MODELADO

Taxonomia de Elhorts->Modelos regresión espacial MODELOS DE REGRESION ESPACIAL falta:187

modelado <- read_excel("BD_MODELADO.xlsx")
data = data.frame(modelado)
data
##     Avg_X_MCB Avg_Y_MCE Avg_CEa_07 Avg_CEa_15     NDVI      DEM     SLOPE
## 1    843449.6  955962.0   7.237480   18.02656 0.863030 199.0000  6.385167
## 2    843454.8  955962.4   6.787250   18.02737 0.866502 197.1667  1.981082
## 3    843493.6  955951.3   6.848250   18.70444 0.874883 197.0000  0.577682
## 4    843439.6  955977.6   7.135162   18.34237 0.845838 197.0000  1.175075
## 5    843468.7  955972.8   6.826763   17.92409 0.797179 197.0000  0.210996
## 6    843500.6  955975.3   6.699966   18.39441 0.758272 197.6667  4.357386
## 7    843525.7  955982.6   6.180742   17.84332 0.763436 199.7500  6.628445
## 8    843413.4  956014.0   8.539024   18.75812 0.823320 197.1667  1.462050
## 9    843433.6  956013.4   8.869958   18.85396 0.759923 197.3333  1.663344
## 10   843468.8  956010.1   7.231308   18.34269 0.757382 197.6667  3.541936
## 11   843502.3  956003.0   7.372200   18.35662 0.775947 199.6667  5.092919
## 12   843527.4  956009.6   7.556792   18.40508 0.757534 201.5000  2.800611
## 13   843558.6  956009.9   6.613547   18.00057 0.786412 201.4444  2.361177
## 14   843409.2  956037.7   8.707629   18.60609 0.822730 198.5000  4.355658
## 15   843444.0  956031.2   8.619512   18.65902 0.751389 198.5000  2.763125
## 16   843462.4  956045.2   9.443404   18.87923 0.782599 199.0000  2.106899
## 17   843498.4  956034.7   7.948763   18.66895 0.837023 200.6667  3.431262
## 18   843530.9  956034.9   7.617205   18.72236 0.827783 202.0000  1.192970
## 19   843554.9  956043.5   6.952229   18.63938 0.815532 201.6667  1.590627
## 20   843389.9  956077.3   8.900977   19.16011 0.849303 198.4444  5.012258
## 21   843405.1  956074.3   8.362279   18.82934 0.784440 200.5000  2.915162
## 22   843439.7  956065.7   9.246182   19.41561 0.792788 199.7778  2.759113
## 23   843470.2  956066.1   9.565551   19.12467 0.830265 199.3333  2.352002
## 24   843496.6  956073.4   9.514172   19.31950 0.836988 200.4444  3.071998
## 25   843532.6  956063.6   7.765429   18.73330 0.856579 202.0000  2.045438
## 26   843557.1  956069.6   7.740431   19.30920 0.848950 201.2222  3.057894
## 27   843587.7  956070.4   8.005415   18.90811 0.846561 200.1667  3.000087
## 28   843621.8  956062.2   6.561038   18.64561 0.851043 200.7778  3.986067
## 29   843639.8  956077.0   6.283077   18.36692 0.854749 201.8333  2.074468
## 30   843387.3  956093.4   8.319138   18.83954 0.808107 199.0000  4.708445
## 31   843405.5  956102.7   9.039500   19.16427 0.704767 201.0000  1.474276
## 32   843439.1  956100.5   8.967420   18.79867 0.829590 200.8333  1.545263
## 33   843473.6  956093.5  10.180382   19.61115 0.796595 200.7500  3.036000
## 34   843495.0  956102.8  10.306887   20.20234 0.800730 201.3333  3.673525
## 35   843523.1  956095.7  10.387930   19.50311 0.822610 202.7500  3.780945
## 36   843564.3  956090.1   8.079340   19.52706 0.812524 201.6667  5.572433
## 37   843584.4  956103.3   7.416591   18.46507 0.851740 198.7500  6.139762
## 38   843619.4  956096.3   7.794147   18.55415 0.861789 199.0000  6.402925
## 39   843651.4  956093.7   6.358915   18.25549 0.855028 200.5000  5.598307
## 40   843673.6  956105.1   7.251424   19.10358 0.868394 199.0000  6.668860
## 41   843211.2  956141.8   9.239875   20.23771 0.863231 198.4444  3.801271
## 42   843222.1  956140.1   8.808246   19.87461 0.842880 199.0000  3.790430
## 43   843263.1  956132.1   9.690171   19.67751 0.821701 