4,  4,  4, -7,  3,  2, -7,  1,...
$ BYP57G   <dbl+lbl>  3,  2,  4, -4,  4,  4, -7,  2,  2, -7,  3,...
$ BYP57H   <dbl+lbl>  3,  2,  1, -4,  2,  4, -7,  1,  4, -7,  1,...
$ BYP57I   <dbl+lbl>  4,  4,  4, -4,  4,  4, -7,  3,  3, -7,  1,...
$ BYP57J   <dbl+lbl>  4,  3,  3, -4,  4,  4, -7,  3,  3, -7,  1,...
$ BYP57K   <dbl+lbl>  4,  3,  4, -4,  4,  4, -7,  4,  4, -7,  1,...
$ BYP57L   <dbl+lbl>  3,  3,  3, -4,  4,  4, -7,  4,  3, -7,  1,...
$ BYP58A   <dbl+lbl>  1,  2,  2, -4,  2,  2, -7,  2,  1, -7,  2,...
$ BYP58B   <dbl+lbl>  4,  3,  2, -4,  2,  3, -7,  3,  2, -7,  3,...
$ BYP59BA  <dbl+lbl>  0,  1,  1, -4,  0,  1, -7,  1,  1, -7,  1,...
$ BYP59CA  <dbl+lbl>  1,  1,  1, -4,  1,  1, -7,  1,  1, -7,  1,...
$ BYP59DA  <dbl+lbl>  1,  1,  1, -4,  1,  0, -7,  1,  1, -7,  0,...
$ BYP59EA  <dbl+lbl>  1,  1,  1, -4,  1,  0, -7,  1,  1, -7,  0,...
$ BYP59BB  <dbl+lbl>  1,  1,  1, -4, -3,  1, -7,  1, -3, -7,  1,...
$ BYP59CB  <dbl+lbl>  1,  1,  1, -4, -3,  1, -7,  1, -3, -7,  1,...
$ BYP59DB  <dbl+lbl>  1,  1,  1, -4, -3,  1, -7,  1, -3, -7,  0,...
$ BYP59EB  <dbl+lbl>  0,  1,  1, -4, -3,  1, -7,  1, -3, -7,  0,...
$ BYP59BC  <dbl+lbl>  0, -3,  1, -4, -3,  1, -7,  1, -3, -7,  1,...
$ BYP59CC  <dbl+lbl>  1, -3,  1, -4, -3,  1, -7,  1, -3, -7,  0,...
$ BYP59DC  <dbl+lbl>  1, -3,  1, -4, -3,  0, -7,  0, -3, -7,  0,...
$ BYP59EC  <dbl+lbl>  1, -3,  1, -4, -3,  1, -7,  0, -3, -7,  0,...
$ BYP60A   <dbl+lbl>  1,  1,  1, -4,  1,  1, -7,  1,  1, -7,  1,...
$ BYP60B   <dbl+lbl>  4,  1,  1, -4,  1,  1, -7,  2,  1, -7,  1,...
$ BYP60C   <dbl+lbl>  4,  2,  1, -4,  3,  1, -7,  2,  1, -7,  1,...
$ BYP60D   <dbl+lbl>  1,  1,  2, -4,  3,  2, -7,  1,  1, -7,  2,...
$ BYP61    <dbl+lbl>  1,  0,  0, -4,  0,  0, -7,  0,  0, -7,  0,...
$ BYP62    <dbl+lbl>  1, -3, -3, -4, -3, -3, -7, -3, -3, -7, -3,...
$ BYP63    <dbl+lbl>  3, -3, -3, -4, -3, -3, -7, -3, -3, -7, -3,...
$ BYP64A   <dbl+lbl>  0, -3, -3, -4, -3, -3, -7, -3, -3, -7, -3,...
$ BYP64B   <dbl+lbl>  0, -3, -3, -4, -3, -3, -7, -3, -3, -7, -3,...
$ BYP64C   <dbl+lbl>  1, -3, -3, -4, -3, -3, -7, -3, -3, -7, -3,...
$ BYP64D   <dbl+lbl>  0, -3, -3, -4, -3, -3, -7, -3, -3, -7, -3,...
$ BYP65    <dbl+lbl> 13,  6, 17, -4, 23,  0, -7, 14, 19, -7,  6,...
$ BYP66    <dbl+lbl>  1,  1, -1, -4,  1,  1, -7,  1,  2, -7,  2,...
$ BYP67    <dbl+lbl>  2,  3,  3, -4,  3,  3, -7,  3,  3, -7,  3,...
$ BYP68    <dbl+lbl>  2,  1,  1, -4,  3,  1, -7,  1,  1, -7,  2,...
$ BYP69A   <dbl+lbl>  1,  1,  1, -4,  0,  1, -7,  1,  0, -7,  1,...
$ BYP69B   <dbl+lbl>  1,  1,  1, -4,  1,  1, -7,  1,  1, -7,  1,...
$ BYP69C   <dbl+lbl>  1,  0, -1, -4,  1,  1, -7,  1,  1, -7,  1,...
$ BYP69D   <dbl+lbl>  1,  1, -1, -4,  0,  1, -7,  0,  1, -7,  1,...
$ BYP70    <dbl+lbl>  5,  2,  6, -4,  7,  5,  5,  4,  2,  7,  4,...
$ BYP71    <dbl+lbl>  1,  1,  1, -4,  1,  1,  1,  1,  1,  1,  1,...
$ BYP72    <dbl+lbl>  1,  1,  1, -4,  1,  1, -7,  1,  1, -7,  1,...
$ BYP73    <dbl+lbl>  3, -6,  3, -4,  1,  3, -7,  3,  3, -7,  3,...
$ BYP74A   <dbl+lbl> -3,  1, -3, -4,  1, -3, -7, -3, -3, -7, -3,...
$ BYP74B   <dbl+lbl> -3,  1, -3, -4,  3, -3, -7, -3, -3, -7, -3,...
$ BYP74C   <dbl+lbl> -3,  1, -3, -4,  5, -3, -7, -3, -3, -7, -3,...
$ BYP74D   <dbl+lbl> -3,  2, -3, -4,  3, -3, -7, -3, -3, -7, -3,...
$ BYP74E   <dbl+lbl> -3,  2, -3, -4,  1, -3, -7, -3, -3, -7, -3,...
$ BYP75    <dbl+lbl> -1,  1,  1, -4,  0,  1, -7,  1,  1, -7,  0,...
$ BYP76    <dbl+lbl> -3,  2,  1, -4, -3,  1, -7,  1,  3, -7, -3,...
$ BYP77A   <dbl+lbl>  2,  3,  4, -4,  2,  1, -7,  3,  2, -7,  3,...
$ BYP77B   <dbl+lbl>  4,  2,  1, -4,  2,  1, -7,  2,  1, -7,  2,...
$ BYP77C   <dbl+lbl>  3,  3,  1, -4,  2,  1, -7,  2,  1, -7,  2,...
$ BYP77D   <dbl+lbl>  2,  2,  1, -4,  2,  3, -7,  2,  1, -7,  2,...
$ BYP77E   <dbl+lbl>  2,  2,  1, -4,  3,  1, -7,  2,  1, -7,  2,...
$ BYP77F   <dbl+lbl>  2,  2,  2, -4,  2,  2, -7,  2,  1, -7,  2,...
$ BYP77G   <dbl+lbl>  2,  4,  2, -4,  2,  1, -7,  2,  1, -7,  2,...
$ BYP77H   <dbl+lbl>  2,  4,  2, -4,  2,  1, -7,  2,  4, -7,  2,...
$ BYP77I   <dbl+lbl>  2,  4,  2, -4,  2,  1, -7,  2,  1, -7,  2,...
$ BYP77J   <dbl+lbl>  3, -1, -1, -4,  3,  3, -7,  3,  3, -7,  4,...
$ BYP77K   <dbl+lbl>  3, -1, -1, -4,  2,  3, -7, -1,  3, -7,  4,...
$ BYP77L   <dbl+lbl>  2, -1,  2, -4,  2,  3, -7, -1,  3, -7,  4,...
$ BYP77M   <dbl+lbl>  2, -1,  2, -4,  2,  3, -7,  2,  3, -7,  2,...
$ BYP77N   <dbl+lbl>  3, -1,  2, -4,  2,  3, -7,  3,  3, -7,  3,...
$ BYP77O   <dbl+lbl>  3,  4,  3, -4,  2,  1, -7,  3,  3, -7,  2,...
$ BYP78    <dbl+lbl>  2,  2,  1, -4,  2,  2,  1,  1,  1,  2,  2,...
$ BYP79    <dbl+lbl>  5,  7,  7, -4,  2,  3,  5,  5,  5,  2,  5,...
$ BYP80A   <dbl+lbl>  3,  2,  2, -4, -3,  1, -7,  2,  1, -3,  1,...
$ BYP80B   <dbl+lbl>  2,  1,  2, -4, -3,  1, -7,  2,  1, -3,  1,...
$ BYP80C   <dbl+lbl>  2,  1,  2, -4, -3,  1, -7,  2,  1, -3,  1,...
$ BYP80D   <dbl+lbl>  3,  2,  3, -4, -3,  1, -7,  2,  1, -3,  2,...
$ BYP80E   <dbl+lbl>  3,  3,  3, -4, -3,  2, -7,  2,  1, -3,  2,...
$ BYP80F   <dbl+lbl>  2,  2,  2, -4, -3,  1, -7,  2,  1, -3,  2,...
$ BYP80G   <dbl+lbl>  2,  2,  3, -4, -3,  2, -7,  2,  3, -3,  2,...
$ BYP80H   <dbl+lbl>  2,  3,  3, -4, -3,  3, -7,  2,  1, -3,  3,...
$ BYP80I   <dbl+lbl>  1,  2,  1, -4, -3,  1, -7,  2,  1, -3,  1,...
$ BYP80J   <dbl+lbl>  1,  2,  2, -4, -3,  1, -7,  2,  1, -3,  2,...
$ BYP80K   <dbl+lbl>  1,  2,  2, -4, -3,  1, -7,  2,  1, -3,  2,...
$ BYP80L   <dbl+lbl>  1,  2,  2, -4, -3,  1, -7,  2,  1, -3,  2,...
$ BYP80M   <dbl+lbl>  3,  2,  2, -4, -3,  1, -7,  2,  1, -3,  2,...
$ BYP80N   <dbl+lbl>  3,  2,  3, -4, -3,  2, -7,  2,  1, -3,  3,...
$ BYP80O   <dbl+lbl>  3,  2,  3, -4, -3,  2, -7,  2,  1, -3,  2,...
$ BYP81    <dbl+lbl>  2,  7,  6, -4,  5,  3, -7,  5,  5, -7,  5,...
$ BYP82    <dbl+lbl> -3,  1,  0, -4,  0,  0, -7,  0,  1, -7,  0,...
$ BYP83A   <dbl+lbl> -3,  0, -3, -4, -3, -3, -7, -3,  1, -7, -3,...
$ BYP83B   <dbl+lbl> -3,  1, -3, -4, -3, -3, -7, -3,  1, -7, -3,...
$ BYP83C   <dbl+lbl> -3,  0, -3, -4, -3, -3, -7, -3,  0, -7, -3,...
$ BYP83D   <dbl+lbl> -3,  1, -3, -4, -3, -3, -7, -3,  0, -7, -3,...
$ BYP83E   <dbl+lbl> -3,  0, -3, -4, -3, -3, -7, -3,  0, -7, -3,...
$ BYP83F   <dbl+lbl> -3, -9, -3, -4, -3, -3, -7, -3,  0, -7, -3,...
$ BYP83G   <dbl+lbl> -3,  1, -3, -4, -3, -3, -7, -3,  0, -7, -3,...
$ BYP83H   <dbl+lbl> -3,  0, -3, -4, -3, -3, -7, -3,  0, -7, -3,...
$ BYP83I   <dbl+lbl> -3,  0, -3, -4, -3, -3, -7, -3,  0, -7, -3,...
$ BYP83J   <dbl+lbl> -3,  0, -3, -4, -3, -3, -7, -3,  0, -7, -3,...
$ BYP83K   <dbl+lbl> -3,  1, -3, -4, -3, -3, -7, -3,  0, -7, -3,...
$ BYP83L   <dbl+lbl> -3,  0, -3, -4, -3, -3, -7, -3,  0, -7, -3,...
$ BYP83M   <dbl+lbl> -3,  0, -3, -4, -3, -3, -7, -3,  0, -7, -3,...
$ BYP84    <dbl+lbl> -3,  4, -3, -4, -3, -3, -7, -3,  4, -7, -3,...
$ BYP85    <dbl+lbl> 10, 11, 10, -4,  6, -9, 10, 10,  8, -9,  8,...
$ BYP86    <dbl+lbl>  2,  1,  2, -4,  2, -2, -7,  1,  2, -7,  1,...
$ BYP97    <dbl+lbl>  0,  0,  0, -4,  0,  0, -9,  0,  0, -9,  1,...
$ BYP98A   <dbl+lbl> -3, -3, -3, -4, -3, -3, -9, -3, -3, -9,  1,...
$ BYP98B   <dbl+lbl> -3, -3, -3, -4, -3, -3, -9, -3, -3, -9,  0,...
$ BYP98C   <dbl+lbl> -3, -3, -3, -4, -3, -3, -9, -3, -3, -9,  0,...
$ BYP98D   <dbl+lbl> -3, -3, -3, -4, -3, -3, -9, -3, -3, -9,  0,...
$ BYP98E   <dbl+lbl> -3, -3, -3, -4, -3, -3, -9, -3, -3, -9,  0,...
$ BYP99    <dbl+lbl> 200207, 200206, 200207,     -4, 200207, 200...
$ BYTE01   <dbl+lbl>  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,...
$ BYTE02   <dbl+lbl>  2,  2,  1,  1,  1,  1,  1,  2,  1,  1,  1,...
$ BYTE03   <dbl+lbl>  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,...
$ BYTE04   <dbl+lbl>  0,  1,  1,  1,  1,  1,  0,  1,  0,  1,  1,...
$ BYTE05   <dbl+lbl>  1,  1,  0,  1,  1,  1,  1,  1,  0,  1,  0,...
$ BYTE06   <dbl+lbl>  0,  0,  1,  0,  0,  0,  0,  0,  1,  0,  0,...
$ BYTE07   <dbl+lbl>  1,  1,  0,  0,  0,  1,  1,  0,  1,  1,  0,...
$ BYTE08A  <dbl+lbl>  1, -3,  0,  0,  0,  0,  1, -3,  0, -3,  0,...
$ BYTE08B  <dbl+lbl> -3, -3,  0,  0,  0,  0,  0, -3, -3, -3,  1,...
$ BYTE08C  <dbl+lbl>  1, -3,  0,  0,  0,  0,  1, -3,  0, -3,  0,...
$ BYTE08D  <dbl+lbl>  1, -3,  0,  0,  0,  0,  0, -3, -3, -3,  0,...
$ BYTE08E  <dbl+lbl>  1,  1,  0,  0,  1,  1,  0,  1,  0,  0,  0,...
$ BYTE09   <dbl+lbl>  2,  2, -1,  3,  1,  2,  2,  2,  2,  1,  1,...
$ BYTE10   <dbl+lbl>  2,  2,  2,  2,  2,  2,  2,  3,  2,  3,  2,...
$ BYTE11   <dbl+lbl>  1,  0,  0,  0,  0,  0,  0,  0, -1,  0,  1,...
$ BYTE12   <dbl+lbl>  1,  0,  1,  0,  0,  0,  0,  0,  1,  0,  0,...
$ BYTE12A  <dbl+lbl>  0, -3,  0, -3, -3, -3, -3, -3,  0, -3, -3,...
$ BYTE12B  <dbl+lbl>  0, -3,  0, -3, -3, -3, -3, -3,  0, -3, -3,...
$ BYTE12C  <dbl+lbl>  0, -3,  0, -3, -3, -3, -3, -3,  0, -3, -3,...
$ BYTE12D  <dbl+lbl>  1, -3,  1, -3, -3, -3, -3, -3,  1, -3, -3,...
$ BYTE12E  <dbl+lbl>  1, -3,  0, -3, -3, -3, -3, -3,  1, -3, -3,...
$ BYTE13   <dbl+lbl>  3,  5,  3,  4,  4, -9,  4,  4,  3,  4,  4,...
$ BYTE14   <dbl+lbl>  2,  1,  2,  2,  2,  2,  2,  2,  3,  3,  2,...
$ BYTE15   <dbl+lbl>  1,  1,  1,  1,  1,  3,  1,  1,  3,  1,  2,...
$ BYTE16   <dbl+lbl>  4,  5,  3,  4,  4,  5,  4,  4,  2,  4,  3,...
$ BYTE17   <dbl+lbl>  2,  1,  1,  2,  2,  1,  1,  1,  1,  1,  2,...
$ BYTE18A  <dbl+lbl>  1, -3,  0, -3, -3, -3,  1, -3,  1, -3,  0,...
$ BYTE18B  <dbl+lbl> -3, -3,  0, -3, -9, -3,  0, -3, -3, -3,  1,...
$ BYTE19   <dbl+lbl> -3, -3,  1, -3,  0,  0,  0,  1,  0,  0,  0,...
$ BYTE20   <dbl+lbl>  6,  6,  5,  3,  3,  3,  3,  5,  3,  5,  6,...
$ BYTE21A  <dbl+lbl>  2,  2,  2,  3,  3,  3,  3,  2,  3,  3,  1,...
$ BYTE21B  <dbl+lbl>  2,  2,  3,  3,  3,  4,  3,  2,  4,  3,  2,...
$ BYTE21C  <dbl+lbl>  2,  2,  2,  3,  4,  4,  4,  3,  5,  4,  1,...
$ BYTE21D  <dbl+lbl>  1,  1,  1,  4,  4,  4,  3,  2,  5,  5,  2,...
$ BYTE22   <dbl+lbl>  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,...
$ BYTE23   <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,...
$ BYTE25   <dbl+lbl> 1942, 1942, 1950, 1976, 1959, 1965, 1953, 1...
$ BYTE26A  <dbl+lbl>  0,  0,  0,  0,  0,  1,  0,  2,  0,  0,  1,...
$ BYTE26B  <dbl+lbl> 25, 25, 25,  3,  3,  4, 26,  5,  1,  1,  4,...
$ BYTE26C  <dbl+lbl> 25, 25, 25,  3,  3,  5, 26,  7,  1,  1,  5,...
$ BYTE27   <dbl+lbl> 25, 25, 27,  2,  3,  3,  5,  5,  1,  1,  3,...
$ BYTE28   <dbl+lbl>  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,...
$ BYTE29   <dbl+lbl>  1,  1,  1,  1,  1,  1,  1,  1,  2,  2,  1,...
$ BYTE30A  <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,...
$ BYTE30B  <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,...
$ BYTE30C  <dbl+lbl>  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,...
$ BYTE30D  <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,...
$ BYTE30E  <dbl+lbl>  0,  0,  0,  0,  0,  0,  1,  0,  0,  0,  0,...
$ BYTE30F  <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,...
$ BYTE30G  <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,...
$ BYTE31A  <dbl+lbl>  1,  1,  1,  2,  1,  2, -9,  2,  2,  2,  2,...
$ BYTE31B  <dbl+lbl>  2,  2,  2,  1, -3,  1, -9,  1,  1,  1,  1,...
$ BYTE32A  <dbl+lbl> -3, -3, -3, -3, -3, -3, 10, -3, -3, -3, -3,...
$ BYTE32B  <dbl+lbl> -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3,...
$ BYTE33A  <dbl+lbl>  5,  5, -9,  5,  3,  5,  5,  5,  5,  5,  5,...
$ BYTE33B  <dbl+lbl>  5,  5,  5, -3, -3,  2,  2,  2, -3, -3,  2,...
$ BYTE34   <dbl+lbl>  1,  1,  3,  1,  1,  1,  4,  1,  1,  1,  1,...
$ BYTE35A  <dbl+lbl>  5,  5,  5,  4,  4,  5,  5,  4,  6,  6,  5,...
$ BYTE35B  <dbl+lbl>  4,  4,  5,  4,  2,  4,  3,  3,  4,  4,  4,...
$ BYTE35C  <dbl+lbl>  3,  3,  3,  3,  2,  4,  3,  2,  3,  3,  4,...
$ BYTE35D  <dbl+lbl>  3,  3,  3,  3,  2,  3,  1,  2,  2,  2,  3,...
$ BYTE35E  <dbl+lbl>  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,...
$ BYTE35F  <dbl+lbl>  2,  2,  1,  1,  1,  1,  1,  1,  1,  1,  1,...
$ BYTE35G  <dbl+lbl>  2,  2,  1,  2,  1,  3,  1,  2,  2,  2,  3,...
$ BYTE35H  <dbl+lbl>  2,  2,  3,  2,  1,  2,  1,  2,  3,  3,  2,...
$ BYTE35I  <dbl+lbl>  3,  3,  6,  6,  1,  1,  1,  3,  6,  6,  1,...
$ BYTE35J  <dbl+lbl>  2,  2,  3,  2,  1,  2,  1,  2,  2,  2,  2,...
$ BYTE35K  <dbl+lbl>  6,  6,  6,  1,  3,  6,  4,  1,  6,  6,  6,...
$ BYTE35L  <dbl+lbl>  4,  4,  3,  3,  3,  6,  2,  3,  4,  4,  6,...
$ BYTE35M  <dbl+lbl>  3,  3,  3,  5,  1,  3,  2,  2,  3,  3,  3,...
$ BYTE35N  <dbl+lbl>  1,  1,  1,  6,  1,  1,  1,  1,  1,  1,  1,...
$ BYTE36   <dbl+lbl> 24, 24,  6, 15, 40,  0,  0,  4,  0,  0,  0,...
$ BYTE37   <dbl+lbl>  1,  1,  0,  0,  0,  0,  0,  0,  0,  0,  0,...
$ BYTE38A  <dbl+lbl>  1,  1,  1,  1,  1,  1,  0,  1,  1,  1,  1,...
$ BYTE38B  <dbl+lbl>  1,  1,  1,  1,  1,  1,  0, -9,  1,  1,  1,...
$ BYTE38C  <dbl+lbl>  1,  1,  1,  1,  1,  1,  0,  1,  1,  1,  1,...
$ BYTE38D  <dbl+lbl>  1,  1,  1,  1,  0,  1,  0,  0,  1,  1,  1,...
$ BYTE38E  <dbl+lbl>  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,...
$ BYTE38F  <dbl+lbl>  1,  1,  1,  1,  0,  0, -9,  0,  1,  1,  0,...
$ BYTE39   <dbl+lbl> 10, 10,  5,  6,  2,  1,  3,  2, -9, -9,  1,...
$ BYTE40   <dbl+lbl>  0,  0,  0,  3,  0,  0,  0,  0,  0,  0,  0,...
$ BYTE41   <dbl+lbl> -3, -3, -3,  1, -3, -3, -3, -3, -3, -3, -3,...
$ BYTE42   <dbl+lbl>  3,  3,  0,  3,  1,  0,  0,  1,  1,  1,  0,...
$ BYTE43   <dbl+lbl>  1,  1, -3,  0,  1, -3, -3,  1,  0,  0, -3,...
$ BYTE44A  <dbl+lbl>  2,  2,  2,  2,  2,  2,  1,  2,  1,  1,  2,...
$ BYTE44B  <dbl+lbl>  2,  2,  2,  2,  3,  2,  2,  2,  3,  3,  2,...
$ BYTE44C  <dbl+lbl>  1,  1,  2,  1,  1,  2,  2,  1,  1,  1,  2,...
$ BYTE44D  <dbl+lbl>  1,  1,  2,  1,  1,  1,  2,  1,  2,  2,  1,...
$ BYTE44E  <dbl+lbl>  1,  1,  2,  1,  1,  1,  1,  1,  1,  1,  1,...
$ BYTE44F  <dbl+lbl>  1,  1,  2,  1,  1,  1,  1,  1,  1,  1,  1,...
$ BYTE47   <dbl+lbl> 200204, 200204, 200204, 200204, 200204, 200...
$ BYTM01   <dbl+lbl>  1,  1,  1,  1,  1,  1,  1,  1,  0,  0,  1,...
$ BYTM02   <dbl+lbl>  1,  1,  1,  1,  1,  1,  1,  1, -3, -3,  1,...
$ BYTM03   <dbl+lbl>  1,  1,  1, -9,  1, -9,  1,  1,  1,  1,  0,...
$ BYTM04   <dbl+lbl>  1,  1,  1,  1,  1,  0,  1,  1,  0,  0,  1,...
$ BYTM05   <dbl+lbl>  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,...
$ BYTM06   <dbl+lbl>  0,  0,  0,  0,  1,  0,  0,  0,  0,  0,  0,...
$ BYTM07   <dbl+lbl>  1,  0,  0,  0,  0,  1,  1,  0,  1,  0,  1,...
$ BYTM08A  <dbl+lbl>  0,  0,  0,  0, -3,  0,  1,  0,  0,  0,  0,...
$ BYTM08B  <dbl+lbl>  0,  0,  0, -3, -3, -3,  1,  0, -3, -3,  0,...
$ BYTM08C  <dbl+lbl>  0,  0,  0, -3, -3,  0,  1,  0,  1,  0,  0,...
$ BYTM08D  <dbl+lbl>  0,  0,  0, -3, -3, -3, -3,  0,  0, -3,  0,...
$ BYTM08E  <dbl+lbl>  1,  1,  0,  0,  0,  0,  1,  0,  0, -3,  0,...
$ BYTM09   <dbl+lbl>  2,  1,  2, -1,  2, -1,  1,  2, -1, -1,  2,...
$ BYTM10   <dbl+lbl>  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,...
$ BYTM11   <dbl+lbl>  1,  0,  0,  1,  1,  0,  0,  0,  0,  0,  0,...
$ BYTM12   <dbl+lbl>  1,  0,  0,  0,  0,  1,  1,  0,  1,  0,  0,...
$ BYTM12A  <dbl+lbl>  1, -3, -3, -3, -3,  0,  1, -3, -9, -3, -3,...
$ BYTM12B  <dbl+lbl>  0, -3, -3, -3, -3,  0,  0, -3, -9, -3, -3,...
$ BYTM12C  <dbl+lbl>  0, -3, -3, -3, -3,  0,  0, -3, -9, -3, -3,...
$ BYTM12D  <dbl+lbl>  0, -3, -3, -3, -3,  1,  1, -3, -9, -3, -3,...
$ BYTM12E  <dbl+lbl>  0, -3, -3, -3, -3,  0,  0, -3, -9, -3, -3,...
$ BYTM13   <dbl+lbl>  5,  5,  5,  4,  5,  3,  4,  5,  3,  3,  5,...
$ BYTM14   <dbl+lbl>  2,  2,  2,  2,  2,  3,  2,  2,  3,  3,  2,...
$ BYTM15   <dbl+lbl>  1,  1,  2,  1,  1,  2,  1,  2,  3,  2,  2,...
$ BYTM16   <dbl+lbl>  5,  5,  5,  5,  5,  4,  4,  5,  3,  3,  4,...
$ BYTM17   <dbl+lbl>  1,  1,  1,  1,  1,  1,  2,  1,  1,  2,  1,...
$ BYTM18A  <dbl+lbl>  1, -3,  0, -3, -3, -3,  1,  0, -3, -3,  0,...
$ BYTM18B  <dbl+lbl> -3, -3,  0, -3, -3, -3,  1,  0, -3, -3, -9,...
$ BYTM19   <dbl+lbl>  0,  1,  1, -3, -3,  0,  1,  1,  0,  0,  1,...
$ BYTM20   <dbl+lbl>  3,  7,  5,  3,  2,  3,  5,  5,  2,  3,  5,...
$ BYTM22   <dbl+lbl>  1,  1,  2,  2,  2,  2,  2,  2,  2,  2,  1,...
$ BYTM23   <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,...
$ BYTM25   <dbl+lbl> 1964, 1964, 1964, 1967, 1968, 1967, 1958, 1...
$ BYTM26A  <dbl+lbl>  0,  0,  0,  0,  1,  0,  0,  0, -9,  0,  0,...
$ BYTM26B  <dbl+lbl> 10, 10, 14, 13,  4, 13,  6, 14, -9,  7, 28,...
$ BYTM26C  <dbl+lbl> -9, -9, 14, 13,  5, 13,  6, 14, 19,  7, 28,...
$ BYTM27   <dbl+lbl> 10, 10, 13, 13,  4, 13,  3, 13, 19,  4, 25,...
$ BYTM28   <dbl+lbl>  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,...
$ BYTM29   <dbl+lbl>  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,...
$ BYTM30A  <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,...
$ BYTM30B  <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  0,  1,  0,  1,...
$ BYTM30C  <dbl+lbl>  1,  1,  1,  1,  0,  1,  1,  1,  1,  1,  1,...
$ BYTM30D  <dbl+lbl>  0,  0,  0,  0,  0,  0,  1,  0,  0,  0,  0,...
$ BYTM30E  <dbl+lbl>  0,  0,  1,  0,  1,  0,  0,  1,  0,  0,  1,...
$ BYTM30F  <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,...
$ BYTM30G  <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,...
$ BYTM31A  <dbl+lbl> -9, -9,  3,  1, 10,  1,  3,  3, -9, -9,  3,...
$ BYTM31B  <dbl+lbl> -9, -9,  1,  3, -3,  3,  1,  1, -9, 10, 10,...
$ BYTM32A  <dbl+lbl> -3, -3,  3, -3,  1, -3, -9,  3, -3, -3, -3,...
$ BYTM32B  <dbl+lbl> -3, -3, -3, -3, -3, -3, -9, -3, -3, -3, -9,...
$ BYTM33C  <dbl+lbl> -9, -9,  5,  5, -3,  5,  5,  5,  5,  5,  5,...
$ BYTM33D  <dbl+lbl> -9, -9,  5, -3, -3, -3,  2,  5,  1, -3,  5,...
$ BYTM34   <dbl+lbl>  1,  1,  4,  1,  2,  1,  4,  4,  1,  1,  2,...
$ BYTM35A  <dbl+lbl>  4,  4,  5,  2,  5,  2,  4,  5,  4,  3,  4,...
$ BYTM35B  <dbl+lbl>  1,  1,  2,  3,  2,  3,  3,  2, -9,  2,  4,...
$ BYTM35C  <dbl+lbl>  1,  1,  2,  1,  2,  1,  2,  2,  3,  1,  4,...
$ BYTM35D  <dbl+lbl>  1,  1,  2,  1,  2,  1,  3,  2,  3,  1,  4,...
$ BYTM35E  <dbl+lbl>  1,  1,  2,  1,  1,  1,  1,  2,  1,  1,  4,...
$ BYTM35F  <dbl+lbl>  1,  1,  2,  1,  1,  1,  1,  2,  1,  3,  4,...
$ BYTM35G  <dbl+lbl>  3,  3,  2,  1,  1,  1,  2,  2,  2,  2,  4,...
$ BYTM35H  <dbl+lbl>  1,  1,  2,  1,  2,  1,  2,  2,  1,  2,  4,...
$ BYTM35I  <dbl+lbl>  1,  1,  1,  1,  6,  1,  3,  1,  6,  1,  4,...
$ BYTM35J  <dbl+lbl>  1,  1,  2,  1,  1,  1,  2,  2,  2,  2,  4,...
$ BYTM35K  <dbl+lbl>  3,  3,  3,  4,  4,  4,  3,  3,  3,  2,  4,...
$ BYTM35L  <dbl+lbl>  2,  2,  3,  3,  3,  3,  1,  3,  3,  3,  4,...
$ BYTM35M  <dbl+lbl>  1,  1,  3,  1,  3,  1,  1,  3,  5,  4,  4,...
$ BYTM35N  <dbl+lbl>  1,  1,  1,  1,  6,  1,  1,  1,  6,  5,  4,...
$ BYTM36   <dbl+lbl>  0,  0,  3, 30, 50, 30,  3,  3,  0, 22, 10,...
$ BYTM37   <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,...
$ BYTM38A  <dbl+lbl>  1,  1,  1,  1,  0,  1,  0,  1,  1,  1,  1,...
$ BYTM38B  <dbl+lbl>  0,  0,  1,  1,  0,  1,  1,  1,  1,  1,  1,...
$ BYTM38C  <dbl+lbl>  1,  1,  1,  1,  0,  1,  0,  1,  0,  1,  1,...
$ BYTM38D  <dbl+lbl>  0,  0,  0,  0,  1,  0,  1,  0,  0,  1,  1,...
$ BYTM38E  <dbl+lbl>  1,  1,  1,  0,  1,  0,  1,  1,  1,  1,  1,...
$ BYTM38F  <dbl+lbl>  0,  0,  1,  0,  0,  0,  0,  1,  0,  1,  1,...
$ BYTM39   <dbl+lbl> 10, 10,  2,  1,  1,  1,  2,  2, 40,  2,  0,...
$ BYTM40   <dbl+lbl>  1,  1,  0,  0,  1,  0,  0,  0,  0,  0,  0,...
$ BYTM41   <dbl+lbl>  0,  0, -3, -3,  0, -3, -3, -3, -3, -3, -3,...
$ BYTM42   <dbl+lbl>  1,  1,  0,  3,  0,  3,  3,  0,  0,  0,  0,...
$ BYTM43   <dbl+lbl>  0,  0, -3,  0, -3,  0,  1, -3, -3, -3, -3,...
$ BYTM44A  <dbl+lbl>  1,  1,  1,  1,  1,  1,  2,  1,  2,  1,  2,...
$ BYTM44B  <dbl+lbl>  2,  2,  2,  2,  2,  2,  3,  2,  2, -9,  2,...
$ BYTM44C  <dbl+lbl>  1,  1,  1,  1,  2,  1,  2,  1,  2, -9,  2,...
$ BYTM44D  <dbl+lbl>  2,  2,  1,  2,  3,  2,  2,  1,  2, -9,  2,...
$ BYTM44E  <dbl+lbl>  1,  1,  2,  2,  3,  2,  2,  2,  2, -9,  2,...
$ BYTM44F  <dbl+lbl>  1,  1,  2,  1,  3,  1,  1,  2,  1, -9,  2,...
$ BYTM45A  <dbl+lbl>  2,  2,  2,  2,  3,  2,  1,  2,  1,  2,  2,...
$ BYTM45B  <dbl+lbl>  3,  3,  3,  3,  2,  3,  4,  3,  4,  2,  3,...
$ BYTM47   <dbl+lbl> 200205, 200205, 200208, 200204, 200204, 200...
ELS.clean <- X04275_0001_Data
ELS.clean <- ELS.clean %>%
  select(., BYS20J,
         BYS21B,
         BYS20G,
         BYS20F,
         BYS20H,
         BYS20A,
         BYS20I,
         BYS20C,
         BYS88B,
         BYS88A,
         BYS89R,
         BYS89A,
         BYS89B,
         BYS89U,
         BYS89L,
         BYS29B,
         BYS29E,
         BYS29C,
         BYS29J,
         SCH_ID,
         STU_ID,
         SEX,
         RACE)
glimpse(ELS.clean)
Rows: 15,362
Columns: 23
$ BYS20J <dbl+lbl>  3,  3, -9, -9,  3,  3,  3,  3,  2,  2,  3,  ...
$ BYS21B <dbl+lbl>  3,  3,  3, -9,  4,  2,  3,  3,  3,  2,  3,  ...
$ BYS20G <dbl+lbl> 3, 2, 3, 2, 3, 2, 2, 2, 3, 1, 2, 2, 3, 2, 2, ...
$ BYS20F <dbl+lbl> 2, 2, 2, 2, 2, 1, 2, 2, 3, 2, 1, 2, 3, 2, 4, ...
$ BYS20H <dbl+lbl>  1,  4,  3, -9,  3,  3,  4,  4,  3,  3,  3,  ...
$ BYS20A <dbl+lbl>  2,  2,  3, -9,  2,  2,  3,  1,  3,  2,  2,  ...
$ BYS20I <dbl+lbl>  3,  4,  3, -9,  3,  3,  4,  3,  3,  4,  3,  ...
$ BYS20C <dbl+lbl>  1,  2,  3, -9,  2,  2,  1,  2,  3,  2,  1,  ...
$ BYS88B <dbl+lbl> 2, 3, 3, 3, 2, 4, 4, 3, 3, 4, 3, 3, 4, 3, 4, ...
$ BYS88A <dbl+lbl> 3, 1, 2, 1, 1, 1, 1, 2, 2, 1, 2, 2, 2, 2, 1, ...
$ BYS89R <dbl+lbl>  2,  4,  3,  3,  3,  3,  3,  3,  3,  3,  2,  ...
$ BYS89A <dbl+lbl> 2, 4, 3, 4, 2, 2, 2, 4, 3, 4, 1, 2, 2, 2, 4, ...
$ BYS89B <dbl+lbl> 1, 3, 2, 3, 2, 2, 1, 3, 3, 3, 2, 2, 2, 2, 3, ...
$ BYS89U <dbl+lbl>  1,  4,  2,  4,  3, -9,  3,  3,  3,  3,  1,  ...
$ BYS89L <dbl+lbl> 2, 4, 2, 3, 3, 3, 2, 3, 3, 3, 2, 1, 2, 3, 3, ...
$ BYS29B <dbl+lbl> 2, 5, 4, 2, 5, 2, 2, 5, 4, 5, 5, 5, 2, 5, 3, ...
$ BYS29E <dbl+lbl> 2, 3, 5, 3, 4, 4, 4, 4, 5, 4, 5, 5, 5, 5, 3, ...
$ BYS29C <dbl+lbl>  2,  5,  5, -9,  5, -9,  5,  5,  5,  4,  4,  ...
$ BYS29J <dbl+lbl>  5,  2,  1, -9,  5,  2,  1,  1,  2,  5,  5,  ...
$ SCH_ID <dbl> 1011, 1011, 1011, 1011, 1011, 1011, 1011, 1011, 1...
$ STU_ID <dbl> 101101, 101102, 101104, 101105, 101106, 101107, 1...
$ SEX    <dbl+lbl> 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, ...
$ RACE   <dbl+lbl> 5, 2, 7, 3, 4, 4, 4, 7, 4, 3, 3, 4, 3, 2, 2, ...
ELS.clean.mu <- ELS.clean %>%
mutate(.,
       sch.clim.sch1 = BYS20J,
       sch.clim.sch2 = BYS21B,
       sch.clim.tea1 = BYS20G,
       sch.clim.tea2 = BYS20F,
       sch.clim.tea3 = BYS20H,
       sch.clim.tea4 = BYS20A,
       sch.clim.st1 = BYS20I,
       sch.clim.racial1 = BYS20C,
       mindset.entity = BYS88B,
       mindset.growth = BYS88A,
       math.se1 = BYS89R,
       math.se2 = BYS89A,
       math.se3 = BYS89B,
       math.se4 = BYS89U,
       math.se5 = BYS89L,
       math.engage1 = BYS29B,
       math.engage2 = BYS29E,
       math.engage3 = BYS29C,
       math.engage4 = BYS29J,
       SCH_ID.fac = as_factor(SCH_ID),
       STU_ID.fac = as_factor(STU_ID),
       sex.fac = as_factor(SEX),
       race.fac = as_factor(RACE))
table(ELS.clean.mu$sch.clim.sch1)

