Modelado de Datos de CEa75 y CEa150

datatable(BD_MODELADO,class = 'cell-border stripe', options = list(
  pageLength = 10, autoWidth = TRUE),colnames = c('X (UTM)','Y (UTM)','CE a 70cm','CE a 150cm','NDVI','DEM','Slope','Z (elevation)'))

Gráficos 3D

Gráfico de altitud, longitud contra Z

fig_Z <- plot_ly(x = x, y = y, z = z, size = I(90))%>%
            layout(
                  scene = list(
                              xaxis = list(title = "Longitud"),
                              yaxis = list(title = "Latitud"),
                              zaxis = list(title = "Elevation (M.A.S.L.)")
    )
  )%>%
add_markers(color = "cyan")
fig_Z
## Warning: `arrange_()` is deprecated as of dplyr 0.7.0.
## Please use `arrange()` instead.
## See vignette('programming') for more help
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_warnings()` to see where this warning was generated.
## Warning in RColorBrewer::brewer.pal(N, "Set2"): minimal value for n is 3, returning requested palette with 3 different levels

## Warning in RColorBrewer::brewer.pal(N, "Set2"): minimal value for n is 3, returning requested palette with 3 different levels

Gráfico de altitud, longitud contra DEM

fig_DEM <- plot_ly(x = x, y = y, z = DEM, size = I(90))%>%
            layout(
                  scene = list(
                              xaxis = list(title = "Longitud"),
                              yaxis = list(title = "Latitud"),
                              zaxis = list(title = "DEM")
    )
  )%>%
add_markers(color = "cyan")
fig_DEM
## Warning in RColorBrewer::brewer.pal(N, "Set2"): minimal value for n is 3, returning requested palette with 3 different levels

## Warning in RColorBrewer::brewer.pal(N, "Set2"): minimal value for n is 3, returning requested palette with 3 different levels