198.3333  4.396922
## 44   843288.7  956126.8  10.155757   19.46209 0.798429 196.8333  3.904072
## 45   843385.9  956129.3   8.804591   19.08687 0.737705 199.3333  2.923768
## 46   843409.0  956124.0   8.434166   19.03361 0.750449 200.5000  2.458677
## 47   843434.3  956134.7   9.156519   18.77033 0.835305 201.3333  1.687156
## 48   843469.4  956125.4   9.274048   18.43818 0.752140 202.3333  3.230637
## 49   843501.5  956124.2  10.207658   19.63138 0.715250 203.5556  4.476171
## 50   843523.1  956134.7  10.902909   19.60230 0.739356 205.0000  4.121137
## 51   843597.5  956117.9   7.761483   18.37293 0.856687 200.3333 10.745049
## 52   843615.1  956132.8   8.006260   18.36260 0.852410 197.4444  5.309658
## 53   843651.3  956123.5   7.533355   18.36884 0.849109 197.5000  3.681294
## 54   843681.2  956124.6   6.599943   18.65739 0.855608 196.8889  3.572474
## 55   843705.6  956131.9   6.165389   18.22589 0.837410 196.1667  1.894812
## 56   843203.3  956159.1   9.801222   20.57460 0.813314 201.0000  6.860100
## 57   843232.4  956154.0   9.883363   19.67821 0.785680 201.2500  5.779408
## 58   843258.6  956159.4   9.356057   19.23891 0.828626 200.5000  5.703887
## 59   843288.7  956160.8   9.417184   18.72799 0.843965 199.2500  6.287442
## 60   843324.3  956151.0   8.755571   18.37157 0.847600 199.0000  5.979193
## 61   843343.0  956166.2   8.698579   18.29050 0.837913 200.0000  5.017095
## 62   843382.9  956157.4   8.703409   18.35272 0.758228 200.5000  4.258302
## 63   843414.1  956155.5   8.273370   18.69217 0.782020 201.5000  5.531510
## 64   843436.7  956160.5   8.349463   18.67237 0.843852 202.0000  1.791052
## 65   843467.1  956161.7   9.406651   19.00990 0.803169 201.5000  3.412350
## 66   843502.3  956152.3   9.437600   18.38075 0.805965 203.3333  6.380927
## 67   843529.8  956157.1  10.106193   18.76165 0.786369 205.0000  5.288365
## 68   843555.8  956162.5  10.622833   19.52911 0.815856 206.5000  5.275273
## 69   843600.5  956158.8   9.710588   19.22582 0.862998 205.2500 11.876602
## 70   843625.8  956148.9   8.792682   18.39832 0.848414 200.6667 12.718485
## 71   843647.5  956160.4   8.157281   18.32854 0.847895 198.0000  7.269520
## 72   843684.3  956150.0   7.586421   18.00271 0.865199 197.1667  5.617575
## 73   843709.2  956158.8   7.571196   17.90945 0.870017 196.7500  3.788360
## 74   843738.7  956159.4   6.827806   17.68600 0.871002 197.1667  3.364663
## 75   843231.2  956183.7  10.413632   19.74619 0.758252 204.5000  5.642858
## 76   843257.7  956190.6   9.166925   19.62213 0.867244 203.7778  6.482583
## 77   843288.4  956192.2   8.504000   18.89116 0.867638 202.3333  6.083620
## 78   843319.3  956186.0   8.788548   18.37173 0.870942 201.1111  2.459150
## 79   843350.9  956186.5   8.662250   18.26270 0.872671 201.0000  0.455108
## 80   843376.0  956193.7   8.719192   18.85450 0.868578 202.1111  4.101172
## 81   843412.2  956186.1   8.341883   18.48699 0.848237 203.6667  2.456326
## 82   843443.6  956182.1   8.293013   18.90836 0.851545 202.3333  4.217897
## 83   843464.3  956188.5   8.894091   18.87077 0.819059 200.8333  2.518604
## 84   843499.2  956188.4   9.640773   18.75718 0.804251 200.2222  4.984981
## 85   843533.1  956182.7   9.492250   18.26178 0.815396 201.8333  8.670177
## 86   843558.1  956189.6   9.782962   18.64194 0.823529 206.0000  7.582604
## 87   843589.4  956190.0  11.163060   20.20002 0.841616 207.3333  4.667620
## 88   843650.6  956193.7   9.308194   19.18990 0.849396 203.0000  8.109317
## 89   843679.3  956187.1   8.156393   18.35493 