#### TAREA MAPAS SPPLOT, COVID VALLE 14 de JUNIO

require(raster)
## Loading required package: raster
## Loading required package: sp
require(rgdal)
## Loading required package: rgdal
## rgdal: version: 1.5-16, (SVN revision 1050)
## Geospatial Data Abstraction Library extensions to R successfully loaded
## Loaded GDAL runtime: GDAL 3.0.4, released 2020/01/28
## Path to GDAL shared files: D:/NUEVO_DISCO/R-3.6.3/library/rgdal/gdal
## GDAL binary built with GEOS: TRUE 
## Loaded PROJ runtime: Rel. 6.3.1, February 10th, 2020, [PJ_VERSION: 631]
## Path to PROJ shared files: D:/NUEVO_DISCO/R-3.6.3/library/rgdal/proj
## Linking to sp version:1.4-2
## To mute warnings of possible GDAL/OSR exportToProj4() degradation,
## use options("rgdal_show_exportToProj4_warnings"="none") before loading rgdal.
require(sp)


municipios=shapefile("D:/NUEVO_DISCO/ANDRES RODRIGUEZ/GIS COURSE TORONTO/COVID_19_VALLE_14_06.shp")
crs(municipios)
## CRS arguments: +proj=longlat +datum=WGS84 +no_defs
plot(municipios)

plot(municipios[34,],col="red", add=TRUE)

Total_contagios=spplot(municipios[,12],col.regions=heat.colors(50,.95,.20))
names(municipios)
##  [1] "OBJECTID"   "DPTO_CCDGO" "MPIO_CCDGO" "MPIO_CNMBR" "MPIO_CCNCT"
##  [6] "DPTO_CNMBR" "NOMBRE_MPI" "TOTAL_UNID" "Area_km2"   "Coronaviru"
## [11] "GlobalID"   "Total_Conf" "Total_Exis" "Total_Muer" "Total_Recu"
## [16] "Shape__Are" "Shape__Len" "A_CASA"     "A_HOSPITAL" "A_HOSPIT_1"
## [21] "ETAREO_F"   "ETAREO_M"   "TOTAL_UN_1" "POB_2020"   "CONF_X_POB"
## [26] "PTJ_CONTAG"
Total_muertes=spplot(municipios[,14],col.regions=heat.colors(50,.95,.20))

####COVID VALLE JULIO 18

municipios_2=shapefile(("D:/NUEVO_DISCO/ANDRES RODRIGUEZ/GIS COURSE TORONTO/PROYECTO_FINAL/18_JULIO_COVID/Colombia_COVID19_Coronavirus_Municipio.shp"))
names(municipios_2)
##  [1] "OBJECTID"   "DPTO_CCDGO" "MPIO_CCDGO" "MPIO_CNMBR" "MPIO_CCNCT"
##  [6] "DPTO_CNMBR" "NOMBRE_MPI" "TOTAL_UNID" "Area_km2"   "Coronaviru"
## [11] "GlobalID"   "Total_Conf" "Total_Exis" "Total_Muer" "Total_Recu"
## [16] "Shape__Are" "Shape__Len" "A_CASA"     "A_HOSPITAL" "A_HOSPIT_1"
## [21] "ETAREO_F"   "ETAREO_M"   "TOTAL_UN_1" "POB_2020"   "PTJ_CONTAG"
valle=municipios_2$DPTO_CCDGO=="76"
casos_valle=municipios_2[valle,]

table(casos_valle$Total_Conf)
## 
##     0     1     3     4     6     8     9    10    11    12    15    16    18 
##     5     4     1     4     1     2     3     1     1     1     1     1     2 
##    20    37    51    90   137   153   156   212   258   266   279   340  1833 
##     2     1     1     1     1     1     1     1     1     1     1     1     1 
## 12568 
##     1
names(casos_valle)
##  [1] "OBJECTID"   "DPTO_CCDGO" "MPIO_CCDGO" "MPIO_CNMBR" "MPIO_CCNCT"
##  [6] "DPTO_CNMBR" "NOMBRE_MPI" "TOTAL_UNID" "Area_km2"   "Coronaviru"
## [11] "GlobalID"   "Total_Conf" "Total_Exis" "Total_Muer" "Total_Recu"
## [16] "Shape__Are" "Shape__Len" "A_CASA"     "A_HOSPITAL" "A_HOSPIT_1"
## [21] "ETAREO_F"   "ETAREO_M"   "TOTAL_UN_1" "POB_2020"   "PTJ_CONTAG"
Tot_contag_julio=spplot(casos_valle[,12],col.regions=heat.colors(50,.95,.20))
Tot_muert_julio=spplot(casos_valle[,14],col.regions=heat.colors(50,.95,.20))



plot(Total_contagios)

plot(Tot_contag_julio)

plot(Total_muertes)

plot(Tot_muert_julio)

