In Module 3, we were introduced to Interactive Visualizations using R. For my final project, I will apply what I have learned and create an application in shiny using NBA player statistics data. The targeted audience for this app includes sport fans, gamblers and those interested in comparing players across a number of categories. The data includes simple categories such as: age, position the player plays, number of games played in a given season, points scored etc. Sports gambling has definitely been popular for years and specifically I would like to emulate the format that the sports gambling platform “DraftKings” utilizes. DraftKings calculates a “total fantasy points scored” based on multiple statistics such as points, rebounds, assists, steals, blocks, turnovers, three pointers made etc. I would like to provide some background on how I was able to manipulate the data and some weaknesses of the data.
The NBA 2020-2021 season will start on December 22nd, 2020. It makes most sense to analyze player data from the previous season in order to predict which players will perform strongly in the upcoming season. However, with COVID-19 shutting down the 2019-2020 season, there is a lack of season data available in comparison to the typical 82 games. I decided to utilize 2018-2019 data. This will still be a challenge because the rookies from 2019-2020 will be omitted and improved players such as Bam Adebayo, Luka Doncic, Devonte Graham, Brandon Ingram etc. will be undervalued in terms of “total fantasy points scored”.
| variable | description |
|---|---|
FULL.NAME |
player |
TEAM |
first three letters of team city |
POS |
position(s) the player plays (guard, forward, center) |
AGE |
player age |
GP |
number of Games Played (max is 82) |
MPG |
minutes Played Per Game |
USG |
estimate of the percentage of team plays used by a player while he was on the floor |
X3PA |
total three-pointers attempted |
X3P. |
percentage of three-pointers made |
PPG |
points per game |
RPG |
rebounds per game |
APG |
assists per game |
SPG |
steals per game |
BPG |
blocks per game |
TOPG |
turnovers per game |
The following code loads the 2018-2019 player data and filters out for players that played at least 60 of the 82 games and played an average of at least 25 minutes per game. A full NBA game is 48 minutes assuming no overtime, so I decided to only include players who play a little more than half the game.
The original data contains 530 players and 24 statistics/details for each of the players. The total observations is 622 because some players are duplicates after being traded to another team.
#load data from Github path
nba_playerdata <- read.csv("https://raw.githubusercontent.com/aaronzalkisps/data608/master/nbaplayerdata.csv", TRUE, ",")
#choose columns interested in
subset_data <- nba_playerdata[c(1,2,3,4,5,6,7,13,14,17,18,20,22,23,24)]
conditions <- filter (subset_data, GP > 60, MPG > 25)We can sort the data by most points per game. Certain European players have non-ascii characters in their names and we need to clean this in order to successfully run kable function from the kableExtra package. We are now left with 115 observations and the 15 variables of interest.
#sort
df <- conditions[with(conditions, order(-PPG)), ]
#European Players
df$FULL.NAME[(df$FULL.NAME)=="Nikola Vu?evi?"]<- "Nikola Vucevic"
df$FULL.NAME[(df$FULL.NAME)=="Luka Don?i?"]<- "Luka Doncic"
df$FULL.NAME[(df$FULL.NAME)=="Nikola Joki?"]<- "Nikola Jokic"
df$FULL.NAME[(df$FULL.NAME)=="Bojan Bogdanovi?"]<- "Bojan Bogdanovic"
df$FULL.NAME[(df$FULL.NAME)=="Jusuf Nurki?"]<- "Jusuf Nurkic"
df$FULL.NAME[(df$FULL.NAME)=="Bogdan Bogdanovi?"]<- "Bogdan Bogdanovic"
#display top 6 scorers
head (df)## FULL.NAME TEAM POS AGE GP MPG USG X3PA X3P. PPG RPG APG
## 1 James Harden Hou G 29.63 78 36.8 40.5 1028 0.368 36.1 6.6 7.5
## 2 Paul George Okc F 28.94 77 36.9 29.5 757 0.386 28.0 8.1 4.1
## 3 Giannis Antetokounmpo Mil F 24.35 72 32.8 32.3 203 0.256 27.7 12.5 5.9
## 4 Joel Embiid Phi F-C 25.07 64 33.7 33.3 263 0.300 27.5 13.6 3.7
## 5 Stephen Curry Gol G 31.07 69 33.8 30.4 810 0.437 27.3 5.3 5.2
## 6 Devin Booker Pho G 22.44 64 35.0 32.9 414 0.326 26.6 4.1 6.8
## SPG BPG TOPG
## 1 2.05 0.73 4.96
## 2 2.21 0.44 2.66
## 3 1.26 1.53 3.71
## 4 0.72 1.91 3.55
## 5 1.33 0.38 2.78
## 6 0.88 0.20 4.13
The way DraftKings calculates total points can be found here.
