Identificar en una distribución normal, los valores de la curva o los valores de la función de densidad, graficar el área bajo la curva y calcular probabildiades.
Realizar distribuciones de probabilidad conforme a la distribución de probabilidad normal a partir de valores iniciales de los ejercicios identificando y visualizando la función de densidad y calculando probabilidades.
library(dplyr)
library(mosaic)
library(readr)
library(ggplot2) # Para gráficos
library(knitr) # Para formateo de datos
Una empresa de material eléctrico fabrica bombillas (focos) de luz que tienen una duración, antes de quemarse (fundirse), que se distribuye normalmente con media igual a 800 horas y una desviación estándar de 40 horas. Encuentre la probabilidad de que una bombilla se queme entre 778 y 834 horas. Walpole et al. (2012)].
Inicializar valores \[μ=800\] \[σ=40\]
media <- 800
desv.stadandar <- 40
La gráfica de la distribución normal
plotDist("norm", mean = media, sd = desv.stadandar, groups = x >= 778 & x <= 834, type = "h", xlab = "Distribución de la duración bombillas (focos)", ylab = "Densidad" )
Cálculo de la probabilidad * La probabilidad de que una bombilla se queme entre 778 y 834 horas.
prob <- pnorm(q = 834, mean = media, sd = desv.stadandar) - pnorm(q = 778, mean = media, sd = desv.stadandar)
paste("La probabilidad de que una bombilla se queme entre 778 y 834 horas es:", round(prob * 100, 4), "%")
## [1] "La probabilidad de que una bombilla se queme entre 778 y 834 horas es: 51.1178 %"
Cargar los datos
datos <- read.table("https://raw.githubusercontent.com/rpizarrog/probabilidad-y-estad-stica/master/datos/body.dat.txt", quote="\"", comment.char="")
datos <- as.data.frame(datos)
colnames(datos)[23:25] <- c("peso", "estatura", "genero")
# Solo nos interesan las tres últimas columnas
datos <- select(datos, estatura, peso, genero)
head(datos)
## estatura peso genero
## 1 174.0 65.6 1
## 2 175.3 71.8 1
## 3 193.5 80.7 1
## 4 186.5 72.6 1
## 5 187.2 78.8 1
## 6 181.5 74.8 1
tail(datos)
## estatura peso genero
## 502 157.5 76.8 0
## 503 176.5 71.8 0
## 504 164.4 55.5 0
## 505 160.7 48.6 0
## 506 174.0 66.4 0
## 507 163.8 67.3 0
ggplot(datos, aes(x = 1:nrow(datos), y = peso)) +
geom_point(colour = "blue")
ggplot(datos, aes(x = 1:nrow(datos), y = estatura)) +
geom_point(colour = "blue")
ggplot(datos) +
geom_histogram(aes(x = peso))
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
ggplot(datos) +
geom_histogram(aes(x = estatura))
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
datos$genero <- as.factor(datos$genero)
masculinos <- filter(datos, genero == 1)
femeninos <- filter(datos, genero == 0)
media.peso.m <- mean(masculinos$peso)
desv.std.peso.m <- sd(masculinos$peso)
media.peso.f <- mean(femeninos$peso)
desv.std.peso.f <- sd(femeninos$peso)
media.estatura.m <- mean(masculinos$estatura)
desv.std.estatura.m <- sd(masculinos$estatura)
media.estatura.f <- mean(femeninos$estatura)
desv.std.estatura.f <- sd(femeninos$estatura)
Calcular probabilidades a) ¿Cuál es la probabilidad de encontrar a una persona masculino que pese menor o igual de 60 kilogramos? * Graficar la función en donde x<60 * Grafíca de desidad
plotDist("norm", mean = media.peso.m, sd = desv.std.peso.m, groups = x <= 60, type = "h", xlab = "Peso Hombres", ylab = "Densidad" )
prob <- pnorm(q = 60, mean = media.peso.m, sd = desv.std.peso.m)
paste("La probabilidad de encontrar a una persona masculino que pese menor de 60 kilogramos es de:", round(prob * 100,4), "%")