0.866166 202.5556 11.049718
## 90   843714.6  956180.8   8.287346   18.28569 0.864788 201.1667 11.253322
## 91   843738.6  956190.7   8.951000   18.28127 0.855187 199.1111  7.486137
## 92   843769.3  956184.9   7.039985   17.21669 0.856369 200.3333  6.899040
## 93   843264.4  956212.3   9.423294   19.52137 0.824327 207.0000  5.684828
## 94   843284.4  956224.4   9.017756   19.17876 0.862673 205.2500  7.447565
## 95   843319.5  956217.8   8.648365   19.24670 0.861911 203.0000  7.774040
## 96   843350.3  956215.5   8.578609   18.44053 0.870474 201.5000  4.397030
## 97   843377.7  956220.8   8.499200   18.28480 0.877252 202.8333  4.143000
## 98   843408.6  956220.7   8.404081   18.78468 0.860681 204.2500  1.997852
## 99   843439.4  956216.5   8.742085   19.17412 0.845406 204.0000  3.836572
## 100  843465.0  956224.4   9.369309   19.24459 0.841513 202.0000  6.512908
## 101  843499.4  956220.3   9.560190   18.78436 0.825845 199.6667  4.350432
## 102  843531.1  956214.7   9.754492   18.74436 0.808722 200.0000  4.851805
## 103  843558.5  956218.2   9.550490   18.27571 0.817211 203.1667  7.158753
## 104  843586.2  956222.9   9.488833   18.19102 0.844389 205.2500  3.089440
## 105  843619.5  956214.7  11.076870   20.15741 0.848573 204.8333  1.423512
## 106  843650.0  956216.6   9.998806   19.54010 0.848647 205.0000  1.982079
## 107  843679.0  956221.1   9.759255   19.09805 0.856381 206.6667  3.747822
## 108  843710.6  956213.4   8.134407   18.10189 0.849230 205.7500  7.037877
## 109  843734.2  956222.4   8.283045   18.08600 0.843651 202.1667  5.566600
## 110  843769.5  956215.0   9.061986   18.65290 0.843616 201.0000  1.501851
## 111  843798.8  956215.9   8.171761   18.13158 0.849739 202.3333  5.030968
## 112  843819.9  956226.9   7.553833   17.89883 0.860130 203.0000  4.671025
## 113  843296.8  956240.2   9.105000   19.12731 0.843663 207.8333  3.271004
## 114  843314.4  956254.9   9.540674   19.70359 0.853745 206.4444  6.858296
## 115  843351.4  956243.9   8.603241   19.29691 0.856553 205.0000  7.369337
## 116  843380.5  956246.8   8.789031   18.58095 0.866439 204.1111  4.006299
## 117  843405.1  956254.6   8.815902   18.78757 0.840555 204.8333  1.462050
## 118  843439.5  956246.4   8.671873   18.86411 0.841259 204.8889  1.218358
## 119  843472.5  956241.3   9.639222   18.64261 0.861820 204.0000  3.836572
## 120  843496.1  956253.1   9.724586   18.89210 0.832131 201.6667  5.265142
## 121  843530.0  956245.7   9.861596   18.64730 0.827554 201.5000  5.385043
## 122  843560.6  956244.9  10.127983   18.61331 0.824167 204.1111  7.128587
## 123  843587.3  956250.3  10.388884   18.67009 0.827009 206.0000  5.358540
## 124  843619.0  956250.1   9.952259   18.44155 0.836960 204.7778  3.626926
## 125  843652.5  956242.1  11.144444   19.95739 0.847317 203.6667  2.962247
## 126  843673.6  956253.9  10.916097   19.64090 0.865341 204.7778  5.460382
## 127  843710.1  956245.8   9.710557   18.55275 0.857880 205.5000  4.828302
## 128  843742.9  956241.8   8.085140   17.91605 0.843587 202.3333  5.443827
## 129  843802.9  956240.6   9.437786   18.36079 0.870549 201.5556  1.737311
## 130  843829.3  956246.8   8.461278   18.23818 0.862629 202.0000  0.397830
## 131  843853.4  956254.3   7.954150   18.13873 0.836774 200.8889  4.574136
## 132  843329.5  956267.5   9.158409   19.58104 0.831675 209.3333  3.588530
## 133  843347.9  956282.4   9.320712   19.21278 0.837706 208.0000  6.125635
## 134  843385.0  956271.8   8.914465   19.23244 0.856900 206.1667  5.162935
## 135  843410.4  956277.5   8.762164   18.87300 