Variables explicativas

CEa75 CEa150 NDVI Slope Z DEM

X_x <- as.matrix(BD_MODELADO[,c(3:8)])
X_x
##        Avg_CEa_07 Avg_CEa_15     NDVI      DEM     SLOPE    Avg_z
##   [1,]   7.237480   18.02656 0.863030 199.0000  6.385167 193.0512
##   [2,]   6.787250   18.02737 0.866502 197.1667  1.981082 193.2986
##   [3,]   6.848250   18.70444 0.874883 197.0000  0.577682 193.5659
##   [4,]   7.135162   18.34237 0.845838 197.0000  1.175075 194.4116
##   [5,]   6.826763   17.92409 0.797179 197.0000  0.210996 193.9931
##   [6,]   6.699966   18.39441 0.758272 197.6667  4.357386 195.3814
##   [7,]   6.180742   17.84332 0.763436 199.7500  6.628445 196.6780
##   [8,]   8.539024   18.75812 0.823320 197.1667  1.462050 194.9936
##   [9,]   8.869958   18.85396 0.759923 197.3333  1.663344 196.1356
##  [10,]   7.231308   18.34269 0.757382 197.6667  3.541936 197.8522
##  [11,]   7.372200   18.35662 0.775947 199.6667  5.092919 196.9330
##  [12,]   7.556792   18.40508 0.757534 201.5000  2.800611 198.0175
##  [13,]   6.613547   18.00057 0.786412 201.4444  2.361177 197.7762
##  [14,]   8.707629   18.60609 0.822730 198.5000  4.355658 195.8610
##  [15,]   8.619512   18.65902 0.751389 198.5000  2.763125 196.5075
##  [16,]   9.443404   18.87923 0.782599 199.0000  2.106899 197.4861
##  [17,]   7.948763   18.66895 0.837023 200.6667  3.431262 199.9242
##  [18,]   7.617205   18.72236 0.827783 202.0000  1.192970 199.1996
##  [19,]   6.952229   18.63938 0.815532 201.6667  1.590627 199.2844
##  [20,]   8.900977   19.16011 0.849303 198.4444  5.012258 197.4021
##  [21,]   8.362279   18.82934 0.784440 200.5000  2.915162 197.2999
##  [22,]   9.246182   19.41561 0.792788 199.7778  2.759113 197.7400
##  [23,]   9.565551   19.12467 0.830265 199.3333  2.352002 198.8052
##  [24,]   9.514172   19.31950 0.836988 200.4444  3.071998 199.7561
##  [25,]   7.765429   18.73330 0.856579 202.0000  2.045438 200.2470
##  [26,]   7.740431   19.30920 0.848950 201.2222  3.057894 200.0841
##  [27,]   8.005415   18.90811 0.846561 200.1667  3.000087 200.0516
##  [28,]   6.561038   18.64561 0.851043 200.7778  3.986067 198.6690
##  [29,]   6.283077   18.36692 0.854749 201.8333  2.074468 198.8767
##  [30,]   8.319138   18.83954 0.808107 199.0000  4.708445 198.0322
##  [31,]   9.039500   19.16427 0.704767 201.0000  1.474276 198.9863
##  [32,]   8.967420   18.79867 0.829590 200.8333  1.545263 199.0529
##  [33,]  10.180382   19.61115 0.796595 200.7500  3.036000 199.4091
##  [34,]  10.306887   20.20234 0.800730 201.3333  3.673525 200.2416
##  [35,]  10.387930   19.50311 0.822610 202.7500  3.780945 200.4325
##  [36,]   8.079340   19.52706 0.812524 201.6667  5.572433 200.7606
##  [37,]   7.416591   18.46507 0.851740 198.7500  6.139762 201.2179
##  [38,]   7.794147   18.55415 0.861789 199.0000  6.402925 201.1689
##  [39,]   6.358915   18.25549 0.855028 200.5000  5.598307 198.6975
##  [40,]   7.251424   19.10358 0.868394 199.0000  6.668860 197.1639
##  [41,]   9.239875   20.23771 0.863231 198.4444  3.801271 195.1000
##  [42,]   8.808246   19.87461 0.842880 199.0000  3.790430 195.2742
##  [43,]   9.690171   19.67751 0.821701 198.3333  4.396922 195.7090
##  [44,]  10.155757   19.46209 0.798429 196.8333  3.904072 196.6163
##  [45,]   8.804591   19.08687 0.737705 199.3333  2.923768 196.6843
##  [46,]   8.434166   19.03361 0.750449 200.5000  2.458677 197.5293
##  [47,]   9.156519   18.77033 0.835305 201.3333  1.687156 199.8418
##  [48,]   9.274048   18.43818 0.752140 202.3333  3.230637 200.1707
##  [49,]  10.207658   19.63138 0.715250 203.5556  4.476171 200.8024
##  [50,]  10.902909   19.60230 0.739356 205.0000  4.121137 201.0412
##  [51,]   7.761483   18.37293 0.856687 200.3333 10.745049 201.2643
##  [52,]   8.006260   18.36260 0.852410 197.4444  5.309658 201.3608
##  [53,]   7.533355   18.36884 0.849109 197.5000  3.681294 200.7411
##  [54,]   6.599943   18.65739 0.855608 196.8889  3.572474 198.9216
##  [55,]   6.165389   18.22589 0.837410 196.1667  1.894812 198.8203
##  [56,]   9.801222   20.57460 0.813314 201.0000  6.860100 195.6087
##  [57,]   9.883363   19.67821 0.785680 201.2500  5.779408 196.0870
##  [58,]   9.356057   19.23891 0.828626 200.5000  5.703887 196.1448
##  [59,]   9.417184   18.72799 0.843965 199.2500  6.287442 196.4108
##  [60,]   8.755571   18.37157 0.847600 199.0000  5.979193 197.4217
##  [61,]   8.698579   18.29050 0.837913 200.0000  5.017095 197.9413
##  [62,]   8.703409   18.35272 0.758228 200.5000  4.258302 198.2749
##  [63,]   8.273370   18.69217 0.782020 201.5000  5.531510 198.1177
##  [64,]   8.349463   18.67237 0.843852 202.0000  1.791052 198.8206
##  [65,]   9.406651   19.00990 0.803169 201.5000  3.412350 200.6089
##  [66,]   9.437600   18.38075 0.805965 203.3333  6.380927 201.0759
##  [67,]  10.106193   18.76165 0.786369 205.0000  5.288365 201.1798
##  [68,]  10.622833   19.52911 0.815856 206.5000  5.275273 200.8173
##  [69,]   9.710588   19.22582 0.862998 205.2500 11.876602 203.1204
##  [70,]   8.792682   18.39832 0.848414 200.6667 12.718485 201.7512
##  [71,]   8.157281   18.32854 0.847895 198.0000  7.269520 201.4652
##  [72,]   7.586421   18.00271 0.865199 197.1667  5.617575 201.3465
##  [73,]   7.571196   17.90945 0.870017 196.7500  3.788360 201.2001
##  [74,]   6.827806   17.68600 0.871002 197.1667  3.364663 200.1021
##  [75,]  10.413632   19.74619 0.758252 204.5000  5.642858 198.3504
##  [76,]   9.166925   19.62213 0.867244 203.7778  6.482583 197.8452
##  [77,]   8.504000   18.89116 0.867638 202.3333  6.083620 197.3573
##  [78,]   8.788548   18.37173 0.870942 201.1111  2.459150 197.0722
##  [79,]   8.662250   18.26270 0.872671 201.0000  0.455108 198.1134
##  [80,]   8.719192   18.85450 0.868578 202.1111  4.101172 198.8306
##  [81,]   8.341883   18.48699 0.848237 203.6667  2.456326 199.8018
##  [82,]   8.293013   18.90836 0.851545 202.3333  4.217897 199.2333
##  [83,]   8.894091   18.87077 0.819059 200.8333  2.518604 200.0127
##  [84,]   9.640773   18.75718 0.804251 200.2222  4.984981 201.2964
##  [85,]   9.492250   18.26178 0.815396 201.8333  8.670177 202.1158
##  [86,]   9.782962   18.64194 0.823529 206.0000  7.582604 202.1501
##  [87,]  11.163060   20.20002 0.841616 207.3333  4.667620 201.8758
##  [88,]   9.308194   19.18990 0.849396 203.0000  8.109317 204.5230
##  [89,]   8.156393   18.35493 0.866166 202.5556 11.049718 201.9955
##  [90,]   8.287346   18.28569 0.864788 201.1667 11.253322 201.7849
##  [91,]   8.951000   18.28127 0.855187 199.1111  7.486137 201.6944
##  [92,]   7.039985   17.21669 0.856369 200.3333  6.899040 199.8109
##  [93,]   9.423294   19.52137 0.824327 207.0000  5.684828 198.8574
##  [94,]   9.017756   19.17876 0.862673 205.2500  7.447565 198.8165
##  [95,]   8.648365   19.24670 0.861911 203.0000  7.774040 198.1910
##  [96,]   8.578609   18.44053 0.870474 201.5000  4.397030 198.3609
##  [97,]   8.499200   18.28480 0.877252 202.8333  4.143000 199.0324
##  [98,]   8.404081   18.78468 0.860681 204.2500  1.997852 199.9175
##  [99,]   8.742085   19.17412 0.845406 204.0000  3.836572 201.0765
## [100,]   9.369309   19.24459 0.841513 202.0000  6.512908 202.0215
## [101,]   9.560190   18.78436 0.825845 199.6667  4.350432 201.3854
## [102,]   9.754492   18.74436 0.808722 200.0000  4.851805 202.4915
## [103,]   9.550490   18.27571 0.817211 203.1667  7.158753 203.2807
## [104,]   9.488833   18.19102 0.844389 205.2500  3.089440 203.4541
## [105,]  11.076870   20.15741 0.848573 204.8333  1.423512 203.0027
## [106,]   9.998806   19.54010 0.848647 205.0000  1.982079 204.2055
## [107,]   9.759255   19.09805 0.856381 206.6667  3.747822 204.8999
## [108,]   8.134407   18.10189 0.849230 205.7500  7.037877 201.7845
## [109,]   8.283045   18.08600 0.843651 202.1667  5.566600 201.8522
## [110,]   9.061986   18.65290 0.843616 201.0000  1.501851 201.4426
## [111,]   8.171761   18.13158 0.849739 202.3333  5.030968 199.7676
## [112,]   7.553833   17.89883 0.860130 203.0000  4.671025 199.0601
## [113,]   9.105000   19.12731 0.843663 207.8333  3.271004 198.3139
## [114,]   9.540674   19.70359 0.853745 206.4444  6.858296 197.9799
## [115,]   8.603241   19.29691 0.856553 205.0000  7.369337 199.1988
## [116,]   8.789031   18.58095 0.866439 204.1111  4.006299 199.6428
## [117,]   8.815902   18.78757 0.840555 204.8333  1.462050 200.2269
## [118,]   8.671873   18.86411 0.841259 204.8889  1.218358 201.0782
## [119,]   9.639222   18.64261 0.861820 204.0000  3.836572 202.3012
## [120,]   9.724586   18.89210 0.832131 201.6667  5.265142 202.6912
## [121,]   9.861596   18.64730 0.827554 201.5000  5.385043 202.6254
## [122,]  10.127983   18.61331 0.824167 204.1111  7.128587 203.7258
## [123,]  10.388884   18.67009 0.827009 206.0000  5.358540 204.1337
## [124,]   9.952259   18.44155 0.836960 204.7778  3.626926 204.7050
## [125,]  11.144444   19.95739 0.847317 203.6667  2.962247 203.4641
## [126,]  10.916097   19.64090 0.865341 204.7778  5.460382 203.7717
## [127,]   9.710557   18.55275 0.857880 205.5000  4.828302 204.8091
## [128,]   8.085140   17.91605 0.843587 202.3333  5.443827 201.9826
## [129,]   9.437786   18.36079 0.870549 201.5556  1.737311 200.9807
## [130,]   8.461278   18.23818 0.862629 202.0000  0.397830 199.6393
## [131,]   7.954150   18.13873 0.836774 200.8889  4.574136 198.6265
## [132,]   9.158409   19.58104 0.831675 209.3333  3.588530 198.2778
## [133,]   9.320712   19.21278 0.837706 208.0000  6.125635 199.2195
## [134,]   8.914465   19.23244 0.856900 206.1667  5.162935 200.2588
## [135,]   8.762164   18.87300 0.865854 205.2500  2.218411 200.8218
## [136,]   9.031770   18.57587 0.872514 205.3333  2.080359 201.5015
## [137,]   8.958058   18.34819 0.872568 204.5000  3.006227 202.4989
## [138,]   9.390675   18.47270 0.852908 202.3333  4.674987 203.3595
## [139,]   9.799225   18.57563 0.833239 201.5000  4.727215 204.4179
## [140,]  10.491500   19.03598 0.841123 206.3333  9.757872 203.6451
## [141,]  10.666597   19.02223 0.838892 209.2500  5.480415 204.4681
## [142,]  10.220761   18.92078 0.854460 206.3333  8.254676 205.4655
## [143,]   9.576524   18.23724 0.866290 203.7500  3.371925 206.1004
## [144,]  11.325523   19.28098 0.858144 203.3333  2.225776 204.2725
## [145,]  11.492385   19.30587 0.863999 203.7500  2.808880 204.0167
## [146,]   7.968871   17.46971 0.862478 201.5000  2.990262 201.6800
## [147,]   8.121050   17.72365 0.873844 201.8333  2.530224 201.5062
## [148,]   9.461541   18.51354 0.836021 202.5000  2.276920 200.5268
## [149,]   9.119667   18.28281 0.812793 201.8333  2.716172 199.7099
## [150,]   9.490019   18.76485 0.827297 200.5000  4.612540 198.5984
## [151,]   9.033125   19.33087 0.820116 210.3333  4.002342 199.7960
## [152,]   9.038783   19.51658 0.836631 209.8889  7.841606 200.2779
## [153,]   8.930578   19.08338 0.863915 207.8333  8.257585 201.3893
## [154,]   8.875571   18.92654 0.873334 206.4444  3.857106 202.0203
## [155,]   9.428071   18.44366 0.875065 205.1667  3.487768 202.6132
## [156,]   8.788283   18.25748 0.866960 203.2222  6.914147 203.7657
## [157,]   9.177440   18.19536 0.834331 201.1667  4.310694 204.5432
## [158,]   9.794014   18.57058 0.839068 205.7778 11.296110 205.7407
## [159,]  10.494813   18.72233 0.856831 210.0000  1.747159 204.5445
## [160,]  10.637610   18.78246 0.857267 208.5556  6.130330 204.9341
## [161,]  10.651236   18.81255 0.857484 205.5000  5.711950 205.8528
## [162,]   9.873600   17.76493 0.850752 205.0000  4.719129 206.3428
## [163,]  11.176595   18.51562 0.857664 204.8333  5.374358 205.1603
## [164,]  11.420059   19.12765 0.855681 203.3333  5.159998 204.1542
## [165,]  10.373150   18.40430 0.863387 203.8333  5.796872 202.9000
## [166,]   9.611918   18.19295 0.874638 204.1111  4.943022 203.4336
## [167,]   8.906259   17.73712 0.848241 204.0000  3.505737 201.4334
## [168,]  10.253087   18.28652 0.840399 203.3333  3.730053 200.1442
## [169,]  10.481411   18.95797 0.841652 201.5000  4.479237 199.8272
## [170,]  13.058916   20.93098 0.795073 199.7778  3.182941 198.7313
## [171,]   9.350082   19.53766 0.810811 211.7500  7.183032 201.5489
## [172,]   9.242393   19.02414 0.864632 208.3333  7.453835 202.5080
## [173,]   9.099338   18.98034 0.874916 206.7500  3.146847 203.1635
## [174,]   9.063097   18.44244 0.854908 205.8333  6.620357 203.5593
## [175,]   9.204898   18.10246 0.844776 204.2500  7.818020 204.7211
## [176,]   8.911786   17.86002 0.850159 206.1667  7.750718 205.2250
## [177,]  10.290754   18.50285 0.856557 209.2500  4.140995 206.9010
## [178,]  10.683234   18.46745 0.834661 209.5000  2.622039 205.6902
## [179,]  11.102933   18.37955 0.836137 208.2500  6.048235 204.9596
## [180,]  11.555725   18.25584 0.847999 208.1667  6.774420 206.3974
## [181,]  10.262660   17.39117 0.846368 208.0000  6.397650 206.1927
## [182,]  10.833848   17.85763 0.844550 205.6667  5.088587 205.5291
## [183,]  11.726238   18.83256 0.862181 206.0000  3.834015 204.3245
## [184,]  10.057179   18.69707 0.865831 206.5000  3.339427 202.7165
## [185,]  10.225946   18.36255 0.851753 205.5000  3.257628 202.3656
## [186,]   9.190459   17.95162 0.853442 203.6667  3.698943 201.2474
## [187,]  10.466905   17.97419 0.857861 202.7500  3.159929 200.5020
## [188,]  11.088537   18.78384 0.845244 201.3333  4.151367 199.8491
## [189,]  10.537560   20.02344 0.774291 200.2500  4.271058 198.5972
## [190,]   9.588048   18.82817 0.804610 209.8889  4.661827 202.7712
## [191,]   8.890474   18.78765 0.855494 209.3333  5.267915 203.2853
## [192,]   9.178667   18.73316 0.849169 209.2222  6.872354 203.6961
## [193,]   8.939582   17.58596 0.848935 208.6667  7.365235 204.2412
## [194,]   9.121469   17.82763 0.853871 209.0000  5.953982 205.0853
## [195,]   9.161358   17.63924 0.850449 210.5000  5.253798 205.9503
## [196,]   9.624125   18.32854 0.832890 211.0000  3.526908 207.7375
## [197,]  11.124750   17.95658 0.823946 211.3333  5.185570 206.7987
## [198,]  11.890033   17.76955 0.840283 211.3333  4.988912 204.8491
## [199,]  11.216469   17.67884 0.848761 210.5000  5.430198 206.4087
## [200,]  11.074617   17.49098 0.853740 208.0000  5.881513 206.0711
## [201,]  11.575519   17.08335 0.870374 207.1667  3.109163 205.9899
## [202,]  11.625279   18.87552 0.859950 207.2222  1.517558 204.7037
## [203,]  12.533951   18.86659 0.831997 206.0000  5.347407 204.3314
## [204,]  12.664912   18.38086 0.825287 203.4444  3.258100 202.1066
## [205,]  10.729181   17.21194 0.829966 203.0000  0.281328 201.1195
## [206,]   9.710667   17.63315 0.831045 203.0000  2.432128 200.8034
## [207,]  13.227629   21.51339 0.804012 202.5000  5.575297 199.7839
## [208,]   9.126116   19.53128 0.773180 199.6667  7.781784 198.6119
## [209,]   6.894246   18.29086 0.794779 197.5000  5.738217 197.4881
## [210,]   8.503577   18.33692 0.804623 210.7500  4.400325 203.6242
## [211,]   8.451278   18.34056 0.851234 212.3333  4.360802 204.1438
## [212,]   8.930413   18.50075 0.850611 211.5000  4.597890 204.2841
## [213,]   9.979037   18.06068 0.836540 211.1667  1.883871 204.7361
## [214,]  10.039082   17.67702 0.831368 211.2500  1.786949 205.4088
## [215,]  10.834800   17.87506 0.840000 211.8333  1.462050 206.3681
## [216,]  11.127763   18.10650 0.838095 212.2500  1.786949 207.6834
## [217,]  11.791851   18.21894 0.841190 212.3333  1.680566 207.2423
## [218,]  12.863088   17.80500 0.865160 211.5000  2.549555 205.3834
## [219,]  12.366322   17.62178 0.849108 210.0000  3.990678 205.9602
## [220,]  12.096839   17.61648 0.841961 208.5000  3.257628 205.7391
## [221,]  11.738320   16.88126 0.848782 207.5000  3.292012 205.9970
## [222,]  12.740534   18.68069 0.828928 205.0000  6.269660 204.5509
## [223,]  13.601094   18.82575 0.811157 203.1667  2.430204 204.8136
## [224,]  11.457347   18.02683 0.820088 203.5000  3.299475 201.8857
## [225,]  11.166191   18.37085 0.830938 204.5000  3.254442 201.3896
## [226,]  11.297233   18.90360 0.804511 204.0000  2.554135 200.8387
## [227,]  11.039111   21.20233 0.817266 202.1667  4.492692 199.5112
## [228,]   7.963308   19.38825 0.789837 200.5000  4.355658 198.6991
## [229,]   9.048643   18.20879 0.812592 212.3333  3.567334 204.5661
## [230,]   8.881460   17.97930 0.837166 212.5000  2.958468 204.0985
## [231,]  10.835075   18.14640 0.830340 210.6667  3.911258 204.9926
## [232,]  10.506455   17.76495 0.815107 210.1667  2.740343 205.3672
## [233,]   9.840000   16.97415 0.837437 210.8889  2.434887 205.4851
## [234,]  10.916683   17.68562 0.839855 211.8333  1.462050 206.6006
## [235,]  11.010927   17.45429 0.843084 211.6667  1.574458 206.9225
## [236,]  13.424340   18.47732 0.849661 211.1667  1.191299 206.9044
## [237,]  12.675188   17.95838 0.829123 210.3333  1.963581 205.8225
## [238,]  12.447763   17.93237 0.814726 209.3333  2.510633 205.4299
## [239,]  12.444867   17.68103 0.859755 208.1111  3.357586 207.9852
## [240,]  11.632409   17.55151 0.860111 205.6667  5.573225 211.9958
## [241,]  12.971378   18.85073 0.836932 205.0000  3.883573 205.4668
## [242,]  13.262604   19.25704 0.833459 205.3333  3.425505 204.7264
## [243,]  10.691591   18.11443 0.862390 205.3333  2.397526 202.1130
## [244,]  10.110577   18.56411 0.835272 203.5000  3.529828 201.4283
## [245,]  10.214864   18.50148 0.820129 202.3333  1.757121 200.8799
## [246,]   9.330150   20.68170 0.813438 201.8333  1.321386 199.5737
## [247,]   8.808750   17.69575 0.801299 211.0000  3.843770 204.1000
## [248,]   9.284254   17.66615 0.814951 209.6667  2.339072 204.1985
## [249,]   9.965915   17.60387 0.810631 210.0000  3.372290 205.5335
## [250,]  10.322586   17.42128 0.830254 210.8333  1.331963 205.8982
## [251,]   9.753217   16.80468 0.829867 211.5000  2.331430 205.7017
## [252,]  10.107022   17.01939 0.830576 211.3333  1.753202 206.8975
## [253,]  12.064159   17.70423 0.829442 210.7500  1.982079 206.8196
## [254,]  13.318076   18.44122 0.807566 210.6667  1.994592 206.3962
## [255,]  11.840000   18.03844 0.830631 210.5000  3.652555 205.9474
## [256,]  11.691589   17.92762 0.869058 208.8333  4.000510 205.4009
## [257,]  12.471000   18.34732 0.876872 207.2500  4.344182 204.7141
## [258,]  11.860000   17.76506 0.856497 206.5000  2.025263 212.3547
## [259,]  11.974023   18.34123 0.855178 206.7500  2.143036 208.9608
## [260,]  12.494547   19.32316 0.865053 205.6667  3.054682 204.7026
## [261,]   9.845591   18.51041 0.856615 203.5000  3.507347 201.5060
## [262,]  10.792130   18.86935 0.833807 202.3333  1.699703 201.5401
## [263,]   9.899631   17.45368 0.799654 210.5000  3.195748 205.3600
## [264,]  10.453354   17.65788 0.841748 211.7778  3.074642 205.9236
## [265,]  10.972456   18.56572 0.840825 212.6667  2.340314 206.6825
## [266,]   9.714850   17.08600 0.842335 211.8889  3.682146 205.9591
## [267,]  11.064222   17.15713 0.842948 210.0000  1.380508 206.3634
## [268,]  12.026567   17.66037 0.823280 210.2222  1.494623 206.4892
## [269,]  12.136029   17.96648 0.835574 211.0000  1.180966 206.3979
## [270,]  12.298185   18.43244 0.855167 210.3333  3.630946 205.9306
## [271,]  12.122456   18.10990 0.856197 208.0000  4.508540 205.4732
## [272,]  12.715985   18.00555 0.846907 207.0000  1.229972 204.6796
## [273,]  11.433000   17.89280 0.848410 207.5000  3.308189 210.9083
## [274,]  11.097524   18.34174 0.861704 207.0000  5.720357 212.1226
## [275,]  12.078147   19.67345 0.866817 204.5000  5.589362 205.4466
## [276,]   9.787512   17.72488 0.818078 212.6667  2.291358 205.9218
## [277,]   9.977851   17.93497 0.844989 212.0000  3.971073 207.1207
## [278,]  10.401154   17.04784 0.848807 210.0000  1.192970 206.7147
## [279,]  10.185048   17.19309 0.838659 210.0000  0.281328 206.9503
## [280,]  11.695016   17.65305 0.831923 210.5000  2.276920 206.2647
## [281,]  12.247611   18.35720 0.843948 210.3333  1.731291 206.4828
## [282,]  12.025920   18.36328 0.839912 209.5000  3.270202 206.1123
## [283,]  11.256382   18.32035 0.829359 208.3333  4.489935 205.3742
## [284,]  11.515895   18.41900 0.832789 209.0000  4.915900 204.6418
## [285,]  11.611375   18.73189 0.852465 209.3333  4.350432 208.2343
## [286,]   9.577556   17.74167 0.804340 213.1667  1.191299 206.9770
## [287,]   9.894512   17.67345 0.831047 212.1111  3.048190 207.8832
## [288,]  10.346464   17.80915 0.838290 211.3333  3.132002 207.5258
## [289,]  10.386561   17.27867 0.828603 210.7778  3.312014 207.4212
## [290,]   9.972537   16.80343 0.833425 211.3333  2.262116 207.1158
## [291,]  11.363155   17.82667 0.843895 210.7778  2.962719 206.1141
## [292,]  11.511292   18.15106 0.836312 209.8333  2.286170 206.2850
## [293,]  11.321532   18.56879 0.808821 209.0000  2.715691 205.8256
## [294,]  11.403831   18.60643 0.804109 208.6667  4.780660 205.4207
## [295,]  12.237587   19.39965 0.828916 209.8889  2.595346 204.7865
## [296,]  10.013111   17.44778 0.802328 212.8333  2.800913 208.1229
## [297,]   9.645260   17.53826 0.826260 212.5000  3.006227 208.1408
## [298,]  10.961389   18.04187 0.835826 212.5000  2.802492 207.5593
## [299,]   9.826764   17.54689 0.843641 212.5000  2.385940 206.4362
## [300,]   9.692833   17.14611 0.840611 212.6667  3.459422 205.2322
## [301,]  11.477929   18.16683 0.824012 210.0000  7.497325 206.2511
## [302,]  11.563340   18.74846 0.814689 207.1667  6.410306 206.1078
## [303,]  10.787655   18.61794 0.815784 205.5000  6.839028 205.4652
## [304,]  10.040680   17.56948 0.819922 213.1111  1.389929 207.7260
## [305,]  11.507673   17.99358 0.839661 212.6667  1.531505 207.4729
## [306,]   9.891250   18.13896 0.826877 213.3333  2.869667 207.5030
## [307,]   9.972969   17.30525 0.825225 211.8333  8.230437 205.3955
## [308,]  10.590700   18.89458 0.834841 207.0000  9.589556 206.0401
## [309,]   9.565263   18.37484 0.800520 211.7500  3.309488 207.5483
## [310,]   9.002500   18.15950 0.820314 212.1667  4.362813 207.6438
## [311,]   9.762534   18.99889 0.837665 212.7500  4.403135 207.4406
## [312,]   9.225618   18.51444 0.796948 209.6667  8.798860 205.7614
## [313,]   9.394625   18.19100 0.777866 212.0000  2.791830 207.6968
############################### Variables respuesta
v_res75 <- X_x[,1]
v_res150 <- X_x[,2]
############################### Variables explicativas (independientes)
v_exp75 <- X_x[,2:6]
v_exp150 <- X_x[,c(1,3:6)]
x75 <- as.matrix(v_exp75)
x150 <- as.matrix(v_exp150)