In sum:
Based on the above metrics, we need to run the following code to calculate how many threes made a player averaged per game.
( X3PA * X3P. ) / (GP )
# calculate three pointers made per game
TPM <- (df$X3PA*df$X3P.)/(df$GP)
df2 <- cbind (df, TPM)
df <- df2[c(1,2,3,4,5,6,7,10,11,12,13,14,15,16)]
#rename columns
names (df) <- c("Player","Team","Position","Age", "GP", "MPG", "USG%", "PPG", "RPG", "APG","SPG","BPG","TOPG", "3PM")We now have all metrics necessary to calculate Total DraftKings Fantasy Points. 3PM represents Three Pointers Made per game. Let’s calculate using the above DraftKings rules.
(PPG * 1) + (3PM * 0.5) + (RPG * 1.25) + (APG * 1.5) + (SPG * 2) + (BPG * 2) - (TOPG * 0.5)
#tabular visual
kable(df) %>%
kable_styling(bootstrap_options = "bordered") %>%
row_spec(0, bold = T, color = "black", background = "#7fcdbb")| Player | Team | Position | Age | GP | MPG | USG% | PPG | RPG | APG | SPG | BPG | TOPG | 3PM | TFPG | TFP |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| James Harden | Hou | G | 29.63 | 78 | 36.8 | 40.5 | 36.1 | 6.6 | 7.5 | 2.05 | 0.73 | 4.96 | 4.8500513 | 61.10503 | 4766.192 |
| Paul George | Okc | F | 28.94 | 77 | 36.9 | 29.5 | 28.0 | 8.1 | 4.1 | 2.21 | 0.44 | 2.66 | 3.7948312 | 50.14242 | 3860.966 |
| Giannis Antetokounmpo | Mil | F | 24.35 | 72 | 32.8 | 32.3 | 27.7 | 12.5 | 5.9 | 1.26 | 1.53 | 3.71 | 0.7217778 | 56.26089 | 4050.784 |
| Joel Embiid | Phi | F-C | 25.07 | 64 | 33.7 | 33.3 | 27.5 | 13.6 | 3.7 | 0.72 | 1.91 | 3.55 | 1.2328125 | 54.15141 | 3465.690 |
| Stephen Curry | Gol | G | 31.07 | 69 | 33.8 | 30.4 | 27.3 | 5.3 | 5.2 | 1.33 | 0.38 | 2.78 | 5.1300000 | 46.32000 | 3196.080 |
| Devin Booker | Pho | G | 22.44 | 64 | 35.0 | 32.9 | 26.6 | 4.1 | 6.8 | 0.88 | 0.20 | 4.13 | 2.1088125 | 43.07441 | 2756.762 |
| Kevin Durant | Gol | F | 30.53 | 78 | 34.6 | 29.0 | 26.0 | 6.4 | 5.9 | 0.76 | 1.08 | 2.87 | 1.7559487 | 45.97297 | 3585.892 |
| Damian Lillard | Por | G | 28.74 | 80 | 35.5 | 29.3 | 25.8 | 4.6 | 6.9 | 1.11 | 0.41 | 2.65 | 2.9658375 | 45.09792 | 3607.834 |
| Bradley Beal | Was | G | 25.79 | 82 | 36.9 | 28.4 | 25.6 | 5.0 | 5.5 | 1.50 | 0.70 | 2.72 | 2.5511707 | 44.41559 | 3642.078 |
| Kemba Walker | Cha | G | 28.93 | 82 | 34.9 | 31.5 | 25.6 | 4.4 | 5.9 | 1.24 | 0.41 | 2.57 | 3.1692683 | 43.54963 | 3571.070 |
| Blake Griffin | Det | F | 30.07 | 75 | 35.0 | 30.2 | 24.5 | 7.5 | 5.4 | 0.69 | 0.37 | 3.37 | 2.5195200 | 43.66976 | 3275.232 |