  -9   -7   -6    1    2    3    4 
 247  586   23  391 1191 6969 5955 
ELS.clean.filter <- ELS.clean.mu %>%
  filter(.,
         !sch.clim.sch1 %in% 
             (-9), 
         !sch.clim.sch1 %in% 
             (-7),
         !sch.clim.sch1 %in% 
             (-6),
         !sch.clim.sch2 %in% 
             (-9), 
         !sch.clim.sch2 %in% 
             (-7),
         !sch.clim.sch2 %in% 
             (-6),
         !sch.clim.tea1 %in% 
             (-9), 
         !sch.clim.tea1 %in% 
             (-7),
         !sch.clim.tea1 %in% 
             (-6),
         !sch.clim.tea2 %in% 
             (-9), 
         !sch.clim.tea2 %in% 
             (-7),
         !sch.clim.tea2 %in% 
             (-6),
         !sch.clim.tea3 %in% 
             (-9), 
         !sch.clim.tea3 %in% 
             (-7),
         !sch.clim.tea3 %in% 
             (-6),
         !sch.clim.tea4 %in% 
             (-9), 
         !sch.clim.tea4 %in% 
             (-7),
         !sch.clim.tea4 %in% 
             (-6),
         !sch.clim.st1 %in% 
             (-9), 
         !sch.clim.st1 %in% 
             (-7),
         !sch.clim.st1 %in% 
             (-6),
         !sch.clim.racial1 %in% 
             (-9), 
         !sch.clim.racial1 %in% 
             (-7),
         !sch.clim.racial1 %in% 
             (-6),
         !mindset.entity %in% 
             (-9), 
         !mindset.entity %in% 
             (-7),
         !mindset.entity %in% 
             (-6),
         !mindset.growth %in% 
             (-9), 
         !mindset.growth %in% 
             (-7),
         !mindset.growth %in% 
             (-6),
         !math.se1 %in% 
             (-9), 
         !math.se1 %in% 
             (-7),
         !math.se1 %in% 
             (-6),
        !math.se2 %in% 
             (-9), 
         !math.se2 %in% 
             (-7),
         !math.se2 %in% 
             (-6),
         !math.se3 %in% 
             (-9), 
         !math.se3 %in% 
             (-7),
         !math.se3 %in% 
             (-6),
         !math.se4 %in% 
             (-9), 
         !math.se4 %in% 
             (-7),
         !math.se4 %in% 
             (-6),
         !math.se5 %in% 
             (-9), 
         !math.se5 %in% 
             (-7),
         !math.se5 %in% 
             (-6),
         !math.engage1 %in% 
             (-9), 
         !math.engage1 %in% 
             (-7),
         !math.engage1 %in% 
             (-6),
        !math.engage2 %in% 
             (-9), 
         !math.engage2 %in% 
             (-7),
         !math.engage2 %in% 
             (-6),
        !math.engage3 %in% 
             (-9), 
         !math.engage3 %in% 
             (-7),
         !math.engage3 %in% 
             (-6),
        !math.engage4 %in% 
             (-9), 
         !math.engage4 %in% 
             (-7),
         !math.engage4 %in% 
             (-6))
        