Coordenadas

xydat <- as.matrix(BD_MODELADO[,1:2])

Matriz de pesos

MD <- as.matrix(dist(xydat, diag = T, upper = T))
MD_inv <- as.matrix(1/MD)
diag(MD_inv) <- 0
W <- as.matrix(MD_inv)
suma <- apply(W, 1, sum)
We <- W/suma  # Estandarizado
apply(We, 1, sum)
##   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19  20 
##   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1 
##  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40 
##   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1 
##  41  42  43  44  45  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60 
##   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1 
##  61  62  63  64  65  66  67  68  69  70  71  72  73  74  75  76  77  78  79  80 
##   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1 
##  81  82  83  84  85  86  87  88  89  90  91  92  93  94  95  96  97  98  99 100 
##   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1 
## 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 
##   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1 
## 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 
##   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1 
## 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 
##   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1 
## 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 
##   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1 
## 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 
##   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1 
## 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 
##   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1 
## 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 
##   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1 
## 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 
##   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1 
## 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 
##   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1 
## 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 
##   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1 
## 301 302 303 304 305 306 307 308 309 310 311 312 313 
##   1   1   1   1   1   1   1   1   1   1   1   1   1

Índices de Moran

Moran_o <- list() # Observado
Moran_p <-list() # p.valor
for(j in 1:6){
  Moran_o[j]=Moran.I(X_x[,j], We)$observed
}

for(j in 1:6){
  Moran_p[j]=Moran.I(X_x[,j], We)$p.value
}

Moran_o <- as.vector(Moran_o)
list(Moran_o,Moran_p)
## [[1]]
## [[1]][[1]]
## [1] 0.2687468
## 
## [[1]][[2]]
## [1] 0.160951
## 
## [[1]][[3]]
## [1] 0.09750403
## 
## [[1]][[4]]
## [1] 0.3096708
## 
## [[1]][[5]]
## [1] 0.06993324
## 
## [[1]][[6]]
## [1] 0.3505031
## 
## 
## [[2]]
## [[2]][[1]]
## [1] 0
## 
## [[2]][[2]]
## [1] 0
## 
## [[2]][[3]]
## [1] 0
## 
## [[2]][[4]]
## [1] 0
## 
## [[2]][[5]]
## [1] 0
## 
## [[2]][[6]]
## [1] 0
data.frame(list(Moran_o,Moran_p))
##   X0.268746828627044 X0.160951018381243 X0.0975040302526088 X0.309670845207254
## 1          0.2687468           0.160951          0.09750403          0.3096708
##   X0.0699332392625859 X0.350503097268066 X0 X0.1 X0.2 X0.3 X0.4 X0.5
## 1          0.06993324          0.3505031  0    0    0    0    0    0

Matrices de Correlación

MCP <- rcorr(as.matrix(X_x[,1:6]), type = 'p')
MCS <- rcorr(as.matrix(X_x[,1:6]), type = 's')
Mcorp <- MCP$r
Mcors <- MCS$r

Gráfico de correlación

par(mfrow = c(1,2))
corrplot(Mcorp, order = 'hclust', tl.col = 'black', tl.srt = 45, main = 'Pearson')
corrplot(Mcors, order = 'hclust', tl.col = 'black', tl.srt = 45, main = 'Spearman')

des <- describe(X_x[,1:6])
datatable(des,class = 'cell-border stripe')
par(mfrow = c(1,2))
boxplot(X_x[,1], main = 'bx_CE_75')
hist(X_x[,1], main = 'hist_CE_75')

par(mfrow = c(1,2))
boxplot(X_x[,2], main = 'bx_CE_150')
hist(X_x[,2], main = 'hist_CE_150')

bx_75

hist_75

bx_150

hist_150

Pruebas de Normalidad

cvm_75<-cvm.test(X_x[,1]);cvm_75
## 
##  Cramer-von Mises normality test
## 
## data:  X_x[, 1]
## W = 0.13062, p-value = 0.04289
cvm_150<-cvm.test(X_x[,2]);cvm_150
## 
##  Cramer-von Mises normality test
## 
## data:  X_x[, 2]
## W = 0.19809, p-value = 0.005641
shp_75<-shapiro.test(X_x[,1]);shp_75
## 
##  Shapiro-Wilk normality test
## 
## data:  X_x[, 1]
## W = 0.99217, p-value = 0.09827
shp_150<-shapiro.test(X_x[,2]);shp_150
## 
##  Shapiro-Wilk normality test
## 
## data:  X_x[, 2]
## W = 0.97785, p-value = 9.283e-05
shapi <- c()
for(j in 1:6){
  shapi[j]<- sf.test(X_x[,j])$p.value
}
shapi
## [1] 2.012501e-01 1.413917e-04 5.193185e-12 1.654850e-06 4.550567e-08
## [6] 5.770683e-04
lillie.test(X_x[,1])
## 
##  Lilliefors (Kolmogorov-Smirnov) normality test
## 
## data:  X_x[, 1]
## D = 0.047286, p-value = 0.08837
lillie.test(X_x[,2])
## 
##  Lilliefors (Kolmogorov-Smirnov) normality test
## 
## data:  X_x[, 2]
## D = 0.064556, p-value = 0.003126
ks.test(X_x[,1], X_x[,2])
## 
##  Two-sample Kolmogorov-Smirnov test
## 
## data:  X_x[, 1] and X_x[, 2]
## D = 1, p-value < 2.2e-16
## alternative hypothesis: two-sided
ad.test(X_x[,1])
## 
##  Anderson-Darling normality test
## 
## data:  X_x[, 1]
## A = 0.7015, p-value = 0.06643
ad.test(X_x[,2])
## 
##  Anderson-Darling normality test
## 
## data:  X_x[, 2]
## A = 1.1882, p-value = 0.004171