| Karl-Anthony Towns | Min | F-C | 23.40 | 77 | 33.0 | 29.0 | 24.4 | 12.4 | 3.4 | 0.88 | 1.62 | 3.13 | 1.8441558 | 49.35708 | 3800.495 |
| Kyrie Irving | Bos | G | 27.05 | 67 | 33.0 | 29.6 | 23.8 | 5.0 | 6.9 | 1.55 | 0.51 | 2.57 | 2.5975224 | 44.53376 | 2983.762 |
| Donovan Mitchell | Uta | G | 22.59 | 77 | 33.7 | 31.6 | 23.8 | 4.1 | 4.2 | 1.38 | 0.40 | 2.83 | 2.4446753 | 38.59234 | 2971.610 |
| Zach LaVine | Chi | G | 24.09 | 63 | 34.5 | 30.5 | 23.7 | 4.7 | 4.5 | 0.95 | 0.41 | 3.43 | 1.9056190 | 38.28281 | 2411.817 |
| Russell Westbrook | Okc | G | 30.41 | 73 | 36.0 | 30.9 | 22.9 | 11.1 | 10.7 | 1.95 | 0.45 | 4.44 | 1.6327397 | 56.22137 | 4104.160 |
| Klay Thompson | Gol | G | 29.17 | 78 | 34.0 | 25.5 | 21.5 | 3.8 | 2.4 | 1.06 | 0.60 | 1.46 | 3.0871538 | 33.98358 | 2650.719 |
| Julius Randle | Nor | F | 24.37 | 73 | 30.6 | 27.8 | 21.4 | 8.7 | 3.1 | 0.71 | 0.62 | 2.85 | 0.9189041 | 38.61945 | 2819.220 |
| LaMarcus Aldridge | San | F | 33.73 | 81 | 33.2 | 27.0 | 21.3 | 9.2 | 2.4 | 0.54 | 1.32 | 1.78 | 0.1234074 | 39.29170 | 3182.628 |
| DeMar DeRozan | San | G | 29.68 | 77 | 34.9 | 27.9 | 21.2 | 6.0 | 6.2 | 1.12 | 0.47 | 2.57 | 0.0911688 | 39.94058 | 3075.425 |
| Luka Doncic | Dal | G-F | 20.12 | 72 | 32.2 | 30.5 | 21.2 | 7.8 | 6.0 | 1.08 | 0.35 | 3.42 | 2.3318056 | 42.26590 | 3043.145 |
| Jrue Holiday | Nor | G | 28.83 | 67 | 35.8 | 25.5 | 21.2 | 5.0 | 7.7 | 1.64 | 0.81 | 3.16 | 1.7608209 | 43.20041 | 2894.427 |
| Mike Conley | Mem | G | 31.50 | 70 | 33.5 | 27.3 | 21.1 | 3.4 | 6.4 | 1.34 | 0.31 | 1.86 | 2.2152000 | 38.42760 | 2689.932 |
| D’Angelo Russell | Bro | G | 23.13 | 81 | 30.2 | 31.9 | 21.1 | 3.9 | 7.0 | 1.22 | 0.25 | 3.12 | 2.8927778 | 39.30139 | 3183.412 |
| CJ McCollum | Por | G | 27.56 | 70 | 33.9 | 25.5 | 21.0 | 4.0 | 3.0 | 0.79 | 0.39 | 1.51 | 2.3839286 | 33.29696 | 2330.787 |
| Nikola Vucevic | Orl | C | 28.46 | 80 | 31.4 | 28.0 | 20.8 | 12.0 | 3.8 | 1.01 | 1.14 | 1.99 | 1.0510500 | 45.33053 | 3626.442 |
| Buddy Hield | Sac | G | 25.32 | 82 | 31.9 | 25.2 | 20.7 | 5.0 | 2.5 | 0.71 | 0.39 | 1.79 | 3.3899634 | 33.69998 | 2763.398 |
| Nikola Jokic | Den | C | 24.14 | 80 | 31.3 | 27.4 | 20.1 | 10.8 | 7.3 | 1.35 | 0.69 | 3.10 | 1.0361250 | 47.59806 | 3807.845 |
| Lou Williams | Lac | G | 32.46 | 75 | 26.6 | 32.5 | 20.0 | 3.0 | 5.3 | 0.75 | 0.15 | 2.41 | 1.4016000 | 32.99580 | 2474.685 |
| Danilo Gallinari | Lac | F | 30.67 | 68 | 30.3 | 23.8 | 19.8 | 6.1 | 2.6 | 0.72 | 0.34 | 1.44 | 2.3696471 | 33.90982 | 2305.868 |