ELS.clean.filter <- ELS.clean.filter %>%
  mutate(.,
         sch.clim.sch2.recode = case_when(
           sch.clim.sch2 == 1 ~ 4,
           sch.clim.sch2 == 2 ~ 3,
           sch.clim.sch2 == 3 ~ 2,
           sch.clim.sch2 == 4 ~ 1),
         sch.clim.tea1.recode = case_when(
           sch.clim.tea1 == 1 ~ 4,
           sch.clim.tea1 == 2 ~ 3,
           sch.clim.tea1 == 3 ~ 2,
           sch.clim.tea1 == 4 ~ 1),
         sch.clim.tea2.recode = case_when(
           sch.clim.tea2 == 1 ~ 4,
           sch.clim.tea2 == 2 ~ 3,
           sch.clim.tea2 == 3 ~ 2,
           sch.clim.tea2 == 4 ~ 1),
        sch.clim.tea4.recode = case_when(
           sch.clim.tea4 == 1 ~ 4,
           sch.clim.tea4 == 2 ~ 3,
           sch.clim.tea4 == 3 ~ 2,
           sch.clim.tea4 == 4 ~ 1),
        sch.clim.racial1.recode = case_when(
           sch.clim.racial1 == 1 ~ 4,
           sch.clim.racial1 == 2 ~ 3,
           sch.clim.racial1 == 3 ~ 2,
           sch.clim.racial1 == 4 ~ 1),
        mindset.growth.recode = case_when(
           mindset.growth == 1 ~ 4,
           mindset.growth == 2 ~ 3,
           mindset.growth == 3 ~ 2,
           mindset.growth == 4 ~ 1))
se_items <- ELS.clean.filter %>%
  select(.,
         math.se1,
       math.se2,
       math.se3,
       math.se4,
       math.se5)
alpha(se_items)

Reliability analysis   
Call: alpha(x = se_items)

 

 lower alpha upper     95% confidence boundaries
0.93 0.93 0.94 

 Reliability if an item is dropped:

 Item statistics 

Non missing response frequency for each item
            1    2    3    4 miss
math.se1 0.10 0.38 0.30 0.22    0
math.se2 0.10 0.46 0.24 0.21    0
math.se3 0.17 0.43 0.26 0.14    0
math.se4 0.10 0.37 0.31 0.23    0
math.se5 0.15 0.39 0.27 0.18    0
engage_items <- ELS.clean.filter %>%
  select(.,
       math.engage1,
       math.engage3,
       math.engage4)
alpha(engage_items)

Reliability analysis   
Call: alpha(x = engage_items)

 

 lower alpha upper     95% confidence boundaries
0.43 0.45 0.47 

 Reliability if an item is dropped:

 Item statistics 

Non missing response frequency for each item
                1    2    3    4    5 miss
math.engage1 0.03 0.10 0.04 0.15 0.68    0
math.engage3 0.05 0.09 0.05 0.15 0.67    0
math.engage4 0.39 0.25 0.11 0.14 0.11    0
my.keys.list <- list(school.climate.school = c("sch.clim.sch1", "sch.clim.sch2.recode"),
                     School.climate.teacher = c("sch.clim.tea1.recode", "sch.clim.tea2.recode", "sch.clim.tea3", "sch.clim.tea4.recode"),
                     math.se = c("math.se1", "math.se2", "math.se3", "math.se4", "math.se5"),
                     growth.mindset = c("mindset.growth.recode", "mindset.entity"))
                     
my.scales <- scoreItems(my.keys.list, ELS.clean.filter, impute = "none")
print(my.scales, short = FALSE)
Call: scoreItems(keys = my.keys.list, items = ELS.clean.filter, impute = "none")

(Standardized) Alpha:
      school.climate.school School.climate.teacher math.se
alpha                  0.33                   0.66    0.93
      growth.mindset
alpha           0.49

Standard errors of unstandardized Alpha:
      school.climate.school School.climate.teacher math.se
ASE                   0.019                 0.0094  0.0044
      growth.mindset
ASE            0.018

Standardized Alpha of observed scales:
     school.climate.school School.climate.teacher math.se
[1,]                  0.33                   0.66    0.93
     growth.mindset
[1,]           0.49

Average item correlation:
          school.climate.school School.climate.teacher math.se
average.r                   0.2                   0.33    0.74
          growth.mindset
average.r           0.32

Median item correlation:
 school.climate.school School.climate.teacher                math.se 
                  0.20                   0.31                   0.73 
        growth.mindset 
                  0.33 

 Guttman 6* reliability: 
         school.climate.school School.climate.teacher math.se
Lambda.6                  0.31                   0.63    0.92
         growth.mindset
Lambda.6           0.35

Signal/Noise based upon av.r : 
             school.climate.school School.climate.teacher math.se
Signal/Noise                  0.49                      2      14
             growth.mindset
Signal/Noise           0.95

Scale intercorrelations corrected for attenuation 
 raw correlations below the diagonal, alpha on the diagonal 
 corrected correlations above the diagonal:

Note that these are the correlations of the complete scales based on the correlation matrix,
 not the observed scales based on the raw items.
                       school.climate.school School.climate.teacher
school.climate.school                   0.33                   1.07
School.climate.teacher                  0.50                   0.66
math.se                                 0.16                   0.23
growth.mindset                          0.10                   0.13
                       math.se growth.mindset
school.climate.school     0.30           0.25
School.climate.teacher    0.30           0.23
math.se                   0.93           0.32
growth.mindset            0.22           0.49

Item by scale correlations:
 corrected for item overlap and scale reliability
                      school.climate.school School.climate.teacher
sch.clim.sch1                          0.41                   0.45
sch.clim.sch2.recode                   0.45                   0.52
sch.clim.tea1.recode                   0.55                   0.57
sch.clim.tea2.recode                   0.70                   0.68
sch.clim.tea3                          0.65                   0.48
sch.clim.tea4.recode                   0.64                   0.50
math.se1                               0.30                   0.28
math.se2                               0.26                   0.27
math.se3                               0.22                   0.22
math.se4                               0.31                   0.28
math.se5                               0.23                   0.25
mindset.growth.recode                  0.23                   0.20
mindset.entity                         0.08                   0.07
                      math.se growth.mindset
sch.clim.sch1            0.12           0.10
sch.clim.sch2.recode     0.15           0.16
sch.clim.tea1.recode     0.18           0.18
sch.clim.tea2.recode     0.18           0.17
sch.clim.tea3            0.16           0.20
sch.clim.tea4.recode     0.16           0.06
math.se1                 0.87           0.34
math.se2                 0.83           0.34
math.se3                 0.84           0.28
math.se4                 0.86           0.34
math.se5                 0.86           0.33
mindset.growth.recode    0.29           0.54
mindset.entity           0.10           0.44

Non missing response frequency for each item
                         1    2    3    4 miss
sch.clim.sch1         0.02 0.07 0.48 0.42    0
sch.clim.sch2.recode  0.10 0.35 0.49 0.07    0
sch.clim.tea1.recode  0.04 0.30 0.51 0.15    0
sch.clim.tea2.recode  0.03 0.20 0.61 0.15    0
sch.clim.tea3         0.03 0.10 0.58 0.29    0
sch.clim.tea4.recode  0.03 0.20 0.71 0.06    0
math.se1              0.10 0.38 0.30 0.22    0
math.se2              0.10 0.46 0.24 0.21    0
math.se3              0.17 0.43 0.26 0.14    0
math.se4              0.10 0.37 0.31 0.23    0
math.se5              0.15 0.39 0.27 0.18    0
mindset.growth.recode 0.03 0.19 0.60 0.19    0
mindset.entity        0.07 0.24 0.51 0.17    0
school_items <- ELS.clean.filter %>%
  select(.,
         sch.clim.sch1,
         sch.clim.sch2.recode)
alpha(school_items)

Reliability analysis   
Call: alpha(x = school_items)

 

 lower alpha upper     95% confidence boundaries
0.3 0.33 0.35 

 Reliability if an item is dropped:

 Item statistics 

Non missing response frequency for each item
                        1    2    3    4 miss
sch.clim.sch1        0.02 0.07 0.48 0.42    0
sch.clim.sch2.recode 0.10 0.35 0.49 0.07    0
 ELS.clean.filter <- ELS.clean.filter %>%
  group_by(SCH_ID.fac) %>% 
  mutate(.,
            sch_sch.clim.sch1 = mean(sch.clim.sch1, na.rm = TRUE),
         sch_sch.clim.sch2.recode = mean(sch.clim.sch2.recode, na.rm = TRUE)) %>%
  ungroup()
sch_school_items <- ELS.clean.filter %>%
  select(.,
         sch_sch.clim.sch1,
         sch_sch.clim.sch2.recode)
alpha(sch_school_items)