## [1] "La probabilidad de encontrar a una persona masculino que pese menor de 60 kilogramos es de: 4.218 %"
plotDist("norm", mean = media.peso.f, sd = desv.std.peso.f, groups = x <= 60, type = "h", xlab = "Peso Mujeres", ylab = "Densidad" )
prob <- pnorm(q = 60, mean = media.peso.f, sd = desv.std.peso.f)
paste("La probabilidad de encontrar a una persona femenino que pese menor de 50 kilogramos es de:", round(prob * 100,4), "%")
## [1] "La probabilidad de encontrar a una persona femenino que pese menor de 50 kilogramos es de: 47.5107 %"
plotDist("norm", mean = media.estatura.m, sd = desv.std.estatura.m, groups = x >= 180, type = "h", xlab = "Estatura Hombres", ylab = "Densidad" )
prob <- pnorm(q = 180, mean = media.estatura.m, sd = desv.std.estatura.m, lower.tail = FALSE)
paste("La probabilidad de encontrar a una persona masculino que tenga una estatura mayor o igual de 180 de:", round(prob * 100,4), "%")
## [1] "La probabilidad de encontrar a una persona masculino que tenga una estatura mayor o igual de 180 de: 37.6814 %"
plotDist("norm", mean = media.estatura.m, sd = desv.std.estatura.m, groups = x >= 190, type = "h", xlab = "Estatura Hombres", ylab = "Densidad" )
prob <- pnorm(q = 190, mean = media.estatura.m, sd = desv.std.estatura.m, lower.tail = FALSE)
paste("La probabilidad de encontrar a una persona masculino que tenga una estatura mayor o igual de 190 de:", round(prob * 100,4), "%")
## [1] "La probabilidad de encontrar a una persona masculino que tenga una estatura mayor o igual de 190 de: 4.4012 %"
plotDist("norm", mean = media.estatura.m, sd = desv.std.estatura.m, groups = x >= 160 & x <= 170, type = "h", xlab = "Estatura Hombres", ylab = "Densidad" )
prob <- pnorm(q = 170, mean = media.estatura.m, sd = desv.std.estatura.m) - pnorm(q = 160, mean = media.estatura.m, sd = desv.std.estatura.m)
paste("La probabilidad de encontrar a una persona masculino que tenga una estatura entre 160 y 170 centímeros de:", round(prob * 100,4), "%")
## [1] "La probabilidad de encontrar a una persona masculino que tenga una estatura entre 160 y 170 centímeros de: 13.3723 %"
plotDist("norm", mean = media.estatura.m, sd = desv.std.estatura.m, groups = x >= 190 & x <= 195, type = "h", xlab = "Estatura Hombres", ylab = "Densidad" )
prob <- pnorm(q = 195, mean = media.estatura.m, sd = desv.std.estatura.m) - pnorm(q = 190, mean = media.estatura.m, sd = desv.std.estatura.m)
paste("La probabilidad de encontrar a una persona masculino que tenga una estatura entre 190 y 195 centímeros es de:", round(prob * 100,4), "%")
## [1] "La probabilidad de encontrar a una persona masculino que tenga una estatura entre 190 y 195 centímeros es de: 3.5858 %"
plotDist("norm", mean = media.estatura.f, sd = desv.std.estatura.f, groups = x >= 180, type = "h", xlab = "Estatura Mujeres", ylab = "Densidad" )
prob <- pnorm(q = 180, mean = media.estatura.f, sd = desv.std.estatura.f, lower.tail = FALSE)
paste("La probabilidad de encontrar a una persona femenino que tenga una estatura mayor o igual de 180 de:", round(prob * 100,4), "%")
## [1] "La probabilidad de encontrar a una persona femenino que tenga una estatura mayor o igual de 180 de: 1.0403 %"
plotDist("norm", mean = media.estatura.f, sd = desv.std.estatura.f, groups = x >= 190, type = "h", xlab = "Estatura Mujeres", ylab = "Densidad" )
prob <- pnorm(q = 190, mean = media.estatura.f, sd = desv.std.estatura.f, lower.tail = FALSE)
paste("La probabilidad de encontrar a una persona femenino que tenga una estatura mayor o igual de 190 de:", round(prob * 100,4), "%")