| John Collins | Atl | F-C | 21.55 | 61 | 30.0 | 23.7 | 19.5 | 9.8 | 2.0 | 0.36 | 0.64 | 1.95 | 0.9013770 | 36.22569 | 2209.767 |
| Trae Young | Atl | G | 20.56 | 81 | 30.9 | 28.4 | 19.1 | 3.7 | 8.1 | 0.86 | 0.19 | 3.80 | 1.9280000 | 37.03900 | 3000.159 |
| Kyle Kuzma | Lal | F | 23.72 | 70 | 33.1 | 23.8 | 18.7 | 5.5 | 2.5 | 0.57 | 0.37 | 1.89 | 1.8266571 | 31.17333 | 2182.133 |
| Khris Middleton | Mil | F | 27.66 | 77 | 31.1 | 25.1 | 18.3 | 6.0 | 4.3 | 1.04 | 0.09 | 2.26 | 2.3269091 | 34.54345 | 2659.846 |
| Jamal Murray | Den | G | 22.13 | 75 | 32.6 | 24.9 | 18.2 | 4.2 | 4.8 | 0.89 | 0.36 | 2.11 | 2.0258400 | 33.10792 | 2483.094 |
| Andrew Wiggins | Min | G-F | 24.13 | 73 | 34.8 | 24.4 | 18.1 | 4.8 | 2.5 | 0.97 | 0.66 | 1.90 | 1.6160548 | 30.96803 | 2260.666 |
| Bojan Bogdanovic | Ind | F | 29.98 | 81 | 31.8 | 22.4 | 18.0 | 4.1 | 2.0 | 0.86 | 0.01 | 1.67 | 2.0253086 | 28.04265 | 2271.455 |
| JJ Redick | Phi | G | 34.80 | 76 | 31.3 | 21.8 | 18.0 | 2.4 | 2.7 | 0.42 | 0.21 | 1.30 | 3.1603289 | 27.24016 | 2070.253 |
| Andre Drummond | Det | C | 25.67 | 79 | 33.5 | 23.0 | 17.3 | 15.6 | 1.4 | 1.73 | 1.76 | 2.22 | 0.0634937 | 44.80175 | 3539.338 |
| De’Aaron Fox | Sac | G | 21.31 | 81 | 31.4 | 24.5 | 17.3 | 3.8 | 7.3 | 1.64 | 0.56 | 2.80 | 1.0626173 | 36.53131 | 2959.036 |
| Pascal Siakam | Tor | F | 25.03 | 80 | 31.8 | 20.8 | 16.9 | 6.9 | 3.1 | 0.93 | 0.64 | 1.91 | 0.9870750 | 32.85354 | 2628.283 |
| Ben Simmons | Phi | G-F | 22.72 | 79 | 34.2 | 22.1 | 16.9 | 8.8 | 7.7 | 1.42 | 0.77 | 3.47 | 0.0000000 | 42.09500 | 3325.505 |
| Jordan Clarkson | Cle | G | 26.84 | 81 | 27.3 | 27.6 | 16.8 | 3.3 | 2.4 | 0.69 | 0.17 | 1.67 | 1.7800000 | 26.30000 | 2130.300 |
| Spencer Dinwiddie | Bro | G | 26.01 | 68 | 28.1 | 24.9 | 16.8 | 2.4 | 4.6 | 0.59 | 0.25 | 2.22 | 1.8227941 | 28.18140 | 1916.335 |
| Collin Sexton | Cle | G | 20.27 | 82 | 31.8 | 25.2 | 16.7 | 2.9 | 3.0 | 0.54 | 0.07 | 2.27 | 1.4511220 | 25.63556 | 2102.116 |
| Clint Capela | Hou | C | 24.90 | 67 | 33.6 | 18.1 | 16.6 | 12.6 | 1.4 | 0.66 | 1.52 | 1.39 | 0.0000000 | 38.11500 | 2553.705 |
| Montrezl Harrell | Lac | F-C | 25.21 | 82 | 26.3 | 23.5 | 16.6 | 6.5 | 2.0 | 0.85 | 1.34 | 1.61 | 0.0364878 | 31.31824 | 2568.096 |
| Josh Richardson | Mia | F | 25.57 | 73 | 34.8 | 20.9 | 16.6 | 3.6 | 4.1 | 1.08 | 0.45 | 1.55 | 2.2446986 | 30.65735 | 2237.986 |
| Deandre Ayton | Pho | C | 20.72 | 71 | 30.7 | 21.2 | 16.3 | 10.3 | 1.8 | 0.87 | 0.94 | 1.77 | 0.0000000 | 34.61000 | 2457.310 |