Modelo Clásico No espacial

mod_cla75 <- lm(CE_70cm~Slope+z+CE_150cm)
mod_cla150 <- lm(CE_150cm~Slope+z+CE_70cm)

mod_cla75_log <- lm(CE_70cm~Slope+z+log(CE_150cm))
mod_cla150_log <- lm(log(CE_150cm)~Slope+z+CE_70cm)

summary(mod_cla75)
## 
## Call:
## lm(formula = CE_70cm ~ Slope + z + CE_150cm)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.41298 -0.71115 -0.05541  0.64834  3.01718 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -73.98404    4.74765 -15.583  < 2e-16 ***
## Slope        -0.12525    0.02799  -4.475 1.07e-05 ***
## z             0.33680    0.01834  18.369  < 2e-16 ***
## CE_150cm      0.86887    0.09270   9.373  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.05 on 309 degrees of freedom
## Multiple R-squared:  0.5315, Adjusted R-squared:  0.527 
## F-statistic: 116.9 on 3 and 309 DF,  p-value: < 2.2e-16
summary(mod_cla150)
## 
## Call:
## lm(formula = CE_150cm ~ Slope + z + CE_70cm)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.50608 -0.39071  0.01281  0.36509  2.04703 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 47.55651    2.11792  22.454  < 2e-16 ***
## Slope        0.07595    0.01503   5.053 7.45e-07 ***
## z           -0.15733    0.01123 -14.009  < 2e-16 ***
## CE_70cm      0.25480    0.02718   9.373  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5686 on 309 degrees of freedom
## Multiple R-squared:  0.4107, Adjusted R-squared:  0.405 
## F-statistic: 71.78 on 3 and 309 DF,  p-value: < 2.2e-16
summary(mod_cla75_log)
## 
## Call:
## lm(formula = CE_70cm ~ Slope + z + log(CE_150cm))
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.42707 -0.71701 -0.05763  0.63705  3.00432 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   -104.75300    7.56476 -13.847  < 2e-16 ***
## Slope           -0.12589    0.02811  -4.479 1.06e-05 ***
## z                0.33663    0.01844  18.259  < 2e-16 ***
## log(CE_150cm)   16.07153    1.74114   9.230  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.054 on 309 degrees of freedom
## Multiple R-squared:  0.5284, Adjusted R-squared:  0.5238 
## F-statistic: 115.4 on 3 and 309 DF,  p-value: < 2.2e-16
summary(mod_cla150_log)
## 
## Call:
## lm(formula = log(CE_150cm) ~ Slope + z + CE_70cm)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.084372 -0.020934  0.000798  0.020035  0.105152 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  4.4718190  0.1135149  39.394  < 2e-16 ***
## Slope        0.0041209  0.0008056   5.115 5.51e-07 ***
## z           -0.0084111  0.0006019 -13.973  < 2e-16 ***
## CE_70cm      0.0134484  0.0014570   9.230  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.03048 on 309 degrees of freedom
## Multiple R-squared:  0.4101, Adjusted R-squared:  0.4044 
## F-statistic: 71.61 on 3 and 309 DF,  p-value: < 2.2e-16

Prueba de normalidad residual

res1 <- mod_cla75$residuals
shapiro.test(res1)
## 
##  Shapiro-Wilk normality test
## 
## data:  res1
## W = 0.99092, p-value = 0.05044
res1_2 <- mod_cla150$residuals
shapiro.test(res1_2)
## 
##  Shapiro-Wilk normality test
## 
## data:  res1_2
## W = 0.99144, p-value = 0.06673
hist(res1)

hist(res1_2)

res2 <- mod_cla75_log$residuals
shapiro.test(res2)
## 
##  Shapiro-Wilk normality test
## 
## data:  res2
## W = 0.99096, p-value = 0.05142
res2_2 <- mod_cla150_log$residuals
shapiro.test(res2_2)
## 
##  Shapiro-Wilk normality test
## 
## data:  res2_2
## W = 0.99467, p-value = 0.3489
hist(res2)

hist(res2_2)

Para que un modelo sea considerado adecuado, es necesario que sus residuosestén normalmente distribuidos es decir están normal e independientemente distribuidoscon media 0 y varianza mínima

Simetria para los datos

skew(X_x[,1])
## [1] 0.1002837
skewness.norm.test(X_x[,1])
## 
##  Skewness test for normality
## 
## data:  X_x[, 1]
## T = 0.10077, p-value = 0.4695
skew(X_x[,2])
## [1] 0.5702493
skewness.norm.test(X_x[,2]) # No es simétrico
## 
##  Skewness test for normality
## 
## data:  X_x[, 2]
## T = 0.57299, p-value = 5e-04

Simetria para los residuales

skew(res1)
## [1] 0.2441868
skew(res1_2)
## [1] 0.257621
skewness.norm.test(res1)
## 
##  Skewness test for normality
## 
## data:  res1
## T = 0.24536, p-value = 0.085
skewness.norm.test(res1_2)
## 
##  Skewness test for normality
## 
## data:  res1_2
## T = 0.25886, p-value = 0.0545
skew(res2)
## [1] 0.2440019
skew(res2_2)
## [1] 0.1342606
skewness.norm.test(res2)
## 
##  Skewness test for normality
## 
## data:  res2
## T = 0.24518, p-value = 0.072
skewness.norm.test(res2_2)
## 
##  Skewness test for normality
## 
## data:  res2_2
## T = 0.13491, p-value = 0.3105
estima1 <- mod_cla75$fitted.values
estima1_2 <- mod_cla150$fitted.values
estima2 <- mod_cla75_log$fitted.values
estima2_2 <- mod_cla150_log$fitted.values

plot(CE_70cm, estima1,pch=16)

plot(CE_70cm, estima1_2,pch=16)

plot(CE_150cm, estima2,pch=16) ##Error

plot(CE_150cm, estima2_2,pch=16) ##Error

cor(CE_70cm, estima1)
## [1] 0.7290603
cor(CE_70cm, estima1_2)
## [1] 0.01700518
cor(CE_150cm, estima1)
## [1] 0.01494752
cor(CE_150cm, estima1_2)
## [1] 0.6408426
res_c1 <- mod_cla75$residuals
res_c2 <- mod_cla150$residuals

shapiro.test(res_c1)
## 
##  Shapiro-Wilk normality test
## 
## data:  res_c1
## W = 0.99092, p-value = 0.05044
shapiro.test(res_c2)
## 
##  Shapiro-Wilk normality test
## 
## data:  res_c2
## W = 0.99144, p-value = 0.06673
cvm.test(res_c1)
## 
##  Cramer-von Mises normality test
## 
## data:  res_c1
## W = 0.1071, p-value = 0.08941
cvm.test(res_c2)
## 
##  Cramer-von Mises normality test
## 
## data:  res_c2
## W = 0.035689, p-value = 0.7586
moranres1 <- Moran.I(res_c1, We); moranres1
## $observed
## [1] 0.1580117
## 
## $expected
## [1] -0.003205128
## 
## $sd
## [1] 0.004665226
## 
## $p.value
## [1] 0
moranres2 <- Moran.I(res_c2, We); moranres2
## $observed
## [1] 0.08362486
## 
## $expected
## [1] -0.003205128
## 
## $sd
## [1] 0.004659635
## 
## $p.value
## [1] 0
AIC(mod_cla75)
## [1] 924.809
AIC(mod_cla75_log)
## [1] 926.9123
AIC(mod_cla150)
## [1] 540.8476
AIC(mod_cla150_log)
## [1] -1290.988

Muestra dependencia espacial (\(p~value = 0\))

Modelo autoregresivo puro

\[Y = \lambda W Y + u\]

contnb <- dnearneigh(coordinates(xydat),0,854, longlat = F)
contnb
## Neighbour list object:
## Number of regions: 313 
## Number of nonzero links: 97656 
## Percentage nonzero weights: 99.68051 
## Average number of links: 312
dlist <- nbdists(contnb, xydat)
dlist <- lapply(dlist, function(x) 1/x)
Wve <- nb2listw(contnb, glist = dlist, style = 'W')

