Data
An engineer is studying methods for improving the ability to detect targets on a radar scope. Two factors she considers to be important are the amount of background noise, or “ground clutter,” on the scope and the type of filter placed over the screen. An experiment is designed using three levels of ground clutter and two filter types. We will consider these as fixed-type factors. The experiment is performed by randomly selecting a treatment combination (ground clutter level and filter type) and then introducing a signal representing the target into the scope. The intensity of this target is increased until the operator observes it. The intensity level at detection is then measured as the response variable. Because of operator availability,it is convenient to select an operator and keep him or her at the scope until all the necessary runs have been made. Furthermore, operators differ in their skill and ability to use the scope. Consequently, it seems logical to use the operators as blocks. Four operators are randomly selected. Once an operator is chosen, the order in which the six treatment combinations are run is randomly determined. Thus, we have a 3 x 2 factorial experiment run in a randomized complete block. The data are shown below
radar <- read.table(header = T,stringsAsFactors = T,text =
"Operator TipeFilter GroundClutter Intensitas
1 1 Low 90
1 1 Medium 102
1 1 High 114
1 2 Low 86
1 2 Medium 87
1 2 High 93
2 1 Low 96
2 1 Medium 106
2 1 High 112
2 2 Low 84
2 2 Medium 90
2 2 High 91
3 1 Low 100
3 1 Medium 105
3 1 High 108
3 2 Low 92
3 2 Medium 97
3 2 High 95
4 1 Low 92
4 1 Medium 96
4 1 High 98
4 2 Low 81
4 2 Medium 80
4 2 High 83
")
Melihat data sekilas
## Operator TipeFilter GroundClutter Intensitas
## 1 1 1 Low 90
## 2 1 1 Medium 102
## 3 1 1 High 114
## 4 1 2 Low 86
## 5 1 2 Medium 87
## 6 1 2 High 93
## 'data.frame': 24 obs. of 4 variables:
## $ Operator : int 1 1 1 1 1 1 2 2 2 2 ...
## $ TipeFilter : int 1 1 1 2 2 2 1 1 1 2 ...
## $ GroundClutter: Factor w/ 3 levels "High","Low","Medium": 2 3 1 2 3 1 2 3 1 2 ...
## $ Intensitas : int 90 102 114 86 87 93 96 106 112 84 ...
Mengubah kolom suhu ke bentuk factor
Menampilkan hasil ANOVA
anova_radar <- aov(Intensitas~Operator+TipeFilter+GroundClutter+TipeFilter:GroundClutter,data=radar)
summary(anova_radar)
## Df Sum Sq Mean Sq F value Pr(>F)
## Operator 3 402.2 134.1 12.089 0.000277 ***
## TipeFilter 1 1066.7 1066.7 96.192 6.45e-08 ***
## GroundClutter 2 335.6 167.8 15.132 0.000253 ***
## TipeFilter:GroundClutter 2 77.1 38.5 3.476 0.057507 .
## Residuals 15 166.3 11.1
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Plot Interaksi
Uji Asumsi ANOVA
Menggunakan Grafik
## [[1]]
##
## [[2]]
## `geom_smooth()` using formula 'y ~ x'
##
## [[3]]
##
## [[4]]
## `geom_smooth()` using formula 'y ~ x'
Plot order vs residual
res <- residuals(anova_radar)
res_order <- data.frame(order=seq_along(res),
residual=res
)
plot_scatter(res_order,x = order,y=residual)+geom_hline(yintercept = 0)
uji normalitas
##
## Title:
## One-sample Kolmogorov-Smirnov test
##
## Test Results:
## STATISTIC:
## D: 0.2855
## P VALUE:
## Alternative Two-Sided: 0.03171
## Alternative Less: 0.01586
## Alternative Greater: 0.03352
##
## Description:
## Mon Dec 07 09:34:40 2020 by user: gtmir
##
## Title:
## Anderson - Darling Normality Test
##
## Test Results:
## STATISTIC:
## A: 0.1744
## P VALUE:
## 0.9153
##
## Description:
## Mon Dec 07 09:34:40 2020 by user: gtmir
##
## Title:
## Shapiro - Wilk Normality Test
##
## Test Results:
## STATISTIC:
## W: 0.9825
## P VALUE:
## 0.9366
##
## Description:
## Mon Dec 07 09:34:40 2020 by user: gtmir
bptest(Intensitas~Operator+TipeFilter+GroundClutter+TipeFilter:GroundClutter,data=radar,studentize = F)
##
## Breusch-Pagan test
##
## data: Intensitas ~ Operator + TipeFilter + GroundClutter + TipeFilter:GroundClutter
## BP = 9.1022, df = 8, p-value = 0.3337
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 5 0.234 0.9425
## 18