Reliability analysis   
Call: alpha(x = sch_school_items)

 

 lower alpha upper     95% confidence boundaries
0.47 0.49 0.51 

 Reliability if an item is dropped:

 Item statistics 
my.scores <- as_tibble(my.scales$scores)
ELS.clean.filter.1 <-bind_cols(ELS.clean.filter, my.scores)
 ELS.clean.filter.1 <- ELS.clean.filter.1 %>%
  group_by(SCH_ID.fac) %>% 
  mutate(.,
            sch_level_school.climate = mean(sch.clim.sch1, na.rm = TRUE),
         sch_level_school.climate.teacher = mean(School.climate.teacher, na.rm = TRUE),
         sch_level_school.climate.student = mean(sch.clim.st1, na.rm = TRUE),
         sch_level_school.climate.racial = mean(sch.clim.racial1, na.rm = TRUE)) %>%
  ungroup()
ELS.clean.filter.1 <- ELS.clean.filter.1 %>%       
  mutate(.,
         mindset.entity.recode = case_when(
           mindset.entity == 1 ~ 4,
           mindset.entity == 2 ~ 3,
           mindset.entity == 3 ~ 2,
           mindset.entity == 4 ~ 1))
ELS.final <- ELS.clean.filter.1 %>%
  select(.,
         sch_level_school.climate,
         sch_level_school.climate.teacher,
         sch_level_school.climate.student,
         sch_level_school.climate.racial,
         mindset.entity.recode,
         mindset.growth.recode,
         math.se,
         sex.fac,
         race.fac,
         SCH_ID.fac,
         STU_ID.fac,
         SCH_ID)
model.null <- lmer(math.se ~ (1|SCH_ID.fac), REML = FALSE, data = ELS.final)
summary(model.null)
Linear mixed model fit by maximum likelihood  ['lmerMod']
Formula: math.se ~ (1 | SCH_ID.fac)
   Data: ELS.final

     AIC      BIC   logLik deviance df.resid 
 22974.2  22995.6 -11484.1  22968.2     9317 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-2.1065 -0.6845 -0.1471  0.6954  2.0416 

Random effects:
 Groups     Name        Variance Std.Dev.
 SCH_ID.fac (Intercept) 0.02003  0.1415  
 Residual               0.67149  0.8194  
Number of obs: 9320, groups:  SCH_ID.fac, 744

Fixed effects:
            Estimate Std. Error t value
(Intercept)  2.54703    0.01015     251
ICC <- 0.02/(0.02 + 0.67)
ICC
[1] 0.02898551
model.1 <- lmer(math.se ~ race.fac + sex.fac + mindset.entity.recode + mindset.growth.recode + (1|SCH_ID.fac), REML = FALSE, data = ELS.final)
summary(model.1)
Linear mixed model fit by maximum likelihood  ['lmerMod']
Formula: 
math.se ~ race.fac + sex.fac + mindset.entity.recode + mindset.growth.recode +  
    (1 | SCH_ID.fac)
   Data: ELS.final

     AIC      BIC   logLik deviance df.resid 
 22022.8  22108.5 -10999.4  21998.8     9308 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-2.6652 -0.7424 -0.1377  0.6953  3.0764 

Random effects:
 Groups     Name        Variance Std.Dev.
 SCH_ID.fac (Intercept) 0.02115  0.1454  
 Residual               0.60300  0.7765  
Number of obs: 9320, groups:  SCH_ID.fac, 744

Fixed effects:
                                                 Estimate Std. Error
(Intercept)                                       1.73844    0.11254
race.facAsian, Hawaii/Pac. Islander,non-Hispanic  0.10554    0.10362
race.facBlack or African American, non-Hispanic  -0.06835    0.10338
race.facHispanic, no race specified              -0.04652    0.10586
race.facHispanic, race specified                 -0.10863    0.10482
race.facMultiracial, non-Hispanic                -0.03909    0.10653
race.facWhite, non-Hispanic                       0.02246    0.10044
sex.facFemale                                    -0.21329    0.01659
mindset.entity.recode                            -0.01519    0.01062
mindset.growth.recode                             0.32169    0.01269
                                                 t value
(Intercept)                                       15.447
race.facAsian, Hawaii/Pac. Islander,non-Hispanic   1.018
race.facBlack or African American, non-Hispanic   -0.661
race.facHispanic, no race specified               -0.439
race.facHispanic, race specified                  -1.036
race.facMultiracial, non-Hispanic                 -0.367
race.facWhite, non-Hispanic                        0.224
sex.facFemale                                    -12.858
mindset.entity.recode                             -1.431
mindset.growth.recode                             25.355

Correlation of Fixed Effects:
            (Intr) r.A,HI r.oAAn r.Hnrs r.H,rs r.M,n- r.W,n- sx.fcF
r.A,H/P.I,- -0.848                                                 
rc.BoAA,n-H -0.852  0.931                                          
rc.fcHs,nrs -0.834  0.910  0.911                                   
rc.fcHsp,rs -0.840  0.917  0.919  0.900                            
rc.fcMl,n-H -0.832  0.904  0.905  0.883  0.891                     
rc.fcWh,n-H -0.883  0.957  0.960  0.936  0.945  0.931              
sex.facFeml -0.123 -0.001 -0.008  0.004 -0.004  0.003  0.001       
mndst.ntty. -0.311 -0.007 -0.002 -0.002 -0.010 -0.006 -0.012  0.057
mndst.grwt. -0.412 -0.016 -0.011 -0.006 -0.005  0.005  0.012  0.101
            mndst.n.
r.A,H/P.I,-         
rc.BoAA,n-H         
rc.fcHs,nrs         
rc.fcHsp,rs         
rc.fcMl,n-H         
rc.fcWh,n-H         
sex.facFeml         
mndst.ntty.         
mndst.grwt.  0.319  

mindset.entity isn’t significant, taking out of model

model.2 <- lmer(math.se ~ sex.fac + mindset.growth.recode + sch_level_school.climate +
         sch_level_school.climate.teacher + sch_level_school.climate.student +
         sch_level_school.climate.racial + (1|SCH_ID.fac), REML = FALSE, data = ELS.final)
summary(model.2)
Linear mixed model fit by maximum likelihood  ['lmerMod']
Formula: 
math.se ~ sex.fac + mindset.growth.recode + sch_level_school.climate +  
    sch_level_school.climate.teacher + sch_level_school.climate.student +  
    sch_level_school.climate.racial + (1 | SCH_ID.fac)
   Data: ELS.final

     AIC      BIC   logLik deviance df.resid 
 21969.4  22033.7 -10975.7  21951.4     9311 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-2.6958 -0.7340 -0.1352  0.7005  2.9215 

Random effects:
 Groups     Name        Variance Std.Dev.
 SCH_ID.fac (Intercept) 0.01272  0.1128  
 Residual               0.60600  0.7785  
Number of obs: 9320, groups:  SCH_ID.fac, 744

Fixed effects:
                                 Estimate Std. Error t value
(Intercept)                       0.12664    0.21471   0.590
sex.facFemale                    -0.21613    0.01649 -13.108
mindset.growth.recode             0.32449    0.01190  27.257
sch_level_school.climate          0.05221    0.03655   1.428
sch_level_school.climate.teacher  0.37118    0.05870   6.323
sch_level_school.climate.student  0.09239    0.04444   2.079
sch_level_school.climate.racial   0.02488    0.03877   0.642

Correlation of Fixed Effects:
                    (Intr) sx.fcF mnds.. sch__. sch_lvl_schl.clmt.t
sex.facFeml         -0.043                                         
mndst.grwt.         -0.194  0.088                                  
sch_lvl_sc.         -0.141  0.020  0.056                           
sch_lvl_schl.clmt.t -0.480 -0.019 -0.028 -0.465                    
sch_lvl_schl.clmt.s -0.469 -0.022  0.002 -0.140 -0.176             
sch_lvl_schl.clmt.r -0.638  0.017  0.049  0.080  0.205             
                    sch_lvl_schl.clmt.s
sex.facFeml                            
mndst.grwt.                            
sch_lvl_sc.                            
sch_lvl_schl.clmt.t                    
sch_lvl_schl.clmt.s                    
sch_lvl_schl.clmt.r  0.153             

sch_level_school.climate.racial not significant-might try with an interaction with race

sch_level_school.climate.student not significant sch_level_school.climate not significant

model.3 <- lmer(math.se ~ sex.fac + mindset.growth.recode + sch_level_school.climate.racial + sch_level_school.climate.teacher + race.fac + sch_level_school.climate.racial:race.fac + (1|SCH_ID.fac), REML = FALSE, data = ELS.final)
summary(model.3)
Linear mixed model fit by maximum likelihood  ['lmerMod']
Formula: 
math.se ~ sex.fac + mindset.growth.recode + sch_level_school.climate.racial +  
    sch_level_school.climate.teacher + race.fac + sch_level_school.climate.racial:race.fac +  
    (1 | SCH_ID.fac)
   Data: ELS.final

     AIC      BIC   logLik deviance df.resid 
 21956.4  22092.1 -10959.2  21918.4     9301 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-2.7077 -0.7350 -0.1296  0.7042  3.0810 

Random effects:
 Groups     Name        Variance Std.Dev.
 SCH_ID.fac (Intercept) 0.0131   0.1145  
 Residual               0.6035   0.7769  
Number of obs: 9320, groups:  SCH_ID.fac, 744

Fixed effects:
                                                                                 Estimate
(Intercept)                                                                       0.83580
sex.facFemale                                                                    -0.21510
mindset.growth.recode                                                             0.32433
sch_level_school.climate.racial                                                  -0.21143
sch_level_school.climate.teacher                                                  0.43010
race.facAsian, Hawaii/Pac. Islander,non-Hispanic                                 -0.52377
race.facBlack or African American, non-Hispanic                                  -0.57555
race.facHispanic, no race specified                                              -0.41585
race.facHispanic, race specified                                                 -0.38271
race.facMultiracial, non-Hispanic                                                -0.19381
race.facWhite, non-Hispanic                                                      -0.31036
sch_level_school.climate.racial:race.facAsian, Hawaii/Pac. Islander,non-Hispanic  0.35093
sch_level_school.climate.racial:race.facBlack or African American, non-Hispanic   0.29389
sch_level_school.climate.racial:race.facHispanic, no race specified               0.20437
sch_level_school.climate.racial:race.facHispanic, race specified                  0.14705
sch_level_school.climate.racial:race.facMultiracial, non-Hispanic                 0.07884
sch_level_school.climate.racial:race.facWhite, non-Hispanic                       0.18106
                                                                                 Std. Error
(Intercept)                                                                         0.75794
sex.facFemale                                                                       0.01647
mindset.growth.recode                                                               0.01200
sch_level_school.climate.racial                                                     0.40593
sch_level_school.climate.teacher                                                    0.05049
race.facAsian, Hawaii/Pac. Islander,non-Hispanic                                    0.77241
race.facBlack or African American, non-Hispanic                                     0.76450
race.facHispanic, no race specified                                                 0.79338
race.facHispanic, race specified                                                    0.77405
race.facMultiracial, non-Hispanic                                                   0.78085
race.facWhite, non-Hispanic                                                         0.74704
sch_level_school.climate.racial:race.facAsian, Hawaii/Pac. Islander,non-Hispanic    0.42256
sch_level_school.climate.racial:race.facBlack or African American, non-Hispanic     0.41783
sch_level_school.climate.racial:race.facHispanic, no race specified                 0.43581
sch_level_school.climate.racial:race.facHispanic, race specified                    0.42483
sch_level_school.climate.racial:race.facMultiracial, non-Hispanic                   0.42818
sch_level_school.climate.racial:race.facWhite, non-Hispanic                         0.40818
                                                                                 t value
(Intercept)                                                                        1.103
sex.facFemale                                                                    -13.059
mindset.growth.recode                                                             27.038
sch_level_school.climate.racial                                                   -0.521
sch_level_school.climate.teacher                                                   8.518
race.facAsian, Hawaii/Pac. Islander,non-Hispanic                                  -0.678
race.facBlack or African American, non-Hispanic                                   -0.753
race.facHispanic, no race specified                                               -0.524
race.facHispanic, race specified                                                  -0.494
race.facMultiracial, non-Hispanic                                                 -0.248
race.facWhite, non-Hispanic                                                       -0.415
sch_level_school.climate.racial:race.facAsian, Hawaii/Pac. Islander,non-Hispanic   0.830
sch_level_school.climate.racial:race.facBlack or African American, non-Hispanic    0.703
sch_level_school.climate.racial:race.facHispanic, no race specified                0.469
sch_level_school.climate.racial:race.facHispanic, race specified                   0.346
sch_level_school.climate.racial:race.facMultiracial, non-Hispanic                  0.184
sch_level_school.climate.racial:race.facWhite, non-Hispanic                        0.444

Correlation matrix not shown by default, as p = 17 > 12.
Use print(x, correlation=TRUE)  or
    vcov(x)        if you need it
interplot::interplot(model.interaction, var1 = "race.fac", var2 = "sch_level_school.climate.racial")
Error in quantile.default(m.sims@fixef[, match(var1[j + 1], unlist(dimnames(m@pp$X)[2]))] +  : 
  missing values and NaN's not allowed if 'na.rm' is FALSE
model.4 <- lmer(math.se ~ sex.fac + mindset.growth.recode + 
         sch_level_school.climate.teacher + (race.fac|SCH_ID.fac), REML = FALSE, data = ELS.final)
boundary (singular) fit: see ?isSingular
summary(model.4)
Linear mixed model fit by maximum likelihood  ['lmerMod']
Formula: 
math.se ~ sex.fac + mindset.growth.recode + sch_level_school.climate.teacher +  
    (race.fac | SCH_ID.fac)
   Data: ELS.final

     AIC      BIC   logLik deviance df.resid 
 22007.7  22243.3 -10970.8  21941.7     9287 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-2.6851 -0.7376 -0.1324  0.6987  2.7319 

Random effects:
 Groups     Name                                            
 SCH_ID.fac (Intercept)                                     
            race.facAsian, Hawaii/Pac. Islander,non-Hispanic
            race.facBlack or African American, non-Hispanic 
            race.facHispanic, no race specified             
            race.facHispanic, race specified                
            race.facMultiracial, non-Hispanic               
            race.facWhite, non-Hispanic                     
 Residual                                                   
 Variance Std.Dev. Corr                               
 0.15805  0.3976                                      
 0.11418  0.3379   -0.84                              
 0.11409  0.3378   -0.99  0.88                        
 0.12975  0.3602   -1.00  0.84  1.00                  
 0.06795  0.2607   -0.94  0.62  0.91  0.94            
 0.28076  0.5299   -0.98  0.83  0.99  0.99  0.92      
 0.14211  0.3770   -0.95  0.96  0.97  0.95  0.79  0.95
 0.59975  0.7744                                      
Number of obs: 9320, groups:  SCH_ID.fac, 744

Fixed effects:
                                 Estimate Std. Error t value
(Intercept)                       0.42255    0.13946   3.030
sex.facFemale                    -0.21538    0.01645 -13.094
mindset.growth.recode             0.32310    0.01186  27.247
sch_level_school.climate.teacher  0.44175    0.04660   9.479

Correlation of Fixed Effects:
            (Intr) sx.fcF mnds..
sex.facFeml -0.062              
mndst.grwt. -0.243  0.088       
sch_lvl_s.. -0.962 -0.023 -0.014
convergence code: 0
boundary (singular) fit: see ?isSingular
model.5 <- lmer(math.se ~ sex.fac + mindset.growth.recode + 
         sch_level_school.climate.teacher + (1|SCH_ID.fac), REML = FALSE, data = ELS.final)
summary(model.5)
Linear mixed model fit by maximum likelihood  ['lmerMod']
Formula: 
math.se ~ sex.fac + mindset.growth.recode + sch_level_school.climate.teacher +  
    (1 | SCH_ID.fac)
   Data: ELS.final

     AIC      BIC   logLik deviance df.resid 
 21970.7  22013.5 -10979.3  21958.7     9314 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-2.6855 -0.7361 -0.1346  0.6971  2.9337 

Random effects:
 Groups     Name        Variance Std.Dev.
 SCH_ID.fac (Intercept) 0.01347  0.1161  
 Residual               0.60590  0.7784  
Number of obs: 9320, groups:  SCH_ID.fac, 744

Fixed effects:
                                 Estimate Std. Error t value
(Intercept)                       0.43234    0.14146   3.056
sex.facFemale                    -0.21601    0.01649 -13.101
mindset.growth.recode             0.32325    0.01188  27.213
sch_level_school.climate.teacher  0.44002    0.04731   9.300