Modelo aplicado a CEa 75cm

map_75 <- spautolm(CE_70cm~1, data = BD_MODELADO, listw = Wve) ### modelo
summary(map_75)
## 
## Call: spautolm(formula = CE_70cm ~ 1, data = BD_MODELADO, listw = Wve)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -3.258254 -0.650679 -0.071829  0.824652  3.063002 
## 
## Coefficients: 
##             Estimate Std. Error z value Pr(>|z|)
## (Intercept)   5.6941     5.5177   1.032   0.3021
## 
## Lambda: 0.98811 LR test value: 162.5 p-value: < 2.22e-16 
## Numerical Hessian standard error of lambda: 0.011866 
## 
## Log likelihood: -494.8231 
## ML residual variance (sigma squared): 1.347, (sigma: 1.1606)
## Number of observations: 313 
## Number of parameters estimated: 3 
## AIC: 995.65
CE75E1 <- as.data.frame(map_75$fit['fitted.values']); CE75E1
##     fitted.values
## 1        8.630840
## 2        8.677614
## 3        8.915327
## 4        8.905593
## 5        8.823590
## 6        8.855964
## 7        8.926651
## 8        9.075587
## 9        9.005442
## 10       8.976890
## 11       8.884608
## 12       8.891069
## 13       9.005997
## 14       9.118444
## 15       9.063342
## 16       9.078390
## 17       9.017083
## 18       8.963977
## 19       9.010809
## 20       9.140845
## 21       9.167758
## 22       9.153547
## 23       9.161890
## 24       9.176344
## 25       9.082528
## 26       9.056709
## 27       9.047807
## 28       9.067164
## 29       9.044682
## 30       9.188022
## 31       9.163653
## 32       9.219194
## 33       9.234668
## 34       9.277458
## 35       9.209232
## 36       9.114491
## 37       9.141687
## 38       9.057097
## 39       9.063203
## 40       9.085082
## 41       9.378154
## 42       9.408673
## 43       9.350574
## 44       9.303262
## 45       9.199406
## 46       9.206472
## 47       9.220954
## 48       9.298079
## 49       9.335869
## 50       9.343705
## 51       9.167121
## 52       9.217638
## 53       9.132135
## 54       9.139613
## 55       9.231274
## 56       9.389832
## 57       9.362198
## 58       9.363906
## 59       9.307090
## 60       9.269509
## 61       9.237040
## 62       9.217758
## 63       9.224031
## 64       9.251322
## 65       9.305770
## 66       9.390986
## 67       9.417336
## 68       9.412515
## 69       9.359436
## 70       9.265487
## 71       9.323860
## 72       9.216384
## 73       9.265595
## 74       9.377446
## 75       9.364359
## 76       9.364638
## 77       9.321254
## 78       9.261893
## 79       9.232669
## 80       9.231064
## 81       9.248915
## 82       9.286159
## 83       9.333348
## 84       9.411793
## 85       9.473314
## 86       9.507532
## 87       9.487591
## 88       9.492216
## 89       9.438128
## 90       9.360970
## 91       9.410562
## 92       9.516229
## 93       9.336716
## 94       9.326413
## 95       9.286560
## 96       9.254454
## 97       9.257587
## 98       9.284867
## 99       9.320253
## 100      9.381706
## 101      9.459042
## 102      9.511379
## 103      9.571877
## 104      9.627686
## 105      9.585429
## 106      9.614270
## 107      9.609465
## 108      9.549948
## 109      9.569025
## 110      9.544636
## 111      9.603785
## 112      9.673825
## 113      9.327980
## 114      9.318167
## 115      9.295318
## 116      9.285032
## 117      9.312384
## 118      9.365627
## 119      9.415135
## 120      9.483652
## 121      9.557407
## 122      9.622419
## 123      9.680956
## 124      9.732745
## 125      9.710612
## 126      9.783932
## 127      9.711586
## 128      9.682039
## 129      9.637150
## 130      9.715744
## 131      9.825931
## 132      9.342910
## 133      9.345081
## 134      9.326101
## 135      9.354201
## 136      9.394458
## 137      9.461977
## 138      9.513767
## 139      9.585866
## 140      9.668500
## 141      9.741886
## 142      9.813041
## 143      9.862624
## 144      9.863708
## 145      9.918466
## 146      9.819380
## 147      9.896345
## 148      9.794386
## 149      9.909616
## 150     10.018022
## 151      9.370459
## 152      9.396344
## 153      9.397768
## 154      9.440066
## 155      9.475501
## 156      9.549499
## 157      9.594048
## 158      9.698029
## 159      9.792031
## 160      9.873133
## 161      9.946706
## 162     10.008109
## 163     10.030590
## 164     10.049422
## 165      9.961859
## 166     10.018371
## 167     10.064259
## 168     10.001980
## 169     10.168103
## 170     10.080632
## 171      9.450354
## 172      9.473966
## 173      9.505532
## 174      9.554041
## 175      9.617729
## 176      9.704815
## 177      9.823379
## 178      9.924799
## 179     10.022862
## 180     10.091492
## 181     10.156716
## 182     10.205185
## 183     10.190925
## 184     10.121674
## 185     10.218721
## 186     10.237673
## 187     10.242297
## 188     10.244078
## 189     10.229002
## 190      9.499370
## 191      9.534347
## 192      9.562697
## 193      9.653501
## 194      9.741415
## 195      9.860718
## 196     10.003750
## 197     10.091862
## 198     10.189355
## 199     10.258322
## 200     10.327001
## 201     10.389451
## 202     10.366534
## 203     10.445209
## 204     10.351633
## 205     10.353167
## 206     10.409873
## 207     10.181927
## 208     10.190122
## 209     10.152500
## 210      9.569718
## 211      9.614854
## 212      9.684341
## 213      9.780383
## 214      9.894219
## 215     10.004780
## 216     10.165121
## 217     10.250997
## 218     10.333902
## 219     10.422199
## 220     10.494593
## 221     10.515605
## 222     10.530251
## 223     10.565920
## 224     10.448753
## 225     10.397189
## 226     10.337385
## 227     10.094549
## 228     10.103404
## 229      9.645302
## 230      9.725853
## 231      9.801962
## 232      9.922671
## 233     10.038751
## 234     10.155774
## 235     10.301679
## 236     10.361338
## 237     10.481864
## 238     10.547544
## 239     10.571096
## 240     10.625096
## 241     10.613946
## 242     10.564767
## 243     10.448957
## 244     10.379680
## 245     10.269619
## 246     10.065831
## 247      9.796441
## 248      9.855822
## 249      9.955503
## 250     10.039782
## 251     10.160609
## 252     10.322054
## 253     10.371750
## 254     10.463036
## 255     10.571733
## 256     10.613959
## 257     10.616121
## 258     10.642185
## 259     10.612025
## 260     10.491943
## 261     10.379680
## 262     10.295154
## 263      9.971460
## 264     10.043301
## 265     10.106938
## 266     10.256499
## 267     10.371095
## 268     10.411438
## 269     10.525438
## 270     10.589570
## 271     10.618749
## 272     10.594193
## 273     10.601849
## 274     10.557440
## 275     10.402316
## 276     10.074898
## 277     10.191610
## 278     10.286434
## 279     10.385871
## 280     10.436874
## 281     10.548901
## 282     10.565375
## 283     10.576566
## 284     10.560897
## 285     10.515728
## 286     10.127149
## 287     10.134714
## 288     10.229896
## 289     10.307888
## 290     10.358705
## 291     10.444804
## 292     10.503041
## 293     10.496880
## 294     10.503109
## 295     10.449893
## 296     10.162679
## 297     10.199231
## 298     10.235332
## 299     10.304722
## 300     10.343512
## 301     10.412607
## 302     10.396544
## 303     10.426268
## 304     10.217876
## 305     10.179873
## 306     10.228171
## 307     10.295167
## 308     10.311777
## 309     10.190402
## 310     10.166322
## 311     10.179021
## 312     10.266246
## 313     10.132241
CE75E <- map_75$fit$fitted.values ## Estimados
CE75E
##         1         2         3         4         5         6         7         8 
##  8.630840  8.677614  8.915327  8.905593  8.823590  8.855964  8.926651  9.075587 
##         9        10        11        12        13        14        15        16 
##  9.005442  8.976890  8.884608  8.891069  9.005997  9.118444  9.063342  9.078390 
##        17        18        19        20        21        22        23        24 
##  9.017083  8.963977  9.010809  9.140845  9.167758  9.153547  9.161890  9.176344 
##        25        26        27        28        29        30        31        32 
##  9.082528  9.056709  9.047807  9.067164  9.044682  9.188022  9.163653  9.219194 
##        33        34        35        36        37        38        39        40 
##  9.234668  9.277458  9.209232  9.114491  9.141687  9.057097  9.063203  9.085082 
##        41        42        43        44        45        46        47        48 
##  9.378154  9.408673  9.350574  9.303262  9.199406  9.206472  9.220954  9.298079 
##        49        50        51        52        53        54        55        56 
##  9.335869  9.343705  9.167121  9.217638  9.132135  9.139613  9.231274  9.389832 
##        57        58        59        60        61        62        63        64 
##  9.362198  9.363906  9.307090  9.269509  9.237040  9.217758  9.224031  9.251322 
##        65        66        67        68        69        70        71        72 
##  9.305770  9.390986  9.417336  9.412515  9.359436  9.265487  9.323860  9.216384 
##        73        74        75        76        77        78        79        80 
##  9.265595  9.377446  9.364359  9.364638  9.321254  9.261893  9.232669  9.231064 
##        81        82        83        84        85        86        87        88 
##  9.248915  9.286159  9.333348  9.411793  9.473314  9.507532  9.487591  9.492216 
##        89        90        91        92        93        94        95        96 
##  9.438128  9.360970  9.410562  9.516229  9.336716  9.326413  9.286560  9.254454 
##        97        98        99       100       101       102       103       104 
##  9.257587  9.284867  9.320253  9.381706  9.459042  9.511379  9.571877  9.627686 
##       105       106       107       108       109       110       111       112 
##  9.585429  9.614270  9.609465  9.549948  9.569025  9.544636  9.603785  9.673825 
##       113       114       115       116       117       118       119       120 
##  9.327980  9.318167  9.295318  9.285032  9.312384  9.365627  9.415135  9.483652 
##       121       122       123       124       125       126       127       128 
##  9.557407  9.622419  9.680956  9.732745  9.710612  9.783932  9.711586  9.682039 
##       129       130       131       132       133       134       135       136 
##  9.637150  9.715744  9.825931  9.342910  9.345081  9.326101  9.354201  9.394458 
##       137       138       139       140       141       142       143       144 
##  9.461977  9.513767  9.585866  9.668500  9.741886  9.813041  9.862624  9.863708 
##       145       146       147       148       149       150       151       152 
##  9.918466  9.819380  9.896345  9.794386  9.909616 10.018022  9.370459  9.396344 
##       153       154       155       156       157       158       159       160 
##  9.397768  9.440066  9.475501  9.549499  9.594048  9.698029  9.792031  9.873133 
##       161       162       163       164       165       166       167       168 
##  9.946706 10.008109 10.030590 10.049422  9.961859 10.018371 10.064259 10.001980 
##       169       170       171       172       173       174       175       176 
## 10.168103 10.080632  9.450354  9.473966  9.505532  9.554041  9.617729  9.704815 
##       177       178       179       180       181       182       183       184 
##  9.823379  9.924799 10.022862 10.091492 10.156716 10.205185 10.190925 10.121674 
##       185       186       187       188       189       190       191       192 
## 10.218721 10.237673 10.242297 10.244078 10.229002  9.499370  9.534347  9.562697 
##       193       194       195       196       197       198       199       200 
##  9.653501  9.741415  9.860718 10.003750 10.091862 10.189355 10.258322 10.327001 
##       201       202       203       204       205       206       207       208 
## 10.389451 10.366534 10.445209 10.351633 10.353167 10.409873 10.181927 10.190122 
##       209       210       211       212       213       214       215       216 
## 10.152500  9.569718  9.614854  9.684341  9.780383  9.894219 10.004780 10.165121 
##       217       218       219       220       221       222       223       224 
## 10.250997 10.333902 10.422199 10.494593 10.515605 10.530251 10.565920 10.448753 
##       225       226       227       228       229       230       231       232 
## 10.397189 10.337385 10.094549 10.103404  9.645302  9.725853  9.801962  9.922671 
##       233       234       235       236       237       238       239       240 
## 10.038751 10.155774 10.301679 10.361338 10.481864 10.547544 10.571096 10.625096 
##       241       242       243       244       245       246       247       248 
## 10.613946 10.564767 10.448957 10.379680 10.269619 10.065831  9.796441  9.855822 
##       249       250       251       252       253       254       255       256 
##  9.955503 10.039782 10.160609 10.322054 10.371750 10.463036 10.571733 10.613959 
##       257       258       259       260       261       262       263       264 
## 10.616121 10.642185 10.612025 10.491943 10.379680 10.295154  9.971460 10.043301 
##       265       266       267       268       269       270       271       272 
## 10.106938 10.256499 10.371095 10.411438 10.525438 10.589570 10.618749 10.594193 
##       273       274       275       276       277       278       279       280 
## 10.601849 10.557440 10.402316 10.074898 10.191610 10.286434 10.385871 10.436874 
##       281       282       283       284       285       286       287       288 
## 10.548901 10.565375 10.576566 10.560897 10.515728 10.127149 10.134714 10.229896 
##       289       290       291       292       293       294       295       296 
## 10.307888 10.358705 10.444804 10.503041 10.496880 10.503109 10.449893 10.162679 
##       297       298       299       300       301       302       303       304 
## 10.199231 10.235332 10.304722 10.343512 10.412607 10.396544 10.426268 10.217876 
##       305       306       307       308       309       310       311       312 
## 10.179873 10.228171 10.295167 10.311777 10.190402 10.166322 10.179021 10.266246 
##       313 
## 10.132241
df75 <- data.frame(v_res75, CE75E)
colnames(df75) <-  c('CE_obs','CE_est')
plot(df75$CE_obs, df75$CE_est, cex=0.5, pch =19)

resmap1 <- map_75$fit$residuals
cor(df75$CE_obs, df75$CE_est)
## [1] 0.7977199
plot(x = x, y = y, col = floor(abs(resmap1))+1, pch =19)

plot(x = x, y = y, cex =abs(resmap1), pch =19)

plot(x = x, y = y, cex =0.1*df75$CE_obs, pch =19)

data2 <- data.frame(x = x, y = y, df75$CE_obs, df75$CE_est)
colnames(data2) <- c('x', 'y', 'CE_obs', 'CE_est')
p<-ggplot(data = data2, aes(x = x, y = y)) +
  geom_point(cex = data2$CE_obs*0.2) +
  geom_point(color = data2$CE_est)
 
p

im_res_map_75 <- moran.mc(resmap1,Wve,nsim = 2000);im_res_map_75
## 
##  Monte-Carlo simulation of Moran I
## 
## data:  resmap1 
## weights: Wve  
## number of simulations + 1: 2001 
## 
## statistic = 0.16722, observed rank = 2001, p-value = 0.0004998
## alternative hypothesis: greater