0.865854 205.2500  2.218411
## 136  843437.1  956282.5   9.031770   18.57587 0.872514 205.3333  2.080359
## 137  843472.2  956274.0   8.958058   18.34819 0.872568 204.5000  3.006227
## 138  843499.8  956277.9   9.390675   18.47270 0.852908 202.3333  4.674987
## 139  843528.6  956280.6   9.799225   18.57563 0.833239 201.5000  4.727215
## 140  843562.4  956273.0  10.491500   19.03598 0.841123 206.3333  9.757872
## 141  843590.3  956276.3  10.666597   19.02223 0.838892 209.2500  5.480415
## 142  843616.1  956282.5  10.220761   18.92078 0.854460 206.3333  8.254676
## 143  843649.9  956276.3   9.576524   18.23724 0.866290 203.7500  3.371925
## 144  843682.4  956273.3  11.325523   19.28098 0.858144 203.3333  2.225776
## 145  843703.8  956284.5  11.492385   19.30587 0.863999 203.7500  2.808880
## 146  843776.6  956268.4   7.968871   17.46971 0.862478 201.5000  2.990262
## 147  843795.3  956283.6   8.121050   17.72365 0.873844 201.8333  2.530224
## 148  843836.8  956268.1   9.461541   18.51354 0.836021 202.5000  2.276920
## 149  843859.7  956277.0   9.119667   18.28281 0.812793 201.8333  2.716172
## 150  843887.1  956281.6   9.490019   18.76485 0.827297 200.5000  4.612540
## 151  843363.1  956294.8   9.033125   19.33087 0.820116 210.3333  4.002342
## 152  843379.8  956308.8   9.038783   19.51658 0.836631 209.8889  7.841606
## 153  843414.6  956302.6   8.930578   19.08338 0.863915 207.8333  8.257585
## 154  843438.3  956310.7   8.875571   18.92654 0.873334 206.4444  3.857106
## 155  843470.0  956309.9   9.428071   18.44366 0.875065 205.1667  3.487768
## 156  843503.9  956302.0   8.788283   18.25748 0.866960 203.2222  6.914147
## 157  843524.9  956315.1   9.177440   18.19536 0.834331 201.1667  4.310694
## 158  843559.5  956306.3   9.794014   18.57058 0.839068 205.7778 11.296110
## 159  843591.6  956304.3  10.494813   18.72233 0.856831 210.0000  1.747159
## 160  843620.1  956307.7  10.637610   18.78246 0.857267 208.5556  6.130330
## 161  843647.4  956312.0  10.651236   18.81255 0.857484 205.5000  5.711950
## 162  843682.1  956303.3   9.873600   17.76493 0.850752 205.0000  4.719129
## 163  843709.8  956307.1  11.176595   18.51562 0.857664 204.8333  5.374358
## 164  843736.9  956311.7  11.420059   19.12765 0.855681 203.3333  5.159998
## 165  843780.4  956302.2  10.373150   18.40430 0.863387 203.8333  5.796872
## 166  843798.9  956308.6   9.611918   18.19295 0.874638 204.1111  4.943022
## 167  843828.9  956310.9   8.906259   17.73712 0.848241 204.0000  3.505737
## 168  843870.1  956295.3  10.253087   18.28652 0.840399 203.3333  3.730053
## 169  843894.3  956311.4  10.481411   18.95797 0.841652 201.5000  4.479237
## 170  843915.9  956304.0  13.058916   20.93098 0.795073 199.7778  3.182941
## 171  843411.1  956334.0   9.350082   19.53766 0.810811 211.7500  7.183032
## 172  843441.5  956336.9   9.242393   19.02414 0.864632 208.3333  7.453835
## 173  843465.3  956340.8   9.099338   18.98034 0.874916 206.7500  3.146847
## 174  843499.6  956334.8   9.063097   18.44244 0.854908 205.8333  6.620357
## 175  843531.5  956333.6   9.204898   18.10246 0.844776 204.2500  7.818020
## 176  843554.4  956344.6   8.911786   17.86002 0.850159 206.1667  7.750718
## 177  843591.9  956333.8  10.290754   18.50285 0.856557 209.2500  4.140995
## 178  843620.4  956336.2  10.683234   18.46745 0.834661 209.5000  2.622039
## 179  843649.3  956339.1  11.102933   18.37955 0.836137 208.2500  6.048235
## 180  843679.8  956338.9  11.555725   18.25584 0.847999 208.1667  6.774420
## 181  843713.9  956331.7  10.262660   17.39117 