## [1] "La probabilidad de encontrar a una persona femenino que tenga una estatura mayor o igual de 190 de: 0.0062 %"
plotDist("norm", mean = media.estatura.f, sd = desv.std.estatura.f, groups = x >= 160 & x <= 170, type = "h", xlab = "Estatura Mujeres", ylab = "Densidad" )
prob <- pnorm(q = 170, mean = media.estatura.f, sd = desv.std.estatura.f) - pnorm(q = 160, mean = media.estatura.f, sd = desv.std.estatura.f)
paste("La probabilidad de encontrar a una persona femenino que tenga una estatura entre 160 y 170 centímeros de:", round(prob * 100,4), "%")
## [1] "La probabilidad de encontrar a una persona femenino que tenga una estatura entre 160 y 170 centímeros de: 55.5039 %"
plotDist("norm", mean = media.estatura.f, sd = desv.std.estatura.f, groups = x >= 190 & x <= 195, type = "h", xlab = "Estatura Mujeres", ylab = "Densidad" )
prob <- pnorm(q = 195, mean = media.estatura.f, sd = desv.std.estatura.f) - pnorm(q = 190, mean = media.estatura.f, sd = desv.std.estatura.f)
paste("La probabilidad de encontrar a una persona femenino que tenga una estatura entre 190 y 195 centímeros es de:", round(prob * 100,4), "%")
## [1] "La probabilidad de encontrar a una persona femenino que tenga una estatura entre 190 y 195 centímeros es de: 0.006 %"
plotDist("norm", mean = mean(datos$estatura), sd = sd(datos$estatura), groups = x >= 160 & x <= 170, type = "h", xlab = "Estatura Hombres y Mujeres", ylab = "Densidad" )
prob <- pnorm(q = 170, mean = mean(datos$estatura), sd = sd(datos$estatura)) - pnorm(q = 160, mean = mean(datos$estatura), sd = sd(datos$estatura))
paste("La probabilidad de encontrar a una persona femenino que tenga una estatura entre 190 y 195 centímeros es de:", round(prob * 100,4), "%")
## [1] "La probabilidad de encontrar a una persona femenino que tenga una estatura entre 190 y 195 centímeros es de: 33.3526 %"
En el caso 20 estamos viendo lo que es la distribucion normal en la cual, podemos observar dos ejercicios en los cuales el primero nos pide que encontremos la probabilidad de que una bombilla se queme entre 778 y 834 horas. los cual es del 51.1178%
Para el ejercicio 2 estamos buscando lo que son las mediciones del cuerpo humano y estas son la estatura y el peso, para esto nos piden que encontremos lo siguiente: a) ¿Cuál es la probabilidad de encontrar a una persona masculino que pese menor o igual de 60 kilogramos? es del 4.218%. b) ¿Cuál es la probabilidad de encontrar a una persona femenino que pese menor o igual de 50 kilogramos? es del 47.5107% c) ¿Cuál es la probabilidad de encontrar a una persona masculino que tenga una estatura mayor o igual de 180 centímetros? es del 37.6814%. d) ¿Cuál es la probabilidad de encontrar a una persona masculino que tenga una estatura mayor o igual de 190 centímetros?es del 4.4012% e) ¿Cuál es la probabilidad de encontrar a una persona masculino que tenga una estatura entre 160 y 170 centímetros? es del 13.3723% f) ¿Cuál es la probabilidad de encontrar a una persona masculino que tenga una estatura entre 190 y 195 centímetros? es del 3.5858%. g) ¿Cuál es la probabilidad de encontrar a una persona femenino que tenga una estatura mayor o igual de 180 centímetros? es de 1.0403%. h) ¿Cuál es la probabilidad de encontrar a una persona femenino que tenga una estatura mayor o igual de 190 centímetros? es del 0.0062%. i) ¿Cuál es la probabilidad de encontrar a una persona femenino que tenga una estatura entre 160 y 170 centímetros? es del 55.5039%. j) ¿Cuál es la probabilidad de encontrar a una persona femenino que tenga una estatura entre 190 y 195 centímetros? es del 0.006% k) ¿Cuál es la probabilidad de encontrar a una persona masculino o femenino que tenga una estatura entre 160 y 170 centímetros? es de 33.3526%.