Modelo aplicado a CEa 150cm

map_150 <- spautolm(CE_150cm~1, data = BD_MODELADO, listw = Wve) ### modelo
summary(map_150)
## 
## Call: spautolm(formula = CE_150cm ~ 1, data = BD_MODELADO, listw = Wve)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -1.453255 -0.397645 -0.042934  0.322283  2.953512 
## 
## Coefficients: 
##             Estimate Std. Error z value  Pr(>|z|)
## (Intercept)  19.3151     1.5515   12.45 < 2.2e-16
## 
## Lambda: 0.97691 LR test value: 86.774 p-value: < 2.22e-16 
## Numerical Hessian standard error of lambda: 0.023 
## 
## Log likelihood: -304.7918 
## ML residual variance (sigma squared): 0.40168, (sigma: 0.63378)
## Number of observations: 313 
## Number of parameters estimated: 3 
## AIC: 615.58
CE150E <- as.data.frame(map_150$fit['fitted.values']); CE150E
##     fitted.values
## 1        18.52785
## 2        18.52287
## 3        18.57280
## 4        18.59249
## 5        18.58692
## 6        18.58429
## 7        18.60574
## 8        18.66210
## 9        18.64986
## 10       18.64010
## 11       18.61259
## 12       18.61047
## 13       18.62080
## 14       18.69187
## 15       18.68127
## 16       18.69404
## 17       18.66172
## 18       18.64290
## 19       18.64980
## 20       18.71187
## 21       18.72735
## 22       18.70175
## 23       18.72079
## 24       18.72000
## 25       18.69194
## 26       18.66644
## 27       18.63619
## 28       18.59541
## 29       18.58372
## 30       18.73226
## 31       18.71948
## 32       18.72688
## 33       18.73208
## 34       18.72514
## 35       18.71235
## 36       18.65792
## 37       18.65039
## 38       18.59664
## 39       18.57891
## 40       18.53760
## 41       18.92832
## 42       18.94783
## 43       18.80529
## 44       18.76137
## 45       18.70434
## 46       18.71537
## 47       18.70933
## 48       18.73404
## 49       18.72312
## 50       18.69247
## 51       18.62588
## 52       18.60656
## 53       18.57019
## 54       18.53476
## 55       18.51103
## 56       18.86025
## 57       18.90811
## 58       18.84594
## 59       18.78666
## 60       18.72694
## 61       18.70458
## 62       18.70530
## 63       18.69862
## 64       18.69999
## 65       18.68783
## 66       18.70933
## 67       18.68440
## 68       18.64493
## 69       18.61894
## 70       18.59883
## 71       18.57876
## 72       18.53169
## 73       18.49566
## 74       18.47832
## 75       18.84340
## 76       18.81974
## 77       18.78467
## 78       18.73816
## 79       18.70454
## 80       18.68101
## 81       18.69332
## 82       18.68705
## 83       18.68221
## 84       18.66097
## 85       18.66383
## 86       18.64597
## 87       18.60733
## 88       18.58534
## 89       18.54641
## 90       18.47800
## 91       18.45103
## 92       18.46877
## 93       18.79521
## 94       18.78479
## 95       18.73737
## 96       18.72034
## 97       18.70519
## 98       18.68284
## 99       18.67235
## 100      18.65334
## 101      18.63925
## 102      18.62109
## 103      18.61992
## 104      18.62131
## 105      18.58920
## 106      18.59467
## 107      18.54976
## 108      18.49953
## 109      18.45963
## 110      18.42102
## 111      18.43043
## 112      18.43541
## 113      18.77734
## 114      18.75159
## 115      18.71822
## 116      18.71014
## 117      18.68773
## 118      18.66184
## 119      18.65135
## 120      18.60598
## 121      18.59823
## 122      18.58822
## 123      18.57921
## 124      18.58561
## 125      18.56355
## 126      18.53889
## 127      18.49161
## 128      18.45301
## 129      18.41059
## 130      18.42328
## 131      18.44824
## 132      18.74644
## 133      18.73701
## 134      18.69780
## 135      18.68108
## 136      18.65032
## 137      18.61554
## 138      18.58124
## 139      18.55751
## 140      18.55188
## 141      18.54427
## 142      18.52679
## 143      18.53819
## 144      18.50473
## 145      18.45438
## 146      18.42358
## 147      18.40740
## 148      18.41788
## 149      18.45055
## 150      18.48798
## 151      18.71723
## 152      18.68337
## 153      18.66375
## 154      18.62995
## 155      18.58777
## 156      18.54992
## 157      18.50956
## 158      18.50618
## 159      18.50366
## 160      18.48426
## 161      18.45201
## 162      18.46790
## 163      18.42114
## 164      18.38231
## 165      18.38883
## 166      18.39723
## 167      18.42274
## 168      18.46956
## 169      18.51260
## 170      18.49427
## 171      18.62696
## 172      18.60701
## 173      18.56403
## 174      18.51665
## 175      18.47276
## 176      18.43859
## 177      18.44271
## 178      18.42848
## 179      18.40327
## 180      18.37624
## 181      18.38781
## 182      18.35437
## 183      18.35135
## 184      18.38275
## 185      18.40136
## 186      18.43420
## 187      18.48893
## 188      18.55498
## 189      18.59323
## 190      18.57702
## 191      18.52726
## 192      18.48172
## 193      18.44259
## 194      18.39346
## 195      18.37570
## 196      18.37148
## 197      18.34830
## 198      18.32997
## 199      18.32070
## 200      18.31307
## 201      18.32443
## 202      18.34594
## 203      18.37164
## 204      18.41160
## 205      18.46911
## 206      18.49505
## 207      18.55987
## 208      18.66724
## 209      18.69753
## 210      18.49892
## 211      18.44692
## 212      18.39300
## 213      18.35304
## 214      18.32411
## 215      18.30470
## 216      18.29889
## 217      18.26726
## 218      18.28266
## 219      18.27956
## 220      18.27793
## 221      18.33452
## 222      18.37798
## 223      18.39186
## 224      18.44633
## 225      18.49241
## 226      18.54651
## 227      18.59851
## 228      18.69801
## 229      18.40964
## 230      18.36630
## 231      18.31547
## 232      18.27738
## 233      18.26539
## 234      18.25035
## 235      18.24609
## 236      18.22820
## 237      18.26367
## 238      18.27156
## 239      18.30553
## 240      18.36092
## 241      18.40662
## 242      18.41801
## 243      18.51526
## 244      18.54508
## 245      18.59558
## 246      18.60206
## 247      18.33551
## 248      18.30573
## 249      18.25535
## 250      18.22561
## 251      18.23082
## 252      18.22310
## 253      18.20605
## 254      18.23014
## 255      18.26981
## 256      18.30021
## 257      18.32392
## 258      18.39786
## 259      18.43537
## 260      18.45998
## 261      18.55240
## 262      18.54707
## 263      18.26652
## 264      18.22921
## 265      18.18818
## 266      18.20361
## 267      18.19729
## 268      18.20094
## 269      18.25477
## 270      18.28379
## 271      18.32873
## 272      18.37231
## 273      18.43194
## 274      18.46629
## 275      18.48105
## 276      18.24201
## 277      18.18148
## 278      18.18920
## 279      18.19415
## 280      18.22709
## 281      18.27929
## 282      18.31578
## 283      18.36803
## 284      18.41803
## 285      18.46093
## 286      18.21498
## 287      18.20373
## 288      18.17309
## 289      18.18639
## 290      18.22081
## 291      18.26392
## 292      18.31994
## 293      18.35996
## 294      18.42162
## 295      18.43125
## 296      18.20443
## 297      18.20964
## 298      18.18366
## 299      18.21554
## 300      18.27537
## 301      18.32275
## 302      18.36084
## 303      18.40570
## 304      18.24725
## 305      18.24610
## 306      18.27406
## 307      18.34829
## 308      18.36061
## 309      18.27555
## 310      18.31639
## 311      18.32402
## 312      18.37356
## 313      18.33938
CE150E <- map_150$fit$fitted.values ## Estimados
CE150E
##        1        2        3        4        5        6        7        8 
## 18.52785 18.52287 18.57280 18.59249 18.58692 18.58429 18.60574 18.66210 
##        9       10       11       12       13       14       15       16 
## 18.64986 18.64010 18.61259 18.61047 18.62080 18.69187 18.68127 18.69404 
##       17       18       19       20       21       22       23       24 
## 18.66172 18.64290 18.64980 18.71187 18.72735 18.70175 18.72079 18.72000 
##       25       26       27       28       29       30       31       32 
## 18.69194 18.66644 18.63619 18.59541 18.58372 18.73226 18.71948 18.72688 
##       33       34       35       36       37       38       39       40 
## 18.73208 18.72514 18.71235 18.65792 18.65039 18.59664 18.57891 18.53760 
##       41       42       43       44       45       46       47       48 
## 18.92832 18.94783 18.80529 18.76137 18.70434 18.71537 18.70933 18.73404 
##       49       50       51       52       53       54       55       56 
## 18.72312 18.69247 18.62588 18.60656 18.57019 18.53476 18.51103 18.86025 
##       57       58       59       60       61       62       63       64 
## 18.90811 18.84594 18.78666 18.72694 18.70458 18.70530 18.69862 18.69999 
##       65       66       67       68       69       70       71       72 
## 18.68783 18.70933 18.68440 18.64493 18.61894 18.59883 18.57876 18.53169 
##       73       74       75       76       77       78       79       80 
## 18.49566 18.47832 18.84340 18.81974 18.78467 18.73816 18.70454 18.68101 
##       81       82       83       84       85       86       87       88 
## 18.69332 18.68705 18.68221 18.66097 18.66383 18.64597 18.60733 18.58534 
##       89       90       91       92       93       94       95       96 
## 18.54641 18.47800 18.45103 18.46877 18.79521 18.78479 18.73737 18.72034 
##       97       98       99      100      101      102      103      104 
## 18.70519 18.68284 18.67235 18.65334 18.63925 18.62109 18.61992 18.62131 
##      105      106      107      108      109      110      111      112 
## 18.58920 18.59467 18.54976 18.49953 18.45963 18.42102 18.43043 18.43541 
##      113      114      115      116      117      118      119      120 
## 18.77734 18.75159 18.71822 18.71014 18.68773 18.66184 18.65135 18.60598 
##      121      122      123      124      125      126      127      128 
## 18.59823 18.58822 18.57921 18.58561 18.56355 18.53889 18.49161 18.45301 
##      129      130      131      132      133      134      135      136 
## 18.41059 18.42328 18.44824 18.74644 18.73701 18.69780 18.68108 18.65032 
##      137      138      139      140      141      142      143      144 
## 18.61554 18.58124 18.55751 18.55188 18.54427 18.52679 18.53819 18.50473 
##      145      146      147      148      149      150      151      152 
## 18.45438 18.42358 18.40740 18.41788 18.45055 18.48798 18.71723 18.68337 
##      153      154      155      156      157      158      159      160 
## 18.66375 18.62995 18.58777 18.54992 18.50956 18.50618 18.50366 18.48426 
##      161      162      163      164      165      166      167      168 
## 18.45201 18.46790 18.42114 18.38231 18.38883 18.39723 18.42274 18.46956 
##      169      170      171      172      173      174      175      176 
## 18.51260 18.49427 18.62696 18.60701 18.56403 18.51665 18.47276 18.43859 
##      177      178      179      180      181      182      183      184 
## 18.44271 18.42848 18.40327 18.37624 18.38781 18.35437 18.35135 18.38275 
##      185      186      187      188      189      190      191      192 
## 18.40136 18.43420 18.48893 18.55498 18.59323 18.57702 18.52726 18.48172 
##      193      194      195      196      197      198      199      200 
## 18.44259 18.39346 18.37570 18.37148 18.34830 18.32997 18.32070 18.31307 
##      201      202      203      204      205      206      207      208 
## 18.32443 18.34594 18.37164 18.41160 18.46911 18.49505 18.55987 18.66724 
##      209      210      211      212      213      214      215      216 
## 18.69753 18.49892 18.44692 18.39300 18.35304 18.32411 18.30470 18.29889 
##      217      218      219      220      221      222      223      224 
## 18.26726 18.28266 18.27956 18.27793 18.33452 18.37798 18.39186 18.44633 
##      225      226      227      228      229      230      231      232 
## 18.49241 18.54651 18.59851 18.69801 18.40964 18.36630 18.31547 18.27738 
##      233      234      235      236      237      238      239      240 
## 18.26539 18.25035 18.24609 18.22820 18.26367 18.27156 18.30553 18.36092 
##      241      242      243      244      245      246      247      248 
## 18.40662 18.41801 18.51526 18.54508 18.59558 18.60206 18.33551 18.30573 
##      249      250      251      252      253      254      255      256 
## 18.25535 18.22561 18.23082 18.22310 18.20605 18.23014 18.26981 18.30021 
##      257      258      259      260      261      262      263      264 
## 18.32392 18.39786 18.43537 18.45998 18.55240 18.54707 18.26652 18.22921 
##      265      266      267      268      269      270      271      272 
## 18.18818 18.20361 18.19729 18.20094 18.25477 18.28379 18.32873 18.37231 
##      273      274      275      276      277      278      279      280 
## 18.43194 18.46629 18.48105 18.24201 18.18148 18.18920 18.19415 18.22709 
##      281      282      283      284      285      286      287      288 
## 18.27929 18.31578 18.36803 18.41803 18.46093 18.21498 18.20373 18.17309 
##      289      290      291      292      293      294      295      296 
## 18.18639 18.22081 18.26392 18.31994 18.35996 18.42162 18.43125 18.20443 
##      297      298      299      300      301      302      303      304 
## 18.20964 18.18366 18.21554 18.27537 18.32275 18.36084 18.40570 18.24725 
##      305      306      307      308      309      310      311      312 
## 18.24610 18.27406 18.34829 18.36061 18.27555 18.31639 18.32402 18.37356 
##      313 
## 18.33938
df150 <- data.frame(v_res150, CE150E)
colnames(df150) <-  c('CE_obs','CE_est')
plot(df150$CE_obs, df150$CE_est, cex=0.5, pch =19)