| Eric Gordon | Hou | G | 30.29 | 68 | 31.7 | 22.0 | 16.2 | 2.2 | 1.9 | 0.60 | 0.40 | 1.32 | 3.1764706 | 24.72824 | 1681.520 |
| Aaron Gordon | Orl | F | 23.57 | 78 | 33.8 | 21.8 | 16.0 | 7.3 | 3.7 | 0.73 | 0.72 | 2.08 | 1.5526026 | 33.31130 | 2598.282 |
| Eric Bledsoe | Mil | G | 29.34 | 78 | 29.1 | 22.9 | 15.9 | 4.6 | 5.5 | 1.51 | 0.37 | 2.12 | 1.5901667 | 33.39508 | 2604.816 |
| Rudy Gobert | Uta | C | 26.79 | 81 | 31.8 | 17.8 | 15.9 | 12.8 | 2.0 | 0.81 | 2.30 | 1.60 | 0.0000000 | 40.32000 | 3265.920 |
| Jayson Tatum | Bos | F | 21.11 | 79 | 31.1 | 22.1 | 15.7 | 6.0 | 2.1 | 1.06 | 0.73 | 1.54 | 1.4683924 | 29.89420 | 2361.642 |
| Malcolm Brogdon | Mil | G | 26.33 | 64 | 28.6 | 20.7 | 15.6 | 4.5 | 3.2 | 0.72 | 0.19 | 1.44 | 1.6241250 | 27.93706 | 1787.972 |
| Jusuf Nurkic | Por | C | 24.63 | 72 | 27.4 | 24.7 | 15.6 | 10.4 | 3.2 | 0.97 | 1.43 | 2.33 | 0.0414861 | 37.05574 | 2668.014 |
| Dennis Schroder | Okc | G | 25.57 | 79 | 29.3 | 24.2 | 15.5 | 3.6 | 4.1 | 0.81 | 0.15 | 2.16 | 1.5711899 | 27.77559 | 2194.272 |
| Reggie Jackson | Det | G | 28.99 | 82 | 27.9 | 24.5 | 15.4 | 2.6 | 4.2 | 0.66 | 0.11 | 1.80 | 2.1195000 | 26.64975 | 2185.280 |
| Jeremy Lamb | Cha | G | 26.86 | 79 | 28.5 | 22.5 | 15.3 | 5.5 | 2.2 | 1.11 | 0.41 | 1.01 | 1.4536709 | 28.73684 | 2270.210 |
| Evan Fournier | Orl | G-F | 26.45 | 81 | 31.5 | 22.1 | 15.1 | 3.2 | 3.6 | 0.89 | 0.15 | 1.90 | 1.8888889 | 26.57444 | 2152.530 |
| Terrence Ross | Orl | G-F | 28.18 | 81 | 26.5 | 23.9 | 15.1 | 3.5 | 1.7 | 0.89 | 0.36 | 1.10 | 2.6762716 | 25.31314 | 2050.364 |
| Serge Ibaka | Tor | F-C | 29.56 | 74 | 27.2 | 22.8 | 15.0 | 8.1 | 1.3 | 0.39 | 1.38 | 1.53 | 0.6622973 | 30.18115 | 2233.405 |
| Dwyane Wade | Mia | G | 37.23 | 72 | 26.2 | 27.9 | 15.0 | 4.0 | 4.2 | 0.82 | 0.53 | 2.31 | 1.1962500 | 28.44312 | 2047.905 |
| Marvin Bagley III | Sac | F | 20.08 | 62 | 25.3 | 24.2 | 14.9 | 7.6 | 1.0 | 0.53 | 0.95 | 1.58 | 0.4846452 | 28.31232 | 1755.364 |
| Kyle Lowry | Tor | G | 33.05 | 65 | 34.1 | 19.6 | 14.2 | 4.8 | 8.7 | 1.40 | 0.48 | 2.80 | 2.4183231 | 36.81916 | 2393.245 |
| Bogdan Bogdanovic | Sac | G | 26.64 | 70 | 27.8 | 22.3 | 14.1 | 3.5 | 3.8 | 1.03 | 0.21 | 1.67 | 1.9131429 | 26.77657 | 1874.360 |
| Steven Adams | Okc | C | 25.73 | 80 | 33.4 | 16.4 | 13.9 | 9.5 | 1.6 | 1.49 | 0.96 | 1.73 | 0.0000000 | 32.21000 | 2576.800 |
| Marcus Morris | Bos | F | 29.61 | 75 | 27.9 | 20.9 | 13.9 | 6.1 | 1.5 | 0.57 | 0.33 | 1.23 | 1.9450000 | 25.93250 | 1944.938 |