###

names(casos_valle)
##  [1] "OBJECTID"   "DPTO_CCDGO" "MPIO_CCDGO" "MPIO_CNMBR" "MPIO_CCNCT"
##  [6] "DPTO_CNMBR" "NOMBRE_MPI" "TOTAL_UNID" "Area_km2"   "Coronaviru"
## [11] "GlobalID"   "Total_Conf" "Total_Exis" "Total_Muer" "Total_Recu"
## [16] "Shape__Are" "Shape__Len" "A_CASA"     "A_HOSPITAL" "A_HOSPIT_1"
## [21] "ETAREO_F"   "ETAREO_M"   "TOTAL_UN_1" "POB_2020"   "PTJ_CONTAG"
ptj_julio=spplot(casos_valle[,25],col.regions=heat.colors(50,.95,.20))

names(municipios)
##  [1] "OBJECTID"   "DPTO_CCDGO" "MPIO_CCDGO" "MPIO_CNMBR" "MPIO_CCNCT"
##  [6] "DPTO_CNMBR" "NOMBRE_MPI" "TOTAL_UNID" "Area_km2"   "Coronaviru"
## [11] "GlobalID"   "Total_Conf" "Total_Exis" "Total_Muer" "Total_Recu"
## [16] "Shape__Are" "Shape__Len" "A_CASA"     "A_HOSPITAL" "A_HOSPIT_1"
## [21] "ETAREO_F"   "ETAREO_M"   "TOTAL_UN_1" "POB_2020"   "CONF_X_POB"
## [26] "PTJ_CONTAG"
ptj_junio=spplot(municipios[,26],col.regions=heat.colors(50,.95,.20))

municipios$NOMBRE_MPI=="CALI"
##  [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
## [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [37] FALSE FALSE FALSE FALSE FALSE FALSE
municipios[10,26]
## class       : SpatialPolygonsDataFrame 
## features    : 1 
## extent      : -76.70708, -76.45877, 3.273407, 3.547909  (xmin, xmax, ymin, ymax)
## crs         : +proj=longlat +datum=WGS84 +no_defs 
## variables   : 1
## names       :     PTJ_CONTAG 
## value       : 0.172171646078
table(municipios$NOMBRE_MPI)
## 
##             ALCALÃ\201          ANDALUCÃ\215A        ANSERMANUEVO             ARGELIA 
##                   1                   1                   1                   1 
##            BOLÃ\215VAR        BUENAVENTURA        BUGALAGRANDE          CAICEDONIA 
##                   1                   1                   1                   1 
##                CALI              CALIMA          CANDELARIA             CARTAGO 
##                   1                   1                   1                   1 
##               DAGUA          EL Ã\201GUILA            EL CAIRO          EL CERRITO 
##                   1                   1                   1                   1 
##            EL DOVIO             FLORIDA             GINEBRA            GUACARÃ\215 
##                   1                   1                   1                   1 
## GUADALAJARA DE BUGA            JAMUNDÃ\215           LA CUMBRE           LA UNIÓN 
##                   1                   1                   1                   1 
##         LA VICTORIA              OBANDO             PALMIRA             PRADERA 
##                   1                   1                   1                   1 
##            RESTREPO            RIOFRÃ\215O          ROLDANILLO           SAN PEDRO 
##                   1                   1                   1                   1 
##             SEVILLA                TORO            TRUJILLO              TULUÃ\201 
##                   1                   1                   1                   1 
##               ULLOA           VERSALLES               VIJES              YOTOCO 
##                   1                   1                   1                   1 
##               YUMBO              ZARZAL 
##                   1                   1
municipios[40,12]
## class       : SpatialPolygonsDataFrame 
## features    : 1 
## extent      : -77.54977, -76.68768, 3.10808, 4.234654  (xmin, xmax, ymin, ymax)
## crs         : +proj=longlat +datum=WGS84 +no_defs 
## variables   : 1
## names       : Total_Conf 
## value       :        968
plot(ptj_junio)

plot(ptj_julio)

###COLORES PRUEBA
library(RColorBrewer)
display.brewer.all()

my.palette=brewer.pal(n=11, name="Spectral")