Correlation of Fixed Effects:
            (Intr) sx.fcF mnds..
sex.facFeml -0.059              
mndst.grwt. -0.239  0.086       
sch_lvl_s.. -0.963 -0.025 -0.015
model.6 <- lmer(math.se ~ sex.fac + mindset.growth.recode + 
         sch_level_school.climate.teacher + (mindset.growth.recode|SCH_ID.fac), REML = FALSE, data = ELS.final)
Model failed to converge with max|grad| = 0.0154513 (tol = 0.002, component 1)
summary(model.6)
Linear mixed model fit by maximum likelihood  ['lmerMod']
Formula: 
math.se ~ sex.fac + mindset.growth.recode + sch_level_school.climate.teacher +  
    (mindset.growth.recode | SCH_ID.fac)
   Data: ELS.final

     AIC      BIC   logLik deviance df.resid 
 21970.7  22027.8 -10977.4  21954.7     9312 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-2.6825 -0.7375 -0.1375  0.6956  2.9319 

Random effects:
 Groups     Name                  Variance Std.Dev. Corr 
 SCH_ID.fac (Intercept)           0.081043 0.28468       
            mindset.growth.recode 0.004467 0.06683  -0.95
 Residual                         0.603788 0.77704       
Number of obs: 9320, groups:  SCH_ID.fac, 744

Fixed effects:
                                 Estimate Std. Error t value
(Intercept)                       0.42783    0.14200   3.013
sex.facFemale                    -0.21502    0.01648 -13.044
mindset.growth.recode             0.32349    0.01221  26.490
sch_level_school.climate.teacher  0.44102    0.04732   9.320

Correlation of Fixed Effects:
            (Intr) sx.fcF mnds..
sex.facFeml -0.061              
mndst.grwt. -0.252  0.085       
sch_lvl_s.. -0.960 -0.023 -0.012
convergence code: 0
Model failed to converge with max|grad| = 0.0154513 (tol = 0.002, component 1)
anova(model.null, model.1)
Data: ELS.final
Models:
model.null: math.se ~ (1 | SCH_ID.fac)
model.1: math.se ~ race.fac + sex.fac + mindset.entity.recode + mindset.growth.recode + 
model.1:     (1 | SCH_ID.fac)
           npar   AIC   BIC logLik deviance  Chisq Df Pr(>Chisq)    
model.null    3 22974 22996 -11484    22968                         
model.1      12 22023 22109 -10999    21999 969.35  9  < 2.2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
anova(model.1, model.2)
Data: ELS.final
Models:
model.2: math.se ~ sex.fac + mindset.growth.recode + sch_level_school.climate + 
model.2:     sch_level_school.climate.teacher + sch_level_school.climate.student + 
model.2:     sch_level_school.climate.racial + (1 | SCH_ID.fac)
model.1: math.se ~ race.fac + sex.fac + mindset.entity.recode + mindset.growth.recode + 
model.1:     (1 | SCH_ID.fac)
        npar   AIC   BIC logLik deviance Chisq Df Pr(>Chisq)
model.2    9 21969 22034 -10976    21951                    
model.1   12 22023 22109 -10999    21999     0  3          1
anova(model.2, model.3)
Data: ELS.final
Models:
model.2: math.se ~ sex.fac + mindset.growth.recode + sch_level_school.climate + 
model.2:     sch_level_school.climate.teacher + sch_level_school.climate.student + 
model.2:     sch_level_school.climate.racial + (1 | SCH_ID.fac)
model.3: math.se ~ sex.fac + mindset.growth.recode + sch_level_school.climate.racial + 
model.3:     sch_level_school.climate.teacher + race.fac + sch_level_school.climate.racial:race.fac + 
model.3:     (1 | SCH_ID.fac)
        npar   AIC   BIC logLik deviance  Chisq Df Pr(>Chisq)    
model.2    9 21969 22034 -10976    21951                         
model.3   19 21956 22092 -10959    21918 32.965 10   0.000276 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
library(lmerTest)
lmerTest::rand(model.4)
ANOVA-like table for random-effects: Single term deletions

Model:
math.se ~ sex.fac + mindset.growth.recode + sch_level_school.climate.teacher + 
    (race.fac | SCH_ID.fac)
                                    npar logLik   AIC   LRT Df
<none>                                33 -10971 22008         
race.fac in (race.fac | SCH_ID.fac)    6 -10979 21971 17.03 27
                                    Pr(>Chisq)
<none>                                        
race.fac in (race.fac | SCH_ID.fac)     0.9304
anova(model.3, model.5)
Data: ELS.final
Models:
model.5: math.se ~ sex.fac + mindset.growth.recode + sch_level_school.climate.teacher + 
model.5:     (1 | SCH_ID.fac)
model.3: math.se ~ sex.fac + mindset.growth.recode + sch_level_school.climate.racial + 
model.3:     sch_level_school.climate.teacher + race.fac + sch_level_school.climate.racial:race.fac + 
model.3:     (1 | SCH_ID.fac)
        npar   AIC   BIC logLik deviance  Chisq Df Pr(>Chisq)    
model.5    6 21971 22014 -10979    21959                         
model.3   19 21956 22092 -10959    21918 40.265 13  0.0001253 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
model.1.1 <- lmer(math.se ~ sex.fac + mindset.growth.recode + (1|SCH_ID.fac), REML = FALSE, data = ELS.final)
summary(model.1.1)
Linear mixed model fit by maximum likelihood . t-tests use
  Satterthwaite's method [lmerModLmerTest]
Formula: 
math.se ~ sex.fac + mindset.growth.recode + (1 | SCH_ID.fac)
   Data: ELS.final

     AIC      BIC   logLik deviance df.resid 
 22049.7  22085.4 -11019.8  22039.7     9315 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-2.6368 -0.7402 -0.1359  0.6951  2.9676 

Random effects:
 Groups     Name        Variance Std.Dev.
 SCH_ID.fac (Intercept) 0.02114  0.1454  
 Residual               0.60572  0.7783  
Number of obs: 9320, groups:  SCH_ID.fac, 744

Fixed effects:
                        Estimate Std. Error         df t value
(Intercept)              1.69888    0.03830 8932.96579   44.36
sex.facFemale           -0.21351    0.01659 9245.00750  -12.87
mindset.growth.recode    0.32532    0.01192 9300.96955   27.29
                      Pr(>|t|)    
(Intercept)             <2e-16 ***
sex.facFemale           <2e-16 ***
mindset.growth.recode   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Correlation of Fixed Effects:
            (Intr) sx.fcF
sex.facFeml -0.307       
mndst.grwt. -0.939  0.085
model.2.2 <- lmer(math.se ~ sex.fac + mindset.growth.recode + 
         sch_level_school.climate.teacher +  (1|SCH_ID.fac), REML = FALSE, data = ELS.final)
summary(model.2.2)
Linear mixed model fit by maximum likelihood . t-tests use
  Satterthwaite's method [lmerModLmerTest]
Formula: 
math.se ~ sex.fac + mindset.growth.recode + sch_level_school.climate.teacher +  
    (1 | SCH_ID.fac)
   Data: ELS.final

     AIC      BIC   logLik deviance df.resid 
 21970.7  22013.5 -10979.3  21958.7     9314 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-2.6855 -0.7361 -0.1346  0.6971  2.9337 

Random effects:
 Groups     Name        Variance Std.Dev.
 SCH_ID.fac (Intercept) 0.01347  0.1161  
 Residual               0.60590  0.7784  
Number of obs: 9320, groups:  SCH_ID.fac, 744

Fixed effects:
                                   Estimate Std. Error         df
(Intercept)                         0.43234    0.14146  936.94088
sex.facFemale                      -0.21601    0.01649 9154.31098
mindset.growth.recode               0.32325    0.01188 9317.02478
sch_level_school.climate.teacher    0.44002    0.04731  843.49556
                                 t value Pr(>|t|)    
(Intercept)                        3.056   0.0023 ** 
sex.facFemale                    -13.101   <2e-16 ***
mindset.growth.recode             27.213   <2e-16 ***
sch_level_school.climate.teacher   9.300   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Correlation of Fixed Effects:
            (Intr) sx.fcF mnds..
sex.facFeml -0.059              
mndst.grwt. -0.239  0.086       
sch_lvl_s.. -0.963 -0.025 -0.015
anova(model.null, model.1.1)
Data: ELS.final
Models:
model.null: math.se ~ (1 | SCH_ID.fac)
model.1.1: math.se ~ sex.fac + mindset.growth.recode + (1 | SCH_ID.fac)
           npar   AIC   BIC logLik deviance  Chisq Df Pr(>Chisq)    
model.null    3 22974 22996 -11484    22968                         
model.1.1     5 22050 22085 -11020    22040 928.49  2  < 2.2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
anova(model.1.1, model.2.2)
Data: ELS.final
Models:
model.1.1: math.se ~ sex.fac + mindset.growth.recode + (1 | SCH_ID.fac)
model.2.2: math.se ~ sex.fac + mindset.growth.recode + sch_level_school.climate.teacher + 
model.2.2:     (1 | SCH_ID.fac)
          npar   AIC   BIC logLik deviance  Chisq Df Pr(>Chisq)    
model.1.1    5 22050 22085 -11020    22040                         
model.2.2    6 21971 22014 -10979    21959 80.972  1  < 2.2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
anova(model.2.2, model.5)
Data: ELS.final
Models:
model.2.2: math.se ~ sex.fac + mindset.growth.recode + sch_level_school.climate.teacher + 
model.2.2:     (1 | SCH_ID.fac)
model.5: math.se ~ sex.fac + mindset.growth.recode + sch_level_school.climate.teacher + 
model.5:     (1 | SCH_ID.fac)
          npar   AIC   BIC logLik deviance Chisq Df Pr(>Chisq)
model.2.2    6 21971 22014 -10979    21959                    
model.5      6 21971 22014 -10979    21959     0  0          1
library(modelsummary)

Attaching package: 㤼㸱modelsummary㤼㸲

The following object is masked from 㤼㸱package:psych㤼㸲:

    SD
library(broom.mixed)
Registered S3 method overwritten by 'broom.mixed':
  method      from 
  tidy.gamlss broom
library(tables)
models <- list(model.1, model.2, model.3, model.4, model.5)
modelsummary(models, output = "markdown")
Model 1 Model 2 Model 3 Model 4 Model 5
(Intercept) 1.738 0.127 0.836 0.423 0.432
(0.113) (0.215) (0.758) (0.139) (0.141)
race.facAsian, Hawaii/Pac. Islander,non-Hispanic 0.106 -0.524
(0.104) (0.772)
race.facBlack or African American, non-Hispanic -0.068 -0.576
(0.103) (0.764)
race.facHispanic, no race specified -0.047 -0.416
(0.106) (0.793)
race.facHispanic, race specified -0.109 -0.383
(0.105) (0.774)
race.facMultiracial, non-Hispanic -0.039 -0.194
(0.107) (0.781)
race.facWhite, non-Hispanic 0.022 -0.310
(0.100) (0.747)
sex.facFemale -0.213 -0.216 -0.215 -0.215 -0.216
(0.017) (0.016) (0.016) (0.016) (0.016)
mindset.entity.recode -0.015
(0.011)
mindset.growth.recode 0.322 0.324 0.324 0.323 0.323
(0.013) (0.012) (0.012) (0.012) (0.012)
sd__(Intercept) 0.145 0.113 0.114 0.398 0.116
sd__Observation 0.777 0.778 0.777 0.774 0.778
sch_level_school.climate 0.052
(0.037)
sch_level_school.climate.teacher 0.371 0.430 0.442 0.440
(0.059) (0.050) (0.047) (0.047)
sch_level_school.climate.student 0.092
(0.044)
sch_level_school.climate.racial 0.025 -0.211
(0.039) (0.406)
sch_level_school.climate.racial × race.facAsian, Hawaii/Pac. Islander,non-Hispanic 0.351
(0.423)
sch_level_school.climate.racial × race.facBlack or African American, non-Hispanic 0.294
(0.418)
sch_level_school.climate.racial × race.facHispanic, no race specified 0.204
(0.436)
sch_level_school.climate.racial × race.facHispanic, race specified 0.147
(0.425)
sch_level_school.climate.racial × race.facMultiracial, non-Hispanic 0.079
(0.428)
sch_level_school.climate.racial × race.facWhite, non-Hispanic 0.181
(0.408)
cor__(Intercept).race.facAsian, Hawaii/Pac. Islander,non-Hispanic -0.842
cor__(Intercept).race.facBlack or African American, non-Hispanic -0.994
cor__(Intercept).race.facHispanic, no race specified -0.996
cor__(Intercept).race.facHispanic, race specified -0.943
cor__(Intercept).race.facMultiracial, non-Hispanic -0.980
cor__(Intercept).race.facWhite, non-Hispanic -0.947
sd__race.facAsian, Hawaii/Pac. Islander,non-Hispanic 0.338
cor__race.facAsian, Hawaii/Pac. Islander,non-Hispanic.race.facBlack or African American, non-Hispanic 0.881
cor__race.facAsian, Hawaii/Pac. Islander,non-Hispanic.race.facHispanic, no race specified 0.842
cor__race.facAsian, Hawaii/Pac. Islander,non-Hispanic.race.facHispanic, race specified 0.615
cor__race.facAsian, Hawaii/Pac. Islander,non-Hispanic.race.facMultiracial, non-Hispanic 0.834
cor__race.facAsian, Hawaii/Pac. Islander,non-Hispanic.race.facWhite, non-Hispanic 0.963
sd__race.facBlack or African American, non-Hispanic 0.338
cor__race.facBlack or African American, non-Hispanic.race.facHispanic, no race specified 0.997
cor__race.facBlack or African American, non-Hispanic.race.facHispanic, race specified 0.911
cor__race.facBlack or African American, non-Hispanic.race.facMultiracial, non-Hispanic 0.990
cor__race.facBlack or African American, non-Hispanic.race.facWhite, non-Hispanic 0.973
sd__race.facHispanic, no race specified 0.360
cor__race.facHispanic, no race specified.race.facHispanic, race specified 0.938
cor__race.facHispanic, no race specified.race.facMultiracial, non-Hispanic 0.994
cor__race.facHispanic, no race specified.race.facWhite, non-Hispanic 0.953
sd__race.facHispanic, race specified 0.261
cor__race.facHispanic, race specified.race.facMultiracial, non-Hispanic 0.919
cor__race.facHispanic, race specified.race.facWhite, non-Hispanic 0.792
sd__race.facMultiracial, non-Hispanic 0.530
cor__race.facMultiracial, non-Hispanic.race.facWhite, non-Hispanic 0.952
sd__race.facWhite, non-Hispanic 0.377
AIC 22022.8 21969.4 21956.4 22007.7 21970.7
BIC 22108.5 22033.7 22092.1 22243.3 22013.5
Log.Lik. -10999.404 -10975.698 -10959.215 -10970.833 -10979.347
describe(ELS.final, fast = TRUE)
no non-missing arguments to min; returning Infno non-missing arguments to min; returning Infno non-missing arguments to min; returning Infno non-missing arguments to min; returning Infno non-missing arguments to max; returning -Infno non-missing arguments to max; returning -Infno non-missing arguments to max; returning -Infno non-missing arguments to max; returning -Inf
diagnostics <- augment(model.5)
ggplot(data = diagnostics, mapping = aes(x = .resid)) +
  geom_histogram(binwidth = .25) + theme_classic() + 
  labs(title = "Histogram of Residuals for Education Longitudinal Study Model",
                      x = "Residual Value") +
  geom_vline(xintercept = c(-2.5, 2.5), linetype = "dotted")

Assess Normality of Residuals Visually, with a Histogram: A little skewed

shapiro.test(diagnostics$.resid)
Error in shapiro.test(diagnostics$.resid) : 
  sample size must be between 3 and 5000

too many observaitons to check

ggplot(data = diagnostics, mapping = aes(x = .fitted, y = .resid)) +
  geom_point() + labs(title = "RVF Plot for Education Longitudinal Study Model",
                      x = "Predicted Value, math self-efficacy",
                      y = "Residual Value") + theme_classic()

Use Residuals vs. Fitted (RVF) Plot to Assess Homoskedasticity of Errors: Looks like there is a pattern

ggplot(data = diagnostics, mapping = aes(x = .fitted, y = .cooksd, label = SCH_ID.fac)) +
  geom_point() + geom_text(nudge_x = .25) + theme_classic() + 
  labs(title = "Cook's Distance Plot for School Education Longitudinal Study Model",
                      x = "Predicted Value, math self-efficacy",
                      y = "Cook's Distance") + 
  geom_hline(yintercept = 4/816, linetype = "dotted")

prod.trimmed <- diagnostics %>%
  filter(., .cooksd < .30)
model.trimmed <- lmer(math.se ~ sex.fac + mindset.growth.recode + 
         sch_level_school.climate.teacher + (1|SCH_ID.fac), REML = FALSE, data = prod.trimmed)
summary(model.trimmed)
Linear mixed model fit by maximum likelihood  ['lmerMod']
Formula: 
math.se ~ sex.fac + mindset.growth.recode + sch_level_school.climate.teacher +  
    (1 | SCH_ID.fac)
   Data: prod.trimmed