| Rudy Gay | San | F | 32.65 | 69 | 26.7 | 22.1 | 13.7 | 6.8 | 2.6 | 0.78 | 0.49 | 1.64 | 1.0720000 | 28.35600 | 1956.564 |
| Joe Harris | Bro | G-F | 27.59 | 76 | 30.2 | 17.0 | 13.7 | 3.9 | 2.4 | 0.49 | 0.22 | 1.59 | 2.4074211 | 24.00371 | 1824.282 |
| Jerami Grant | Okc | F | 25.08 | 80 | 32.7 | 15.4 | 13.6 | 5.2 | 1.0 | 0.76 | 1.25 | 0.84 | 1.4357000 | 25.91785 | 2073.428 |
| Al Horford | Bos | F-C | 32.86 | 68 | 29.0 | 19.0 | 13.6 | 6.7 | 4.1 | 0.85 | 1.26 | 1.50 | 1.0747059 | 32.13235 | 2185.000 |
| Myles Turner | Ind | F-C | 23.05 | 74 | 28.6 | 20.0 | 13.3 | 7.2 | 1.6 | 0.81 | 2.69 | 1.35 | 1.0276757 | 31.53884 | 2333.874 |
| Jaylen Brown | Bos | F | 22.46 | 74 | 25.9 | 22.1 | 13.0 | 4.2 | 1.4 | 0.95 | 0.43 | 1.34 | 1.2830270 | 23.08151 | 1708.032 |
| Cedi Osman | Cle | F | 24.01 | 76 | 32.2 | 18.5 | 13.0 | 4.7 | 2.6 | 0.78 | 0.14 | 1.50 | 1.7125263 | 24.72126 | 1878.816 |
| Kevin Knox | Nyk | F | 19.67 | 75 | 28.8 | 22.4 | 12.8 | 4.5 | 1.1 | 0.56 | 0.32 | 1.53 | 1.6646933 | 21.90235 | 1642.676 |
| Ricky Rubio | Uta | G | 28.47 | 68 | 27.9 | 22.7 | 12.7 | 3.6 | 6.1 | 1.35 | 0.15 | 2.65 | 1.1616765 | 28.60584 | 1945.197 |
| Paul Millsap | Den | F | 34.16 | 70 | 27.1 | 19.6 | 12.6 | 7.2 | 2.0 | 1.17 | 0.77 | 1.36 | 0.8290714 | 28.21454 | 1975.017 |
| Justise Winslow | Mia | F | 23.04 | 66 | 29.7 | 20.8 | 12.6 | 5.4 | 4.3 | 1.09 | 0.29 | 2.15 | 1.4545455 | 28.21227 | 1862.010 |
| Thaddeus Young | Ind | F | 30.80 | 81 | 30.7 | 18.0 | 12.6 | 6.4 | 2.5 | 1.52 | 0.47 | 1.52 | 0.6290617 | 27.88453 | 2258.647 |
| Brook Lopez | Mil | C | 31.03 | 81 | 28.7 | 16.7 | 12.5 | 4.9 | 1.2 | 0.60 | 2.21 | 1.02 | 2.3071605 | 26.68858 | 2161.775 |
| Jeff Green | Was | F | 32.62 | 77 | 27.2 | 17.8 | 12.3 | 4.0 | 1.8 | 0.56 | 0.52 | 1.31 | 1.4420779 | 22.22604 | 1711.405 |
| Joe Ingles | Uta | F | 31.52 | 82 | 31.3 | 17.5 | 12.1 | 4.0 | 5.7 | 1.18 | 0.24 | 2.35 | 2.3030854 | 28.46654 | 2334.256 |
| Willie Cauley-Stein | Sac | C | 25.65 | 81 | 27.3 | 17.5 | 11.9 | 8.4 | 2.4 | 1.19 | 0.63 | 1.04 | 0.0123457 | 29.12617 | 2359.220 |
| Jae Crowder | Uta | F | 28.77 | 80 | 27.1 | 19.1 | 11.9 | 4.8 | 1.7 | 0.80 | 0.39 | 1.06 | 2.1597750 | 23.37989 | 1870.391 |
| Bryn Forbes | San | G | 25.72 | 82 | 28.0 | 17.4 | 11.8 | 2.9 | 2.1 | 0.55 | 0.05 | 0.98 | 2.1455854 | 20.35779 | 1669.339 |
| D.J. Augustin | Orl | G | 31.42 | 81 | 28.0 | 17.2 | 11.7 | 2.5 | 5.3 | 0.64 | 0.05 | 1.58 | 1.6164321 | 24.17322 | 1958.031 |