resmap2 <- map_150$fit$residuals
cor(df150$CE_obs, df150$CE_est)
## [1] 0.6642671
plot(x = x, y = y, col = floor(abs(resmap2))+1, pch =19)

plot(x = x, y = y, cex =abs(resmap2), pch =19)

plot(x = x, y = y, cex =0.1*df150$CE_obs, pch =19)

data2_1 <- data.frame(x = x, y = y, df75$CE_obs, df150$CE_est)
colnames(data2_1) <- c('x', 'y', 'CE_obs', 'CE_est')
p<-ggplot(data = data2_1, aes(x = x, y = y)) +
  geom_point(cex = data2_1$CE_obs*0.2) +
  geom_point(color = data2_1$CE_est)
 
p

im_res_map_150 <- moran.mc(resmap2,Wve,nsim = 2000);im_res_map_150
## 
##  Monte-Carlo simulation of Moran I
## 
## data:  resmap2 
## weights: Wve  
## number of simulations + 1: 2001 
## 
## statistic = 0.094365, observed rank = 2001, p-value = 0.0004998
## alternative hypothesis: greater

Modelo espacial del error

\[Y=\lambda W Y+ \alpha 1_n+ X\beta + \epsilon\]

CEa 75cm

mod_es_er_1 <- errorsarlm(CE_70cm~NDVI+Slope+z+CE_150cm+DEM,listw=Wve)
summary(mod_es_er_1) # NDVI despreciable
## 
## Call:errorsarlm(formula = CE_70cm ~ NDVI + Slope + z + CE_150cm + 
##     DEM, listw = Wve)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -2.019160 -0.540466 -0.045367  0.513314  2.592838 
## 
## Type: error 
## Coefficients: (asymptotic standard errors) 
##               Estimate Std. Error  z value  Pr(>|z|)
## (Intercept) -64.737579   5.752902 -11.2530 < 2.2e-16
## NDVI         -2.395368   1.907913  -1.2555  0.209301
## Slope        -0.073067   0.024760  -2.9510  0.003168
## z             0.257034   0.028465   9.0299 < 2.2e-16
## CE_150cm      0.859898   0.083054  10.3535 < 2.2e-16
## DEM           0.036792   0.020974   1.7542  0.079402
## 
## Lambda: 0.9825, LR test value: 99.359, p-value: < 2.22e-16
## Asymptotic standard error: 0.012342
##     z-value: 79.604, p-value: < 2.22e-16
## Wald statistic: 6336.8, p-value: < 2.22e-16
## 
## Log likelihood: -406.1005 for error model
## ML residual variance (sigma squared): 0.76603, (sigma: 0.87523)
## Number of observations: 313 
## Number of parameters estimated: 8 
## AIC: 828.2, (AIC for lm: 925.56)
mod_es_er_2 <- errorsarlm(CE_70cm~Slope+z+CE_150cm+DEM,listw=Wve)
summary(mod_es_er_2) # Mejor
## 
## Call:errorsarlm(formula = CE_70cm ~ Slope + z + CE_150cm + DEM, listw = Wve)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -2.068942 -0.573110 -0.041672  0.535538  2.620533 
## 
## Type: error 
## Coefficients: (asymptotic standard errors) 
##               Estimate Std. Error  z value  Pr(>|z|)
## (Intercept) -66.334322   5.621356 -11.8004 < 2.2e-16
## Slope        -0.074849   0.024782  -3.0203  0.002525
## z             0.251732   0.028220   8.9203 < 2.2e-16
## CE_150cm      0.871288   0.082765  10.5273 < 2.2e-16
## DEM           0.039380   0.020925   1.8819  0.059845
## 
## Lambda: 0.98246, LR test value: 98.998, p-value: < 2.22e-16
## Asymptotic standard error: 0.012369
##     z-value: 79.427, p-value: < 2.22e-16
## Wald statistic: 6308.6, p-value: < 2.22e-16
## 
## Log likelihood: -406.8867 for error model
## ML residual variance (sigma squared): 0.76989, (sigma: 0.87744)
## Number of observations: 313 
## Number of parameters estimated: 7 
## AIC: 827.77, (AIC for lm: 924.77)
mod_es_er_3 <- errorsarlm(CE_70cm~Slope+z+CE_150cm,listw=Wve)
summary(mod_es_er_3)
## 
## Call:errorsarlm(formula = CE_70cm ~ Slope + z + CE_150cm, listw = Wve)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -2.150527 -0.558459 -0.045187  0.540349  2.578564 
## 
## Type: error 
## Coefficients: (asymptotic standard errors) 
##               Estimate Std. Error z value  Pr(>|z|)
## (Intercept) -65.325177   5.620712 -11.622 < 2.2e-16
## Slope        -0.079881   0.024777  -3.224  0.001264
## z             0.286926   0.021256  13.498 < 2.2e-16
## CE_150cm      0.874324   0.083217  10.507 < 2.2e-16
## 
## Lambda: 0.98237, LR test value: 97.514, p-value: < 2.22e-16
## Asymptotic standard error: 0.012433
##     z-value: 79.011, p-value: < 2.22e-16
## Wald statistic: 6242.7, p-value: < 2.22e-16
## 
## Log likelihood: -408.6476 for error model
## ML residual variance (sigma squared): 0.77863, (sigma: 0.8824)
## Number of observations: 313 
## Number of parameters estimated: 6 
## AIC: 829.3, (AIC for lm: 924.81)

Normalidad de residuales

res_mod_es_er <- mod_es_er_2$residuals
shapiro.test(res_mod_es_er)
## 
##  Shapiro-Wilk normality test
## 
## data:  res_mod_es_er
## W = 0.99235, p-value = 0.1078
cvm.test(res_mod_es_er)
## 
##  Cramer-von Mises normality test
## 
## data:  res_mod_es_er
## W = 0.084219, p-value = 0.182

Los residuales son normales

plot(df75$CE_obs, mod_es_er_2$fitted.values, cex=0.5, pch =19)

cor(df75$CE_obs, mod_es_er_2$fitted.values)
## [1] 0.8246131
moran_error_75 <- moran.mc(res_mod_es_er,Wve,nsim=2000)
moran_error_75
## 
##  Monte-Carlo simulation of Moran I
## 
## data:  res_mod_es_er 
## weights: Wve  
## number of simulations + 1: 2001 
## 
## statistic = 0.12895, observed rank = 2001, p-value = 0.0004998
## alternative hypothesis: greater