     AIC      BIC   logLik deviance df.resid 
 21970.7  22013.5 -10979.3  21958.7     9314 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-2.6855 -0.7361 -0.1346  0.6971  2.9337 

Random effects:
 Groups     Name        Variance Std.Dev.
 SCH_ID.fac (Intercept) 0.01347  0.1161  
 Residual               0.60590  0.7784  
Number of obs: 9320, groups:  SCH_ID.fac, 744

Fixed effects:
                                 Estimate Std. Error t value
(Intercept)                       0.43234    0.14146   3.056
sex.facFemale                    -0.21601    0.01649 -13.101
mindset.growth.recode             0.32325    0.01188  27.213
sch_level_school.climate.teacher  0.44002    0.04731   9.300

Correlation of Fixed Effects:
            (Intr) sx.fcF mnds..
sex.facFeml -0.059              
mndst.grwt. -0.239  0.086       
sch_lvl_s.. -0.963 -0.025 -0.015
models <- list(model.1, model.2, model.3, model.4, model.5)
modelsummary(models, output = "html")
Model 1 Model 2 Model 3 Model 4 Model 5
(Intercept) 1.738 0.127 0.836 0.423 0.432
(0.113) (0.215) (0.758) (0.139) (0.141)
race.facAsian, Hawaii/Pac. Islander,non-Hispanic 0.106 -0.524
(0.104) (0.772)
race.facBlack or African American, non-Hispanic -0.068 -0.576
(0.103) (0.764)
race.facHispanic, no race specified -0.047 -0.416
(0.106) (0.793)
race.facHispanic, race specified -0.109 -0.383
(0.105) (0.774)
race.facMultiracial, non-Hispanic -0.039 -0.194
(0.107) (0.781)
race.facWhite, non-Hispanic 0.022 -0.310
(0.100) (0.747)
sex.facFemale -0.213 -0.216 -0.215 -0.215 -0.216
(0.017) (0.016) (0.016) (0.016) (0.016)
mindset.entity.recode -0.015
(0.011)
mindset.growth.recode 0.322 0.324 0.324 0.323 0.323
(0.013) (0.012) (0.012) (0.012) (0.012)
sd__(Intercept) 0.145 0.113 0.114 0.398 0.116
sd__Observation 0.777 0.778 0.777 0.774 0.778
sch_level_school.climate 0.052
(0.037)
sch_level_school.climate.teacher 0.371 0.430 0.442 0.440
(0.059) (0.050) (0.047) (0.047)
sch_level_school.climate.student 0.092
(0.044)
sch_level_school.climate.racial 0.025 -0.211
(0.039) (0.406)
sch_level_school.climate.racial × race.facAsian, Hawaii/Pac. Islander,non-Hispanic 0.351
(0.423)
sch_level_school.climate.racial × race.facBlack or African American, non-Hispanic 0.294
(0.418)
sch_level_school.climate.racial × race.facHispanic, no race specified 0.204
(0.436)
sch_level_school.climate.racial × race.facHispanic, race specified 0.147
(0.425)
sch_level_school.climate.racial × race.facMultiracial, non-Hispanic 0.079
(0.428)
sch_level_school.climate.racial × race.facWhite, non-Hispanic 0.181
(0.408)
cor__(Intercept).race.facAsian, Hawaii/Pac. Islander,non-Hispanic -0.842
cor__(Intercept).race.facBlack or African American, non-Hispanic -0.994
cor__(Intercept).race.facHispanic, no race specified -0.996
cor__(Intercept).race.facHispanic, race specified -0.943
cor__(Intercept).race.facMultiracial, non-Hispanic -0.980
cor__(Intercept).race.facWhite, non-Hispanic -0.947
sd__race.facAsian, Hawaii/Pac. Islander,non-Hispanic 0.338
cor__race.facAsian, Hawaii/Pac. Islander,non-Hispanic.race.facBlack or African American, non-Hispanic 0.881
cor__race.facAsian, Hawaii/Pac. Islander,non-Hispanic.race.facHispanic, no race specified 0.842
cor__race.facAsian, Hawaii/Pac. Islander,non-Hispanic.race.facHispanic, race specified 0.615
cor__race.facAsian, Hawaii/Pac. Islander,non-Hispanic.race.facMultiracial, non-Hispanic 0.834
cor__race.facAsian, Hawaii/Pac. Islander,non-Hispanic.race.facWhite, non-Hispanic 0.963
sd__race.facBlack or African American, non-Hispanic 0.338
cor__race.facBlack or African American, non-Hispanic.race.facHispanic, no race specified 0.997
cor__race.facBlack or African American, non-Hispanic.race.facHispanic, race specified 0.911
cor__race.facBlack or African American, non-Hispanic.race.facMultiracial, non-Hispanic 0.990
cor__race.facBlack or African American, non-Hispanic.race.facWhite, non-Hispanic 0.973
sd__race.facHispanic, no race specified 0.360
cor__race.facHispanic, no race specified.race.facHispanic, race specified 0.938
cor__race.facHispanic, no race specified.race.facMultiracial, non-Hispanic 0.994
cor__race.facHispanic, no race specified.race.facWhite, non-Hispanic 0.953
sd__race.facHispanic, race specified 0.261
cor__race.facHispanic, race specified.race.facMultiracial, non-Hispanic 0.919
cor__race.facHispanic, race specified.race.facWhite, non-Hispanic 0.792
sd__race.facMultiracial, non-Hispanic 0.530
cor__race.facMultiracial, non-Hispanic.race.facWhite, non-Hispanic 0.952
sd__race.facWhite, non-Hispanic 0.377
AIC 22022.8 21969.4 21956.4 22007.7 21970.7
BIC 22108.5 22033.7 22092.1 22243.3 22013.5
Log.Lik. -10999.404 -10975.698 -10959.215 -10970.833 -10979.347

`

models.1 <- list(model.1, model.2, model.3, model.5)
modelsummary(models.1, output = "html")
Model 1 Model 2 Model 3 Model 4
(Intercept) 1.738 0.127 0.836 0.432
(0.113) (0.215) (0.758) (0.141)
race.facAsian, Hawaii/Pac. Islander,non-Hispanic 0.106 -0.524
(0.104) (0.772)
race.facBlack or African American, non-Hispanic -0.068 -0.576
(0.103) (0.764)
race.facHispanic, no race specified -0.047 -0.416
(0.106) (0.793)
race.facHispanic, race specified -0.109 -0.383
(0.105) (0.774)
race.facMultiracial, non-Hispanic -0.039 -0.194
(0.107) (0.781)
race.facWhite, non-Hispanic 0.022 -0.310
(0.100) (0.747)
sex.facFemale -0.213 -0.216 -0.215 -0.216
(0.017) (0.016) (0.016) (0.016)
mindset.entity.recode -0.015
(0.011)
mindset.growth.recode 0.322 0.324 0.324 0.323
(0.013) (0.012) (0.012) (0.012)
sd__(Intercept) 0.145 0.113 0.114 0.116
sd__Observation 0.777 0.778 0.777 0.778
sch_level_school.climate 0.052
(0.037)
sch_level_school.climate.teacher 0.371 0.430 0.440
(0.059) (0.050) (0.047)
sch_level_school.climate.student 0.092
(0.044)
sch_level_school.climate.racial 0.025 -0.211
(0.039) (0.406)
sch_level_school.climate.racial × race.facAsian, Hawaii/Pac. Islander,non-Hispanic 0.351
(0.423)
sch_level_school.climate.racial × race.facBlack or African American, non-Hispanic 0.294
(0.418)
sch_level_school.climate.racial × race.facHispanic, no race specified 0.204
(0.436)
sch_level_school.climate.racial × race.facHispanic, race specified 0.147
(0.425)
sch_level_school.climate.racial × race.facMultiracial, non-Hispanic 0.079
(0.428)
sch_level_school.climate.racial × race.facWhite, non-Hispanic 0.181
(0.408)
AIC 22022.8 21969.4 21956.4 21970.7
BIC 22108.5 22033.7 22092.1 22013.5
Log.Lik. -10999.404 -10975.698 -10959.215 -10979.347
models.2 <- list(model.5, model.trimmed)
modelsummary(models.2, output = "html")

Model 1 Model 2
(Intercept) 0.432 0.432
(0.141) (0.141)
sex.facFemale -0.216 -0.216
(0.016) (0.016)
mindset.growth.recode 0.323 0.323
(0.012) (0.012)
sch_level_school.climate.teacher 0.440 0.440
(0.047) (0.047)
sd__(Intercept) 0.116 0.116
sd__Observation 0.778 0.778
AIC 21970.7 21970.7
BIC 22013.5 22013.5
Log.Lik. -10979.347 -10979.347

NA
table(ELS.final$sex.fac)

  Male Female 
  4403   4917 
table(ELS.final$race.fac)