| Gordon Hayward | Bos | F | 29.05 | 72 | 25.9 | 19.0 | 11.5 | 4.5 | 3.4 | 0.82 | 0.32 | 1.46 | 1.0683750 | 24.30919 | 1750.262 |
| Josh Jackson | Pho | F | 22.16 | 79 | 25.2 | 23.9 | 11.5 | 4.4 | 2.3 | 0.92 | 0.71 | 2.19 | 0.9227848 | 23.07639 | 1823.035 |
| Darren Collison | Ind | G | 31.63 | 76 | 28.2 | 17.7 | 11.2 | 3.0 | 6.0 | 1.45 | 0.12 | 1.63 | 1.0389211 | 26.79446 | 2036.379 |
| DeMarre Carroll | Bro | F | 32.71 | 67 | 25.4 | 18.6 | 11.1 | 5.2 | 1.3 | 0.45 | 0.15 | 1.09 | 1.5828507 | 20.99643 | 1406.761 |
| Fred VanVleet | Tor | G | 25.12 | 64 | 27.5 | 17.9 | 11.0 | 2.6 | 4.8 | 0.89 | 0.30 | 1.27 | 1.7482500 | 24.06912 | 1540.424 |
| Jarrett Allen | Bro | C | 20.97 | 80 | 26.2 | 15.9 | 10.9 | 8.4 | 1.4 | 0.54 | 1.50 | 1.30 | 0.0748125 | 26.96741 | 2157.392 |
| Dewayne Dedmon | Atl | C | 29.66 | 64 | 25.1 | 16.7 | 10.8 | 7.5 | 1.4 | 1.08 | 1.13 | 1.31 | 1.2952188 | 26.68761 | 1708.007 |
| Shai Gilgeous-Alexander | Lac | G | 20.75 | 82 | 26.5 | 18.3 | 10.8 | 2.8 | 3.3 | 1.18 | 0.55 | 1.72 | 0.6221098 | 22.16105 | 1817.207 |
| Damyean Dotson | Nyk | G | 24.93 | 73 | 27.4 | 17.3 | 10.7 | 3.6 | 1.8 | 0.79 | 0.14 | 0.97 | 1.7240548 | 20.13703 | 1470.003 |
| Danny Green | Tor | G-F | 31.80 | 80 | 27.7 | 14.0 | 10.3 | 4.0 | 1.6 | 0.91 | 0.66 | 0.94 | 2.4738000 | 21.60690 | 1728.552 |
| Marvin Williams | Cha | F | 32.81 | 75 | 28.4 | 14.9 | 10.1 | 5.4 | 1.2 | 0.92 | 0.80 | 0.61 | 1.8641600 | 22.71708 | 1703.781 |
| Derrick White | San | G | 24.78 | 67 | 25.8 | 17.7 | 9.9 | 3.7 | 3.9 | 1.00 | 0.70 | 1.45 | 0.7163582 | 23.40818 | 1568.348 |
| Kevin Huerter | Atl | G | 20.62 | 75 | 27.3 | 15.7 | 9.7 | 3.3 | 2.9 | 0.88 | 0.33 | 1.45 | 1.8124800 | 20.77624 | 1558.218 |
| Jonathan Isaac | Orl | F | 21.52 | 75 | 26.6 | 16.3 | 9.6 | 5.5 | 1.1 | 0.79 | 1.29 | 1.01 | 1.1455733 | 22.35279 | 1676.459 |
| Al-Farouq Aminu | Por | F | 28.55 | 81 | 28.3 | 13.7 | 9.4 | 7.5 | 1.3 | 0.84 | 0.41 | 0.89 | 1.1856790 | 23.37284 | 1893.200 |
| Larry Nance Jr. | Cle | F | 26.27 | 67 | 26.8 | 15.5 | 9.4 | 8.2 | 3.2 | 1.49 | 0.60 | 1.45 | 0.4929254 | 28.15146 | 1886.148 |
| Nicolas Batum | Cha | G-F | 30.32 | 75 | 31.4 | 13.2 | 9.3 | 5.2 | 3.3 | 0.95 | 0.57 | 1.56 | 1.5456267 | 23.78281 | 1783.711 |
| Tomas Satoransky | Was | G-F | 27.45 | 80 | 27.0 | 14.1 | 8.9 | 3.5 | 5.0 | 1.04 | 0.18 | 1.50 | 0.8007375 | 22.86537 | 1829.229 |
| Marcus Smart | Bos | G | 25.10 | 80 | 27.5 | 14.6 | 8.9 | 2.9 | 4.0 | 1.79 | 0.35 | 1.54 | 1.5743000 | 22.82215 | 1825.772 |