CEa 150cm

mod_es_er_4 <- errorsarlm(CE_150cm~NDVI+Slope+z+CE_70cm+DEM,listw=Wve)
summary(mod_es_er_4) # NDVI despreciable
## 
## Call:errorsarlm(formula = CE_150cm ~ NDVI + Slope + z + CE_70cm + 
##     DEM, listw = Wve)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.46790 -0.32241 -0.02153  0.36060  1.99578 
## 
## Type: error 
## Coefficients: (asymptotic standard errors) 
##               Estimate Std. Error z value  Pr(>|z|)
## (Intercept) 45.5088606  2.7607169 16.4844 < 2.2e-16
## NDVI        -1.1627276  1.1220178 -1.0363 0.3000703
## Slope        0.0518339  0.0144655  3.5833 0.0003393
## z           -0.1327355  0.0171932 -7.7202 1.155e-14
## CE_70cm      0.2959247  0.0286368 10.3337 < 2.2e-16
## DEM         -0.0093728  0.0123588 -0.7584 0.4482181
## 
## Lambda: 0.96877, LR test value: 49.814, p-value: 1.69e-12
## Asymptotic standard error: 0.022011
##     z-value: 44.014, p-value: < 2.22e-16
## Wald statistic: 1937.2, p-value: < 2.22e-16
## 
## Log likelihood: -239.4171 for error model
## ML residual variance (sigma squared): 0.26504, (sigma: 0.51482)
## Number of observations: 313 
## Number of parameters estimated: 8 
## AIC: 494.83, (AIC for lm: 542.65)
mod_es_er_5 <- errorsarlm(CE_150cm~Slope+z+CE_70cm+DEM,listw=Wve)
summary(mod_es_er_5)
## 
## Call:errorsarlm(formula = CE_150cm ~ Slope + z + CE_70cm + DEM, listw = Wve)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -1.477728 -0.316994 -0.014091  0.367283  2.009858 
## 
## Type: error 
## Coefficients: (asymptotic standard errors) 
##              Estimate Std. Error z value  Pr(>|z|)
## (Intercept) 45.035550   2.729375 16.5003 < 2.2e-16
## Slope        0.051310   0.014481  3.5432 0.0003953
## z           -0.136386   0.016857 -8.0910 6.661e-16
## CE_70cm      0.299387   0.028492 10.5079 < 2.2e-16
## DEM         -0.008240   0.012332 -0.6682 0.5040078
## 
## Lambda: 0.96901, LR test value: 50.337, p-value: 1.2949e-12
## Asymptotic standard error: 0.021843
##     z-value: 44.363, p-value: < 2.22e-16
## Wald statistic: 1968.1, p-value: < 2.22e-16
## 
## Log likelihood: -239.9531 for error model
## ML residual variance (sigma squared): 0.26594, (sigma: 0.51569)
## Number of observations: 313 
## Number of parameters estimated: 7 
## AIC: 493.91, (AIC for lm: 542.24)
mod_es_er_6 <- errorsarlm(CE_150cm~Slope+z+CE_70cm,listw=Wve)
summary(mod_es_er_6)
## 
## Call:errorsarlm(formula = CE_150cm ~ Slope + z + CE_70cm, listw = Wve)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -1.470171 -0.318709 -0.014481  0.355224  2.014963 
## 
## Type: error 
## Coefficients: (asymptotic standard errors) 
##              Estimate Std. Error  z value  Pr(>|z|)
## (Intercept) 44.749718   2.699784  16.5753 < 2.2e-16
## Slope        0.052248   0.014422   3.6227 0.0002915
## z           -0.143289   0.013322 -10.7558 < 2.2e-16
## CE_70cm      0.297488   0.028368  10.4868 < 2.2e-16
## 
## Lambda: 0.96928, LR test value: 50.495, p-value: 1.1945e-12
## Asymptotic standard error: 0.021655
##     z-value: 44.761, p-value: < 2.22e-16
## Wald statistic: 2003.5, p-value: < 2.22e-16
## 
## Log likelihood: -240.1762 for error model
## ML residual variance (sigma squared): 0.2663, (sigma: 0.51604)
## Number of observations: 313 
## Number of parameters estimated: 6 
## AIC: 492.35, (AIC for lm: 540.85)

Normalidad de residuales

res_mod_es_er_2 <- mod_es_er_6$residuals
shapiro.test(res_mod_es_er_2)
## 
##  Shapiro-Wilk normality test
## 
## data:  res_mod_es_er_2
## W = 0.98814, p-value = 0.01166
cvm.test(res_mod_es_er_2)
## 
##  Cramer-von Mises normality test
## 
## data:  res_mod_es_er_2
## W = 0.065621, p-value = 0.3182
plot(df150$CE_obs, mod_es_er_6$fitted.values, cex=0.5, pch =19)

cor(df150$CE_obs, mod_es_er_6$fitted.values)
## [1] 0.718156
moran_error_150 <- moran.mc(res_mod_es_er_2,Wve,nsim=2000)
moran_error_150
## 
##  Monte-Carlo simulation of Moran I
## 
## data:  res_mod_es_er_2 
## weights: Wve  
## number of simulations + 1: 2001 
## 
## statistic = 0.076281, observed rank = 2001, p-value = 0.0004998
## alternative hypothesis: greater

Modelo lambda y Rho

\[Y=\lambda W Y+ \alpha 1_n+ X\beta + u \\ u=\rho W u + \epsilon\]

CEa 75cm

mlrho <- sacsarlm(CE_70cm~Slope+z+CE_150cm+DEM,X_x,listw=Wve)
summary(mlrho)
## 
## Call:sacsarlm(formula = CE_70cm ~ Slope + z + CE_150cm + DEM, data = X_x, 
##     listw = Wve)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -2.090770 -0.476848 -0.031738  0.518306  2.235748 
## 
## Type: sac 
## Coefficients: (asymptotic standard errors) 
##               Estimate Std. Error z value  Pr(>|z|)
## (Intercept) -60.138673  15.556907 -3.8657 0.0001108
## Slope        -0.062334   0.021580 -2.8885 0.0038705
## z             0.187865   0.031034  6.0535 1.417e-09
## CE_150cm      0.854968   0.072736 11.7543 < 2.2e-16
## DEM           0.028548   0.018830  1.5160 0.1295090
## 
## Rho: 0.97458
## Asymptotic standard error: 0.38031
##     z-value: 2.5626, p-value: 0.01039
## Lambda: 0.9722
## Asymptotic standard error: 0.41632
##     z-value: 2.3352, p-value: 0.019532
## 
## LR test value: 179.63, p-value: < 2.22e-16
## 
## Log likelihood: -366.569 for sac model
## ML residual variance (sigma squared): 0.58432, (sigma: 0.76441)
## Number of observations: 313 
## Number of parameters estimated: 8 
## AIC: 749.14, (AIC for lm: 924.77)
res_mlrho <- mlrho$residuals
summary(res_mlrho)
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
## -2.09077 -0.47685 -0.03174  0.00000  0.51831  2.23575
shapiro.test(res_mlrho)
## 
##  Shapiro-Wilk normality test
## 
## data:  res_mlrho
## W = 0.99543, p-value = 0.4903
cvm.test(res_mlrho)
## 
##  Cramer-von Mises normality test
## 
## data:  res_mlrho
## W = 0.050896, p-value = 0.4974
plot(df75$CE_obs, mlrho$fitted.values, cex=0.5, pch =19)

cor(df75$CE_obs, mlrho$fitted.values)
## [1] 0.8703349
moran_mlrho <- moran.mc(res_mlrho,Wve,nsim=2000)
moran_mlrho
## 
##  Monte-Carlo simulation of Moran I
## 
## data:  res_mlrho 
## weights: Wve  
## number of simulations + 1: 2001 
## 
## statistic = 0.09234, observed rank = 2001, p-value = 0.0004998
## alternative hypothesis: greater

El modelo \(\lambda\) y \(\rho\) para este modelo se ajusta bien, ya que \(\rho\) es significativo (\(p~value=0.01039\))

CEa 150cm

mlrho_150 <- sacsarlm(CE_150cm~Slope+z+CE_70cm,X_x,listw=Wve)
summary(mlrho_150)
## 
## Call:sacsarlm(formula = CE_150cm ~ Slope + z + CE_70cm, data = X_x, 
##     listw = Wve)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -1.443696 -0.278907 -0.020386  0.310970  1.959313 
## 
## Type: sac 
## Coefficients: (asymptotic standard errors) 
##              Estimate Std. Error z value  Pr(>|z|)
## (Intercept) 21.463941  15.438935  1.3902  0.164454
## Slope        0.041795   0.013504  3.0949  0.001969
## z           -0.114901   0.017473 -6.5759 4.835e-11
## CE_70cm      0.290649   0.032187  9.0301 < 2.2e-16
## 
## Rho: 0.94903
## Asymptotic standard error: 0.54667
##     z-value: 1.736, p-value: 0.082562
## Lambda: 0.95738
## Asymptotic standard error: 0.45839
##     z-value: 2.0886, p-value: 0.036747
## 
## LR test value: 87.934, p-value: < 2.22e-16
## 
## Log likelihood: -221.4568 for sac model
## ML residual variance (sigma squared): 0.23287, (sigma: 0.48257)
## Number of observations: 313 
## Number of parameters estimated: 7 
## AIC: 456.91, (AIC for lm: 540.85)

Este modelo no sirve para CEa 150cm ya que el \(p~value=0.082\)

Valores observados vs. estimados

Modelo Clásico

rmse(CE_70cm, estima1) # CEa 75cm
## [1] 1.04333
rmse(CE_150cm, estima1) # Cea 150cm
## [1] 8.834514

Modelo autorregresivo puro

rmse(df75$CE_obs, df75$CE_est) # CEa 75cm
## [1] 1.16061
rmse(df150$CE_obs, df150$CE_est) # Cea 150cm
## [1] 0.6337842

Modelo del error

rmse(df75$CE_obs, mod_es_er_2$fitted.values) # CEa 75cm
## [1] 0.8774362
rmse(df150$CE_obs, mod_es_er_6$fitted.values) # Cea 150cm
## [1] 0.5160437

Modelo Lambda y RHo

rmse(df75$CE_obs, mlrho$fitted.values) # CEa 75cm
## [1] 0.7644114

Gráficas de CEa 75cm con variables que tienen relación

fig_Slope <- plot_ly(x = x, y = y, z = Slope, size = I(90))%>%
            layout(
                  scene = list(
                              xaxis = list(title = "Longitud"),
                              yaxis = list(title = "Latitud"),
                              zaxis = list(title = "Slope")
    )
  )%>%
add_markers(color = BD_MODELADO$Avg_CEa_07)
fig_Slope
fig_150 <- plot_ly(x = x, y = y, z = CE_150cm, size = I(90))%>%
            layout(
                  scene = list(
                              xaxis = list(title = "Longitud"),
                              yaxis = list(title = "Latitud"),
                              zaxis = list(title = "CEa_150")
    )
  )%>%
add_markers(color = BD_MODELADO$Avg_CEa_07)
fig_150
fig_Z_1 <- plot_ly(x = x, y = y, z = z, size = I(90))%>%
            layout(
                  scene = list(
                              xaxis = list(title = "Longitud"),
                              yaxis = list(title = "Latitud"),
                              zaxis = list(title = "Altitud")
    )
  )%>%
add_markers(color = BD_MODELADO$Avg_CEa_07)
fig_Z_1
fig_DEM_1 <- plot_ly(x = x, y = y, z = DEM, size = I(90))%>%
            layout(
                  scene = list(
                              xaxis = list(title = "Longitud"),
                              yaxis = list(title = "Latitud"),
                              zaxis = list(title = "DEM")
    )
  )%>%
add_markers(color = BD_MODELADO$Avg_CEa_07)
fig_DEM_1

Coordenada de interés para el modelo final

plot(x=x,y=y,pch=16,col="blue")
points(x=843600,y=956040,col="red",pch=16)

Nueva matriz de datos

BD_MODELADO <- as.data.frame(BD_MODELADO)
new_p <- data.frame(843600,956040,0,0,0,0,0,0)
names(new_p) <- c("Avg_X_MCB","Avg_Y_MCE","Avg_CEa_07","Avg_CEa_15","NDVI","DEM","SLOPE","Avg_z")
new_W <- rbind(BD_MODELADO,new_p)
new_XYdat_W <- as.matrix(new_W[,1:2])
new_count <- dnearneigh(coordinates(new_XYdat_W),0,854,longlat = F)
new_dlist <- nbdists(new_count,new_XYdat_W)
new_dlist <- lapply(new_dlist,function(x)1/x)

Nueva matriz de pesos

new_Wve <- nb2listw(new_count,glist = new_dlist,style = 'W')

Nueva matriz de identidad

matrix_id <- diag(314)

Por fin