Amer. Indian/Alaska Native, non-Hispanic 
                                      66 
Asian, Hawaii/Pac. Islander,non-Hispanic 
                                     896 
 Black or African American, non-Hispanic 
                                     944 
             Hispanic, no race specified 
                                     535 
                Hispanic, race specified 
                                     636 
               Multiracial, non-Hispanic 
                                     451 
                     White, non-Hispanic 
                                    5792 
models.1 <- list(model.null, model.1.1, model.2.2)
modelsummary(models.1, output = "models.1.html")
[WARNING] This document format requires a nonempty <title> element.
  Please specify either 'title' or 'pagetitle' in the metadata,
  e.g. by using --metadata pagetitle="..." on the command line.
  Falling back to 'models.1'
LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQpUaGlzIGlzIGFuIFtSIE1hcmtkb3duXShodHRwOi8vcm1hcmtkb3duLnJzdHVkaW8uY29tKSBOb3RlYm9vay4gV2hlbiB5b3UgZXhlY3V0ZSBjb2RlIHdpdGhpbiB0aGUgbm90ZWJvb2ssIHRoZSByZXN1bHRzIGFwcGVhciBiZW5lYXRoIHRoZSBjb2RlLiANCg0KVHJ5IGV4ZWN1dGluZyB0aGlzIGNodW5rIGJ5IGNsaWNraW5nIHRoZSAqUnVuKiBidXR0b24gd2l0aGluIHRoZSBjaHVuayBvciBieSBwbGFjaW5nIHlvdXIgY3Vyc29yIGluc2lkZSBpdCBhbmQgcHJlc3NpbmcgKkN0cmwrU2hpZnQrRW50ZXIqLiANCg0KYGBge3J9DQpwbG90KGNhcnMpDQpgYGANCg0KYGBge3J9DQpsaWJyYXJ5KHRpZHl2ZXJzZSkNCmxpYnJhcnkocHN5Y2gpDQpsaWJyYXJ5KGxtZTQpDQpsaWJyYXJ5KGhhdmVuKQ0KYGBgDQoNCg0KDQpgYGB7cn0NClgwNDI3NV8wMDAxX0RhdGEgPC0gcmVhZF9kdGEoIklDUFNSXzA0Mjc1LVYxL0lDUFNSXzA0Mjc1L0RTMDAwMS8wNDI3NS0wMDAxLURhdGEuZHRhIikNCmdsaW1wc2UoWDA0Mjc1XzAwMDFfRGF0YSkNCmBgYA0KYGBge3J9DQpFTFMuY2xlYW4gPC0gWDA0Mjc1XzAwMDFfRGF0YQ0KYGBgDQoNCmBgYHtyfQ0KRUxTLmNsZWFuIDwtIEVMUy5jbGVhbiAlPiUNCiAgc2VsZWN0KC4sIEJZUzIwSiwNCiAgICAgICAgIEJZUzIxQiwNCiAgICAgICAgIEJZUzIwRywNCiAgICAgICAgIEJZUzIwRiwNCiAgICAgICAgIEJZUzIwSCwNCiAgICAgICAgIEJZUzIwQSwNCiAgICAgICAgIEJZUzIwSSwNCiAgICAgICAgIEJZUzIwQywNCiAgICAgICAgIEJZUzg4QiwNCiAgICAgICAgIEJZUzg4QSwNCiAgICAgICAgIEJZUzg5UiwNCiAgICAgICAgIEJZUzg5QSwNCiAgICAgICAgIEJZUzg5QiwNCiAgICAgICAgIEJZUzg5VSwNCiAgICAgICAgIEJZUzg5TCwNCiAgICAgICAgIEJZUzI5QiwNCiAgICAgICAgIEJZUzI5RSwNCiAgICAgICAgIEJZUzI5QywNCiAgICAgICAgIEJZUzI5SiwNCiAgICAgICAgIFNDSF9JRCwNCiAgICAgICAgIFNUVV9JRCwNCiAgICAgICAgIFNFWCwNCiAgICAgICAgIFJBQ0UpDQpnbGltcHNlKEVMUy5jbGVhbikNCmBgYA0KYGBge3J9DQpFTFMuY2xlYW4ubXUgPC0gRUxTLmNsZWFuICU+JQ0KbXV0YXRlKC4sDQogICAgICAgc2NoLmNsaW0uc2NoMSA9IEJZUzIwSiwNCiAgICAgICBzY2guY2xpbS5zY2gyID0gQllTMjFCLA0KICAgICAgIHNjaC5jbGltLnRlYTEgPSBCWVMyMEcsDQogICAgICAgc2NoLmNsaW0udGVhMiA9IEJZUzIwRiwNCiAgICAgICBzY2guY2xpbS50ZWEzID0gQllTMjBILA0KICAgICAgIHNjaC5jbGltLnRlYTQgPSBCWVMyMEEsDQogICAgICAgc2NoLmNsaW0uc3QxID0gQllTMjBJLA0KICAgICAgIHNjaC5jbGltLnJhY2lhbDEgPSBCWVMyMEMsDQogICAgICAgbWluZHNldC5lbnRpdHkgPSBCWVM4OEIsDQogICAgICAgbWluZHNldC5ncm93dGggPSBCWVM4OEEsDQogICAgICAgbWF0aC5zZTEgPSBCWVM4OVIsDQogICAgICAgbWF0aC5zZTIgPSBCWVM4OUEsDQogICAgICAgbWF0aC5zZTMgPSBCWVM4OUIsDQogICAgICAgbWF0aC5zZTQgPSBCWVM4OVUsDQogICAgICAgbWF0aC5zZTUgPSBCWVM4OUwsDQogICAgICAgbWF0aC5lbmdhZ2UxID0gQllTMjlCLA0KICAgICAgIG1hdGguZW5nYWdlMiA9IEJZUzI5RSwNCiAgICAgICBtYXRoLmVuZ2FnZTMgPSBCWVMyOUMsDQogICAgICAgbWF0aC5lbmdhZ2U0ID0gQllTMjlKLA0KICAgICAgIFNDSF9JRC5mYWMgPSBhc19mYWN0b3IoU0NIX0lEKSwNCiAgICAgICBTVFVfSUQuZmFjID0gYXNfZmFjdG9yKFNUVV9JRCksDQogICAgICAgc2V4LmZhYyA9IGFzX2ZhY3RvcihTRVgpLA0KICAgICAgIHJhY2UuZmFjID0gYXNfZmFjdG9yKFJBQ0UpKQ0KDQpgYGANCg0KYGBge3J9DQp0YWJsZShFTFMuY2xlYW4ubXUkc2NoLmNsaW0uc2NoMSkNCmBgYA0KDQoNCmBgYHtyfQ0KRUxTLmNsZWFuLmZpbHRlciA8LSBFTFMuY2xlYW4ubXUgJT4lDQogIGZpbHRlciguLA0KICAgICAgICAgIXNjaC5jbGltLnNjaDEgJWluJSANCiAgICAgICAgICAgICAoLTkpLCANCiAgICAgICAgICFzY2guY2xpbS5zY2gxICVpbiUgDQogICAgICAgICAgICAgKC03KSwNCiAgICAgICAgICFzY2guY2xpbS5zY2gxICVpbiUgDQogICAgICAgICAgICAgKC02KSwNCiAgICAgICAgICFzY2guY2xpbS5zY2gyICVpbiUgDQogICAgICAgICAgICAgKC05KSwgDQogICAgICAgICAhc2NoLmNsaW0uc2NoMiAlaW4lIA0KICAgICAgICAgICAgICgtNyksDQogICAgICAgICAhc2NoLmNsaW0uc2NoMiAlaW4lIA0KICAgICAgICAgICAgICgtNiksDQogICAgICAgICAhc2NoLmNsaW0udGVhMSAlaW4lIA0KICAgICAgICAgICAgICgtOSksIA0KICAgICAgICAgIXNjaC5jbGltLnRlYTEgJWluJSANCiAgICAgICAgICAgICAoLTcpLA0KICAgICAgICAgIXNjaC5jbGltLnRlYTEgJWluJSANCiAgICAgICAgICAgICAoLTYpLA0KICAgICAgICAgIXNjaC5jbGltLnRlYTIgJWluJSANCiAgICAgICAgICAgICAoLTkpLCANCiAgICAgICAgICFzY2guY2xpbS50ZWEyICVpbiUgDQogICAgICAgICAgICAgKC03KSwNCiAgICAgICAgICFzY2guY2xpbS50ZWEyICVpbiUgDQogICAgICAgICAgICAgKC02KSwNCiAgICAgICAgICFzY2guY2xpbS50ZWEzICVpbiUgDQogICAgICAgICAgICAgKC05KSwgDQogICAgICAgICAhc2NoLmNsaW0udGVhMyAlaW4lIA0KICAgICAgICAgICAgICgtNyksDQogICAgICAgICAhc2NoLmNsaW0udGVhMyAlaW4lIA0KICAgICAgICAgICAgICgtNiksDQogICAgICAgICAhc2NoLmNsaW0udGVhNCAlaW4lIA0KICAgICAgICAgICAgICgtOSksIA0KICAgICAgICAgIXNjaC5jbGltLnRlYTQgJWluJSANCiAgICAgICAgICAgICAoLTcpLA0KICAgICAgICAgIXNjaC5jbGltLnRlYTQgJWluJSANCiAgICAgICAgICAgICAoLTYpLA0KICAgICAgICAgIXNjaC5jbGltLnN0MSAlaW4lIA0KICAgICAgICAgICAgICgtOSksIA0KICAgICAgICAgIXNjaC5jbGltLnN0MSAlaW4lIA0KICAgICAgICAgICAgICgtNyksDQogICAgICAgICAhc2NoLmNsaW0uc3QxICVpbiUgDQogICAgICAgICAgICAgKC02KSwNCiAgICAgICAgICFzY2guY2xpbS5yYWNpYWwxICVpbiUgDQogICAgICAgICAgICAgKC05KSwgDQogICAgICAgICAhc2NoLmNsaW0ucmFjaWFsMSAlaW4lIA0KICAgICAgICAgICAgICgtNyksDQogICAgICAgICAhc2NoLmNsaW0ucmFjaWFsMSAlaW4lIA0KICAgICAgICAgICAgICgtNiksDQogICAgICAgICAhbWluZHNldC5lbnRpdHkgJWluJSANCiAgICAgICAgICAgICAoLTkpLCANCiAgICAgICAgICFtaW5kc2V0LmVudGl0eSAlaW4lIA0KICAgICAgICAgICAgICgtNyksDQogICAgICAgICAhbWluZHNldC5lbnRpdHkgJWluJSANCiAgICAgICAgICAgICAoLTYpLA0KICAgICAgICAgIW1pbmRzZXQuZ3Jvd3RoICVpbiUgDQogICAgICAgICAgICAgKC05KSwgDQogICAgICAgICAhbWluZHNldC5ncm93dGggJWluJSANCiAgICAgICAgICAgICAoLTcpLA0KICAgICAgICAgIW1pbmRzZXQuZ3Jvd3RoICVpbiUgDQogICAgICAgICAgICAgKC02KSwNCiAgICAgICAgICFtYXRoLnNlMSAlaW4lIA0KICAgICAgICAgICAgICgtOSksIA0KICAgICAgICAgIW1hdGguc2UxICVpbiUgDQogICAgICAgICAgICAgKC03KSwNCiAgICAgICAgICFtYXRoLnNlMSAlaW4lIA0KICAgICAgICAgICAgICgtNiksDQogICAgICAgICFtYXRoLnNlMiAlaW4lIA0KICAgICAgICAgICAgICgtOSksIA0KICAgICAgICAgIW1hdGguc2UyICVpbiUgDQogICAgICAgICAgICAgKC03KSwNCiAgICAgICAgICFtYXRoLnNlMiAlaW4lIA0KICAgICAgICAgICAgICgtNiksDQogICAgICAgICAhbWF0aC5zZTMgJWluJSANCiAgICAgICAgICAgICAoLTkpLCANCiAgICAgICAgICFtYXRoLnNlMyAlaW4lIA0KICAgICAgICAgICAgICgtNyksDQogICAgICAgICAhbWF0aC5zZTMgJWluJSANCiAgICAgICAgICAgICAoLTYpLA0KICAgICAgICAgIW1hdGguc2U0ICVpbiUgDQogICAgICAgICAgICAgKC05KSwgDQogICAgICAgICAhbWF0aC5zZTQgJWluJSANCiAgICAgICAgICAgICAoLTcpLA0KICAgICAgICAgIW1hdGguc2U0ICVpbiUgDQogICAgICAgICAgICAgKC02KSwNCiAgICAgICAgICFtYXRoLnNlNSAlaW4lIA0KICAgICAgICAgICAgICgtOSksIA0KICAgICAgICAgIW1hdGguc2U1ICVpbiUgDQogICAgICAgICAgICAgKC03KSwNCiAgICAgICAgICFtYXRoLnNlNSAlaW4lIA0KICAgICAgICAgICAgICgtNiksDQogICAgICAgICAhbWF0aC5lbmdhZ2UxICVpbiUgDQogICAgICAgICAgICAgKC05KSwgDQogICAgICAgICAhbWF0aC5lbmdhZ2UxICVpbiUgDQogICAgICAgICAgICAgKC03KSwNCiAgICAgICAgICFtYXRoLmVuZ2FnZTEgJWluJSANCiAgICAgICAgICAgICAoLTYpLA0KICAgICAgICAhbWF0aC5lbmdhZ2UyICVpbiUgDQogICAgICAgICAgICAgKC05KSwgDQogICAgICAgICAhbWF0aC5lbmdhZ2UyICVpbiUgDQogICAgICAgICAgICAgKC03KSwNCiAgICAgICAgICFtYXRoLmVuZ2FnZTIgJWluJSANCiAgICAgICAgICAgICAoLTYpLA0KICAgICAgICAhbWF0aC5lbmdhZ2UzICVpbiUgDQogICAgICAgICAgICAgKC05KSwgDQogICAgICAgICAhbWF0aC5lbmdhZ2UzICVpbiUgDQogICAgICAgICAgICAgKC03KSwNCiAgICAgICAgICFtYXRoLmVuZ2FnZTMgJWluJSANCiAgICAgICAgICAgICAoLTYpLA0KICAgICAgICAhbWF0aC5lbmdhZ2U0ICVpbiUgDQogICAgICAgICAgICAgKC05KSwgDQogICAgICAgICAhbWF0aC5lbmdhZ2U0ICVpbiUgDQogICAgICAgICAgICAgKC03KSwNCiAgICAgICAgICFtYXRoLmVuZ2FnZTQgJWluJSANCiAgICAgICAgICAgICAoLTYpKQ0KICAgICAgICANCmBgYA0KDQoNCmBgYHtyfQ0KRUxTLmNsZWFuLmZpbHRlciA8LSBFTFMuY2xlYW4uZmlsdGVyICU+JQ0KICBtdXRhdGUoLiwNCiAgICAgICAgIHNjaC5jbGltLnNjaDIucmVjb2RlID0gY2FzZV93aGVuKA0KICAgICAgICAgICBzY2guY2xpbS5zY2gyID09IDEgfiA0LA0KICAgICAgICAgICBzY2guY2xpbS5zY2gyID09IDIgfiAzLA0KICAgICAgICAgICBzY2guY2xpbS5zY2gyID09IDMgfiAyLA0KICAgICAgICAgICBzY2guY2xpbS5zY2gyID09IDQgfiAxKSwNCiAgICAgICAgIHNjaC5jbGltLnRlYTEucmVjb2RlID0gY2FzZV93aGVuKA0KICAgICAgICAgICBzY2guY2xpbS50ZWExID09IDEgfiA0LA0KICAgICAgICAgICBzY2guY2xpbS50ZWExID09IDIgfiAzLA0KICAgICAgICAgICBzY2guY2xpbS50ZWExID09IDMgfiAyLA0KICAgICAgICAgICBzY2guY2xpbS50ZWExID09IDQgfiAxKSwNCiAgICAgICAgIHNjaC5jbGltLnRlYTIucmVjb2RlID0gY2FzZV93aGVuKA0KICAgICAgICAgICBzY2guY2xpbS50ZWEyID09IDEgfiA0LA0KICAgICAgICAgICBzY2guY2xpbS50ZWEyID09IDIgfiAzLA0KICAgICAgICAgICBzY2guY2xpbS50ZWEyID09IDMgfiAyLA0KICAgICAgICAgICBzY2guY2xpbS50ZWEyID09IDQgfiAxKSwNCiAgICAgICAgc2NoLmNsaW0udGVhNC5yZWNvZGUgPSBjYXNlX3doZW4oDQogICAgICAgICAgIHNjaC5jbGltLnRlYTQgPT0gMSB+IDQsDQogICAgICAgICAgIHNjaC5jbGltLnRlYTQgPT0gMiB+IDMsDQogICAgICAgICAgIHNjaC5jbGltLnRlYTQgPT0gMyB+IDIsDQogICAgICAgICAgIHNjaC5jbGltLnRlYTQgPT0gNCB+IDEpLA0KICAgICAgICBzY2guY2xpbS5yYWNpYWwxLnJlY29kZSA9IGNhc2Vfd2hlbigNCiAgICAgICAgICAgc2NoLmNsaW0ucmFjaWFsMSA9PSAxIH4gNCwNCiAgICAgICAgICAgc2NoLmNsaW0ucmFjaWFsMSA9PSAyIH4gMywNCiAgICAgICAgICAgc2NoLmNsaW0ucmFjaWFsMSA9PSAzIH4gMiwNCiAgICAgICAgICAgc2NoLmNsaW0ucmFjaWFsMSA9PSA0IH4gMSksDQogICAgICAgIG1pbmRzZXQuZ3Jvd3RoLnJlY29kZSA9IGNhc2Vfd2hlbigNCiAgICAgICAgICAgbWluZHNldC5ncm93dGggPT0gMSB+IDQsDQogICAgICAgICAgIG1pbmRzZXQuZ3Jvd3RoID09IDIgfiAzLA0KICAgICAgICAgICBtaW5kc2V0Lmdyb3d0aCA9PSAzIH4gMiwNCiAgICAgICAgICAgbWluZHNldC5ncm93dGggPT0gNCB+IDEpKQ0KYGBgDQoNCmBgYHtyfQ0Kc2VfaXRlbXMgPC0gRUxTLmNsZWFuLmZpbHRlciAlPiUNCiAgc2VsZWN0KC4sDQogICAgICAgICBtYXRoLnNlMSwNCiAgICAgICBtYXRoLnNlMiwNCiAgICAgICBtYXRoLnNlMywNCiAgICAgICBtYXRoLnNlNCwNCiAgICAgICBtYXRoLnNlNSkNCmFscGhhKHNlX2l0ZW1zKQ0KYGBgDQpgYGB7cn0NCmVuZ2FnZV9pdGVtcyA8LSBFTFMuY2xlYW4uZmlsdGVyICU+JQ0KICBzZWxlY3QoLiwNCiAgICAgICBtYXRoLmVuZ2FnZTEsDQogICAgICAgbWF0aC5lbmdhZ2UzLA0KICAgICAgIG1hdGguZW5nYWdlNCkNCmFscGhhKGVuZ2FnZV9pdGVtcykNCmBgYA0KDQoNCg0KDQoNCmBgYHtyfQ0KbXkua2V5cy5saXN0IDwtIGxpc3Qoc2Nob29sLmNsaW1hdGUuc2Nob29sID0gYygic2NoLmNsaW0uc2NoMSIsICJzY2guY2xpbS5zY2gyLnJlY29kZSIpLA0KICAgICAgICAgICAgICAgICAgICAgU2Nob29sLmNsaW1hdGUudGVhY2hlciA9IGMoInNjaC5jbGltLnRlYTEucmVjb2RlIiwgInNjaC5jbGltLnRlYTIucmVjb2RlIiwgInNjaC5jbGltLnRlYTMiLCAic2NoLmNsaW0udGVhNC5yZWNvZGUiKSwNCiAgICAgICAgICAgICAgICAgICAgIG1hdGguc2UgPSBjKCJtYXRoLnNlMSIsICJtYXRoLnNlMiIsICJtYXRoLnNlMyIsICJtYXRoLnNlNCIsICJtYXRoLnNlNSIpLA0KICAgICAgICAgICAgICAgICAgICAgZ3Jvd3RoLm1pbmRzZXQgPSBjKCJtaW5kc2V0Lmdyb3d0aC5yZWNvZGUiLCAibWluZHNldC5lbnRpdHkiKSkNCiAgICAgICAgICAgICAgICAgICAgIA0KbXkuc2NhbGVzIDwtIHNjb3JlSXRlbXMobXkua2V5cy5saXN0LCBFTFMuY2xlYW4uZmlsdGVyLCBpbXB1dGUgPSAibm9uZSIpDQpgYGANCg0KYGBge3J9DQpwcmludChteS5zY2FsZXMsIHNob3J0ID0gRkFMU0UpDQpgYGANCg0KYGBge3J9DQpzY2hvb2xfaXRlbXMgPC0gRUxTLmNsZWFuLmZpbHRlciAlPiUNCiAgc2VsZWN0KC4sDQogICAgICAgICBzY2guY2xpbS5zY2gxLA0KICAgICAgICAgc2NoLmNsaW0uc2NoMi5yZWNvZGUpDQphbHBoYShzY2hvb2xfaXRlbXMpDQpgYGANCg0KYGBge3J9DQogRUxTLmNsZWFuLmZpbHRlciA8LSBFTFMuY2xlYW4uZmlsdGVyICU+JQ0KICBncm91cF9ieShTQ0hfSUQuZmFjKSAlPiUgDQogIG11dGF0ZSguLA0KICAgICAgICAgICAgc2NoX3NjaC5jbGltLnNjaDEgPSBtZWFuKHNjaC5jbGltLnNjaDEsIG5hLnJtID0gVFJVRSksDQogICAgICAgICBzY2hfc2NoLmNsaW0uc2NoMi5yZWNvZGUgPSBtZWFuKHNjaC5jbGltLnNjaDIucmVjb2RlLCBuYS5ybSA9IFRSVUUpKSAlPiUNCiAgdW5ncm91cCgpDQpgYGANCg0KYGBge3J9DQpzY2hfc2Nob29sX2l0ZW1zIDwtIEVMUy5jbGVhbi5maWx0ZXIgJT4lDQogIHNlbGVjdCguLA0KICAgICAgICAgc2NoX3NjaC5jbGltLnNjaDEsDQogICAgICAgICBzY2hfc2NoLmNsaW0uc2NoMi5yZWNvZGUpDQoNCmBgYA0KDQoNCmBgYHtyfQ0KYWxwaGEoc2NoX3NjaG9vbF9pdGVtcykNCmBgYA0KYGBge3J9DQpteS5zY29yZXMgPC0gYXNfdGliYmxlKG15LnNjYWxlcyRzY29yZXMpDQpgYGANCg0KYGBge3J9DQpFTFMuY2xlYW4uZmlsdGVyLjEgPC1iaW5kX2NvbHMoRUxTLmNsZWFuLmZpbHRlciwgbXkuc2NvcmVzKQ0KYGBgDQoNCg0KDQoNCmBgYHtyfQ0KIEVMUy5jbGVhbi5maWx0ZXIuMSA8LSBFTFMuY2xlYW4uZmlsdGVyLjEgJT4lDQogIGdyb3VwX2J5KFNDSF9JRC5mYWMpICU+JSANCiAgbXV0YXRlKC4sDQogICAgICAgICAgICBzY2hfbGV2ZWxfc2Nob29sLmNsaW1hdGUgPSBtZWFuKHNjaC5jbGltLnNjaDEsIG5hLnJtID0gVFJVRSksDQogICAgICAgICBzY2hfbGV2ZWxfc2Nob29sLmNsaW1hdGUudGVhY2hlciA9IG1lYW4oU2Nob29sLmNsaW1hdGUudGVhY2hlciwgbmEucm0gPSBUUlVFKSwNCiAgICAgICAgIHNjaF9sZXZlbF9zY2hvb2wuY2xpbWF0ZS5zdHVkZW50ID0gbWVhbihzY2guY2xpbS5zdDEsIG5hLnJtID0gVFJVRSksDQogICAgICAgICBzY2hfbGV2ZWxfc2Nob29sLmNsaW1hdGUucmFjaWFsID0gbWVhbihzY2guY2xpbS5yYWNpYWwxLCBuYS5ybSA9IFRSVUUpKSAlPiUNCiAgdW5ncm91cCgpDQpgYGANCg0KYGBge3J9DQpFTFMuY2xlYW4uZmlsdGVyLjEgPC0gRUxTLmNsZWFuLmZpbHRlci4xICU+JSAgICAgICANCiAgbXV0YXRlKC4sDQogICAgICAgICBtaW5kc2V0LmVudGl0eS5yZWNvZGUgPSBjYXNlX3doZW4oDQogICAgICAgICAgIG1pbmRzZXQuZW50aXR5ID09IDEgfiA0LA0KICAgICAgICAgICBtaW5kc2V0LmVudGl0eSA9PSAyIH4gMywNCiAgICAgICAgICAgbWluZHNldC5lbnRpdHkgPT0gMyB+IDIsDQogICAgICAgICAgIG1pbmRzZXQuZW50aXR5ID09IDQgfiAxKSkNCmBgYA0KDQoNCmBgYHtyfQ0KRUxTLmZpbmFsIDwtIEVMUy5jbGVhbi5maWx0ZXIuMSAlPiUNCiAgc2VsZWN0KC4sDQogICAgICAgICBzY2hfbGV2ZWxfc2Nob29sLmNsaW1hdGUsDQogICAgICAgICBzY2hfbGV2ZWxfc2Nob29sLmNsaW1hdGUudGVhY2hlciwNCiAgICAgICAgIHNjaF9sZXZlbF9zY2hvb2wuY2xpbWF0ZS5zdHVkZW50LA0KICAgICAgICAgc2NoX2xldmVsX3NjaG9vbC5jbGltYXRlLnJhY2lhbCwNCiAgICAgICAgIG1pbmRzZXQuZW50aXR5LnJlY29kZSwNCiAgICAgICAgIG1pbmRzZXQuZ3Jvd3RoLnJlY29kZSwNCiAgICAgICAgIG1hdGguc2UsDQogICAgICAgICBzZXguZmFjLA0KICAgICAgICAgcmFjZS5mYWMsDQogICAgICAgICBTQ0hfSUQuZmFjLA0KICAgICAgICAgU1RVX0lELmZhYywNCiAgICAgICAgIFNDSF9JRCkNCg0KYGBgDQoNCmBgYHtyfQ0KbW9kZWwubnVsbCA8LSBsbWVyKG1hdGguc2UgfiAoMXxTQ0hfSUQuZmFjKSwgUkVNTCA9IEZBTFNFLCBkYXRhID0gRUxTLmZpbmFsKQ0Kc3VtbWFyeShtb2RlbC5udWxsKQ0KYGBgDQpgYGB7cn0NCklDQyA8LSAwLjAyLygwLjAyICsgMC42NykNCklDQw0KYGBgDQoNCmBgYHtyfQ0KbW9kZWwuMSA8LSBsbWVyKG1hdGguc2UgfiByYWNlLmZhYyArIHNleC5mYWMgKyBtaW5kc2V0LmVudGl0eS5yZWNvZGUgKyBtaW5kc2V0Lmdyb3d0aC5yZWNvZGUgKyAoMXxTQ0hfSUQuZmFjKSwgUkVNTCA9IEZBTFNFLCBkYXRhID0gRUxTLmZpbmFsKQ0Kc3VtbWFyeShtb2RlbC4xKQ0KYGBgDQptaW5kc2V0LmVudGl0eSBpc24ndCBzaWduaWZpY2FudCwgdGFraW5nIG91dCBvZiBtb2RlbA0KDQpgYGB7cn0NCm1vZGVsLjIgPC0gbG1lcihtYXRoLnNlIH4gc2V4LmZhYyArIG1pbmRzZXQuZ3Jvd3RoLnJlY29kZSArIHNjaF9sZXZlbF9zY2hvb2wuY2xpbWF0ZSArDQogICAgICAgICBzY2hfbGV2ZWxfc2Nob29sLmNsaW1hdGUudGVhY2hlciArIHNjaF9sZXZlbF9zY2hvb2wuY2xpbWF0ZS5zdHVkZW50ICsNCiAgICAgICAgIHNjaF9sZXZlbF9zY2hvb2wuY2xpbWF0ZS5yYWNpYWwgKyAoMXxTQ0hfSUQuZmFjKSwgUkVNTCA9IEZBTFNFLCBkYXRhID0gRUxTLmZpbmFsKQ0Kc3VtbWFyeShtb2RlbC4yKQ0KYGBgDQpzY2hfbGV2ZWxfc2Nob29sLmNsaW1hdGUucmFjaWFsIG5vdCBzaWduaWZpY2FudC1taWdodCB0cnkgd2l0aCBhbiBpbnRlcmFjdGlvbiB3aXRoIHJhY2UNCg0Kc2NoX2xldmVsX3NjaG9vbC5jbGltYXRlLnN0dWRlbnQgbm90IHNpZ25pZmljYW50DQpzY2hfbGV2ZWxfc2Nob29sLmNsaW1hdGUgbm90IHNpZ25pZmljYW50DQpgYGB7cn0NCm1vZGVsLjMgPC0gbG1lcihtYXRoLnNlIH4gc2V4LmZhYyArIG1pbmRzZXQuZ3Jvd3RoLnJlY29kZSArIHNjaF9sZXZlbF9zY2hvb2wuY2xpbWF0ZS5yYWNpYWwgKyBzY2hfbGV2ZWxfc2Nob29sLmNsaW1hdGUudGVhY2hlciArIHJhY2UuZmFjICsgc2NoX2xldmVsX3NjaG9vbC5jbGltYXRlLnJhY2lhbDpyYWNlLmZhYyArICgxfFNDSF9JRC5mYWMpLCBSRU1MID0gRkFMU0UsIGRhdGEgPSBFTFMuZmluYWwpDQpzdW1tYXJ5KG1vZGVsLjMpDQpgYGANCmBgYHtyfQ0KaW50ZXJwbG90OjppbnRlcnBsb3QobW9kZWwuaW50ZXJhY3Rpb24sIHZhcjEgPSAicmFjZS5mYWMiLCB2YXIyID0gInNjaF9sZXZlbF9zY2hvb2wuY2xpbWF0ZS5yYWNpYWwiKQ0KYGBgDQoNCg0KDQoNCg0KYGBge3J9DQptb2RlbC40IDwtIGxtZXIobWF0aC5zZSB+IHNleC5mYWMgKyBtaW5kc2V0Lmdyb3d0aC5yZWNvZGUgKyANCiAgICAgICAgIHNjaF9sZXZlbF9zY2hvb2wuY2xpbWF0ZS50ZWFjaGVyICsgKHJhY2UuZmFjfFNDSF9JRC5mYWMpLCBSRU1MID0gRkFMU0UsIGRhdGEgPSBFTFMuZmluYWwpDQpzdW1tYXJ5KG1vZGVsLjQpDQpgYGANCmBgYHtyfQ0KbW9kZWwuNSA8LSBsbWVyKG1hdGguc2UgfiBzZXguZmFjICsgbWluZHNldC5ncm93dGgucmVjb2RlICsgDQogICAgICAgICBzY2hfbGV2ZWxfc2Nob29sLmNsaW1hdGUudGVhY2hlciArICgxfFNDSF9JRC5mYWMpLCBSRU1MID0gRkFMU0UsIGRhdGEgPSBFTFMuZmluYWwpDQpzdW1tYXJ5KG1vZGVsLjUpDQpgYGANCg0KYGBge3J9DQptb2RlbC42IDwtIGxtZXIobWF0aC5zZSB+IHNleC5mYWMgKyBtaW5kc2V0Lmdyb3d0aC5yZWNvZGUgKyANCiAgICAgICAgIHNjaF9sZXZlbF9zY2hvb2wuY2xpbWF0ZS50ZWFjaGVyICsgKG1pbmRzZXQuZ3Jvd3RoLnJlY29kZXxTQ0hfSUQuZmFjKSwgUkVNTCA9IEZBTFNFLCBkYXRhID0gRUxTLmZpbmFsKQ0Kc3VtbWFyeShtb2RlbC42KQ0KYGBgDQoNCmBgYHtyfQ0KYW5vdmEobW9kZWwubnVsbCwgbW9kZWwuMSkNCmBgYA0KDQpgYGB7cn0NCmFub3ZhKG1vZGVsLjEsIG1vZGVsLjIpDQpgYGANCg0KYGBge3J9DQphbm92YShtb2RlbC4yLCBtb2RlbC4zKQ0KYGBgDQoNCmBgYHtyfQ0KbGlicmFyeShsbWVyVGVzdCkNCmxtZXJUZXN0OjpyYW5kKG1vZGVsLjQpDQpgYGANCg0KYGBge3J9DQphbm92YShtb2RlbC4zLCBtb2RlbC41KQ0KYGBgDQoNCmBgYHtyfQ0KbW9kZWwuMS4xIDwtIGxtZXIobWF0aC5zZSB+IHNleC5mYWMgKyBtaW5kc2V0Lmdyb3d0aC5yZWNvZGUgKyAoMXxTQ0hfSUQuZmFjKSwgUkVNTCA9IEZBTFNFLCBkYXRhID0gRUxTLmZpbmFsKQ0Kc3VtbWFyeShtb2RlbC4xLjEpDQpgYGANCg0KYGBge3J9DQptb2RlbC4yLjIgPC0gbG1lcihtYXRoLnNlIH4gc2V4LmZhYyArIG1pbmRzZXQuZ3Jvd3RoLnJlY29kZSArIA0KICAgICAgICAgc2NoX2xldmVsX3NjaG9vbC5jbGltYXRlLnRlYWNoZXIgKyAgKDF8U0NIX0lELmZhYyksIFJFTUwgPSBGQUxTRSwgZGF0YSA9IEVMUy5maW5hbCkNCnN1bW1hcnkobW9kZWwuMi4yKQ0KYGBgDQoNCmBgYHtyfQ0KYW5vdmEobW9kZWwubnVsbCwgbW9kZWwuMS4xKQ0KYGBgDQoNCmBgYHtyfQ0KYW5vdmEobW9kZWwuMS4xLCBtb2RlbC4yLjIpDQpgYGANCg0KYGBge3J9DQphbm92YShtb2RlbC4yLjIsIG1vZGVsLjUpDQpgYGANCg0KDQoNCg0KYGBge3J9DQpsaWJyYXJ5KG1vZGVsc3VtbWFyeSkNCmxpYnJhcnkoYnJvb20ubWl4ZWQpDQpsaWJyYXJ5KHRhYmxlcykNCmBgYA0KYGBge3J9DQptb2RlbHMgPC0gbGlzdChtb2RlbC4xLCBtb2RlbC4yLCBtb2RlbC4zLCBtb2RlbC40LCBtb2RlbC41KQ0KbW9kZWxzdW1tYXJ5KG1vZGVscywgb3V0cHV0ID0gIm1hcmtkb3duIikNCmBgYA0KDQpgYGB7cn0NCmRlc2NyaWJlKEVMUy5maW5hbCwgZmFzdCA9IFRSVUUpDQpgYGANCg0KYGBge3J9DQpkaWFnbm9zdGljcyA8LSBhdWdtZW50KG1vZGVsLjUpDQpgYGANCg0KDQoNCmBgYHtyfQ0KZ2dwbG90KGRhdGEgPSBkaWFnbm9zdGljcywgbWFwcGluZyA9IGFlcyh4ID0gLnJlc2lkKSkgKw0KICBnZW9tX2hpc3RvZ3JhbShiaW53aWR0aCA9IC4yNSkgKyB0aGVtZV9jbGFzc2ljKCkgKyANCiAgbGFicyh0aXRsZSA9ICJIaXN0b2dyYW0gb2YgUmVzaWR1YWxzIGZvciBFZHVjYXRpb24gTG9uZ2l0dWRpbmFsIFN0dWR5IE1vZGVsIiwNCiAgICAgICAgICAgICAgICAgICAgICB4ID0gIlJlc2lkdWFsIFZhbHVlIikgKw0KICBnZW9tX3ZsaW5lKHhpbnRlcmNlcHQgPSBjKC0yLjUsIDIuNSksIGxpbmV0eXBlID0gImRvdHRlZCIpDQpgYGANCg0KDQpBc3Nlc3MgTm9ybWFsaXR5IG9mIFJlc2lkdWFscw0KVmlzdWFsbHksIHdpdGggYSBIaXN0b2dyYW06IEEgbGl0dGxlIHNrZXdlZA0KYGBge3J9DQpzaGFwaXJvLnRlc3QoZGlhZ25vc3RpY3MkLnJlc2lkKQ0KYGBgDQp0b28gbWFueSBvYnNlcnZhaXRvbnMgdG8gY2hlY2sNCmBgYHtyfQ0KZ2dwbG90KGRhdGEgPSBkaWFnbm9zdGljcywgbWFwcGluZyA9IGFlcyh4ID0gLmZpdHRlZCwgeSA9IC5yZXNpZCkpICsNCiAgZ2VvbV9wb2ludCgpICsgbGFicyh0aXRsZSA9ICJSVkYgUGxvdCBmb3IgRWR1Y2F0aW9uIExvbmdpdHVkaW5hbCBTdHVkeSBNb2RlbCIsDQogICAgICAgICAgICAgICAgICAgICAgeCA9ICJQcmVkaWN0ZWQgVmFsdWUsIG1hdGggc2VsZi1lZmZpY2FjeSIsDQogICAgICAgICAgICAgICAgICAgICAgeSA9ICJSZXNpZHVhbCBWYWx1ZSIpICsgdGhlbWVfY2xhc3NpYygpDQpgYGANClVzZSBSZXNpZHVhbHMgdnMuIEZpdHRlZCAoUlZGKSBQbG90IHRvIEFzc2VzcyBIb21vc2tlZGFzdGljaXR5IG9mIEVycm9yczogTG9va3MgbGlrZSB0aGVyZSBpcyBhIHBhdHRlcm4NCmBgYHtyfQ0KZ2dwbG90KGRhdGEgPSBkaWFnbm9zdGljcywgbWFwcGluZyA9IGFlcyh4ID0gLmZpdHRlZCwgeSA9IC5jb29rc2QsIGxhYmVsID0gU0NIX0lELmZhYykpICsNCiAgZ2VvbV9wb2ludCgpICsgZ2VvbV90ZXh0KG51ZGdlX3ggPSAuMjUpICsgdGhlbWVfY2xhc3NpYygpICsgDQogIGxhYnModGl0bGUgPSAiQ29vaydzIERpc3RhbmNlIFBsb3QgZm9yIFNjaG9vbCBFZHVjYXRpb24gTG9uZ2l0dWRpbmFsIFN0dWR5IE1vZGVsIiwNCiAgICAgICAgICAgICAgICAgICAgICB4ID0gIlByZWRpY3RlZCBWYWx1ZSwgbWF0aCBzZWxmLWVmZmljYWN5IiwNCiAgICAgICAgICAgICAgICAgICAgICB5ID0gIkNvb2sncyBEaXN0YW5jZSIpICsgDQogIGdlb21faGxpbmUoeWludGVyY2VwdCA9IDQvODE2LCBsaW5ldHlwZSA9ICJkb3R0ZWQiKQ0KYGBgDQpgYGB7cn0NCnByb2QudHJpbW1lZCA8LSBkaWFnbm9zdGljcyAlPiUNCiAgZmlsdGVyKC4sIC5jb29rc2QgPCAuMzApDQptb2RlbC50cmltbWVkIDwtIGxtZXIobWF0aC5zZSB+IHNleC5mYWMgKyBtaW5kc2V0Lmdyb3d0aC5yZWNvZGUgKyANCiAgICAgICAgIHNjaF9sZXZlbF9zY2hvb2wuY2xpbWF0ZS50ZWFjaGVyICsgKDF8U0NIX0lELmZhYyksIFJFTUwgPSBGQUxTRSwgZGF0YSA9IHByb2QudHJpbW1lZCkNCnN1bW1hcnkobW9kZWwudHJpbW1lZCkNCmBgYA0KDQpgYGB7cn0NCm1vZGVscyA8LSBsaXN0KG1vZGVsLjEsIG1vZGVsLjIsIG1vZGVsLjMsIG1vZGVsLjQsIG1vZGVsLjUpDQptb2RlbHN1bW1hcnkobW9kZWxzLCBvdXRwdXQgPSAiaHRtbCIpDQpgYGANCg0KYA0KYGBge3J9DQptb2RlbHMuMSA8LSBsaXN0KG1vZGVsLjEsIG1vZGVsLjIsIG1vZGVsLjMsIG1vZGVsLjUpDQptb2RlbHN1bW1hcnkobW9kZWxzLjEsIG91dHB1dCA9ICJodG1sIikNCmBgYA0KDQoNCmBgYHtyfQ0KbW9kZWxzLjIgPC0gbGlzdChtb2RlbC41LCBtb2RlbC50cmltbWVkKQ0KbW9kZWxzdW1tYXJ5KG1vZGVscy4yLCBvdXRwdXQgPSAiaHRtbCIpDQoNCmBgYA0KDQpgYGB7cn0NCnRhYmxlKEVMUy5maW5hbCRzZXguZmFjKQ0KYGBgDQpgYGB7cn0NCnRhYmxlKEVMUy5maW5hbCRyYWNlLmZhYykNCmBgYA0KYGBge3J9DQptb2RlbHMuMSA8LSBsaXN0KG1vZGVsLm51bGwsIG1vZGVsLjEuMSwgbW9kZWwuMi4yKQ0KbW9kZWxzdW1tYXJ5KG1vZGVscy4xLCBvdXRwdXQgPSAibW9kZWxzLjEuaHRtbCIpDQpgYGANCg0KDQo=