| Noah Vonleh | Nyk | F | 23.63 | 68 | 25.3 | 14.8 | 8.4 | 7.8 | 1.9 | 0.66 | 0.75 | 1.29 | 0.6769412 | 23.51347 | 1598.916 |
| Mikal Bridges | Pho | F | 22.61 | 82 | 29.5 | 12.2 | 8.3 | 3.2 | 2.1 | 1.55 | 0.46 | 0.85 | 1.2787195 | 19.68436 | 1614.118 |
| Darius Miller | Nor | F | 29.06 | 69 | 25.5 | 13.4 | 8.2 | 1.8 | 2.1 | 0.58 | 0.33 | 0.86 | 1.9255072 | 15.95275 | 1100.740 |
| Josh Hart | Lal | G | 24.10 | 67 | 25.6 | 13.5 | 7.8 | 3.7 | 1.4 | 0.96 | 0.60 | 0.87 | 1.3740896 | 17.89704 | 1199.102 |
| Patrick Beverley | Lac | G | 30.75 | 78 | 27.4 | 12.1 | 7.6 | 4.9 | 3.9 | 0.86 | 0.55 | 1.10 | 1.4374231 | 22.56371 | 1759.969 |
| Draymond Green | Gol | F | 29.10 | 66 | 31.3 | 13.1 | 7.4 | 7.3 | 6.9 | 1.44 | 1.08 | 2.56 | 0.7125000 | 30.99125 | 2045.422 |
| PJ Tucker | Hou | F | 33.93 | 82 | 34.2 | 9.5 | 7.3 | 5.8 | 1.2 | 1.62 | 0.45 | 0.77 | 1.7792561 | 20.99463 | 1721.560 |
| Terrance Ferguson | Okc | G | 20.90 | 74 | 26.1 | 10.6 | 6.9 | 1.9 | 1.0 | 0.54 | 0.22 | 0.65 | 1.4343243 | 12.68716 | 938.850 |
| Cory Joseph | Ind | G | 27.64 | 82 | 25.2 | 13.7 | 6.5 | 3.4 | 3.9 | 1.13 | 0.27 | 0.98 | 0.6714878 | 19.24574 | 1578.151 |
The application can be found here. There are two multi-select dropdowns. In order to eliminate a selection, use the ‘backspace’ key. The application allows to compare multiple players across multiple categories.
The default selections are Kevin Durant and Stephen Curry for the Player dropdown. The default selection is Points Per Game for the Attribute dropdown.
One important piece that makes this analysis flawed is that DraftKings also rewards total fantasy points if a player achieves a “double-double” or “triple-double”. This statistic is harder to average like the other statistics because a player either gets it or doesn’t. It’s really impossible to claim that a player averages n double-doubles or n triple-doubles.
On the bright side, the code used to reach the final data frame can easily be manipulated. For example, if a star player gets injured, then it might help to view the other team players who play less than 25 minutes per game and are expected to gain the star player’s minutes. In the end, sports gambling does truly come down to luck. As much as you prepare, a player can potentially get injured during the game or even ejected. In addition, if a team is winning by a large margin, the star player might not play the full game so that they can rest and prepare for the next game.