0.846368 208.0000  6.397650
## 182  843737.7  956340.0  10.833848   17.85763 0.844550 205.6667  5.088587
## 183  843770.0  956339.0  11.726238   18.83256 0.862181 206.0000  3.834015
## 184  843809.1  956325.9  10.057179   18.69707 0.865831 206.5000  3.339427
## 185  843829.7  956339.0  10.225946   18.36255 0.851753 205.5000  3.257628
## 186  843858.2  956334.4   9.190459   17.95162 0.853442 203.6667  3.698943
## 187  843890.9  956335.2  10.466905   17.97419 0.857861 202.7500  3.159929
## 188  843919.8  956335.3  11.088537   18.78384 0.845244 201.3333  4.151367
## 189  843949.8  956334.1  10.537560   20.02344 0.774291 200.2500  4.271058
## 190  843445.3  956360.3   9.588048   18.82817 0.804610 209.8889  4.661827
## 191  843469.1  956369.9   8.890474   18.78765 0.855494 209.3333  5.267915
## 192  843496.6  956367.1   9.178667   18.73316 0.849169 209.2222  6.872354
## 193  843533.1  956363.1   8.939582   17.58596 0.848935 208.6667  7.365235
## 194  843560.2  956367.5   9.121469   17.82763 0.853871 209.0000  5.953982
## 195  843587.3  956372.2   9.161358   17.63924 0.850449 210.5000  5.253798
## 196  843624.1  956361.2   9.624125   18.32854 0.832890 211.0000  3.526908
## 197  843648.8  956368.9  11.124750   17.95658 0.823946 211.3333  5.185570
## 198  843679.1  956370.3  11.890033   17.76955 0.840283 211.3333  4.988912
## 199  843710.6  956363.8  11.216469   17.67884 0.848761 210.5000  5.430198
## 200  843741.0  956365.4  11.074617   17.49098 0.853740 208.0000  5.881513
## 201  843767.0  956373.3  11.575519   17.08335 0.870374 207.1667  3.109163
## 202  843800.2  956364.2  11.625279   18.87552 0.859950 207.2222  1.517558
## 203  843823.1  956374.8  12.533951   18.86659 0.831997 206.0000  5.347407
## 204  843858.2  956365.6  12.664912   18.38086 0.825287 203.4444  3.258100
## 205  843890.5  956363.6  10.729181   17.21194 0.829966 203.0000  0.281328
## 206  843910.8  956376.4   9.710667   17.63315 0.831045 203.0000  2.432128
## 207  843952.6  956361.3  13.227629   21.51339 0.804012 202.5000  5.575297
## 208  843980.6  956364.4   9.126116   19.53128 0.773180 199.6667  7.781784
## 209  844005.8  956371.5   6.894246   18.29086 0.794779 197.5000  5.738217
## 210  843479.5  956387.9   8.503577   18.33692 0.804623 210.7500  4.400325
## 211  843496.9  956402.6   8.451278   18.34056 0.851234 212.3333  4.360802
## 212  843530.2  956395.2   8.930413   18.50075 0.850611 211.5000  4.597890
## 213  843561.9  956394.9   9.979037   18.06068 0.836540 211.1667  1.883871
## 214  843588.3  956400.2  10.039082   17.67702 0.831368 211.2500  1.786949
## 215  843620.1  956398.7  10.834800   17.87506 0.840000 211.8333  1.462050
## 216  843655.4  956390.7  11.127763   18.10650 0.838095 212.2500  1.786949
## 217  843676.3  956402.6  11.791851   18.21894 0.841190 212.3333  1.680566
## 218  843710.3  956396.0  12.863088   17.80500 0.865160 211.5000  2.549555
## 219  843741.2  956394.4  12.366322   17.62178 0.849108 210.0000  3.990678
## 220  843769.6  956398.6  12.096839   17.61648 0.841961 208.5000  3.257628
## 221  843794.5  956396.0  11.738320   16.88126 0.848782 207.5000  3.292012
## 222  843832.5  956390.4  12.740534   18.68069 0.828928 205.0000  6.269660
## 223  843852.1  956406.1  13.601094   18.82575 0.811157 203.1667  2.430204
## 224  843892.2  956392.2  11.457347   18.02683 0.820088 203.5000  3.299475
## 225  843920.0  956395.9  11.166191   18.37085 0.830938 204.5000  3.254442
## 226  843944.7  956403.6  11.297233   18.90360 0.804511 204.0000  2.554135
## 227  843986.5  956388.3  11.039111   21.20233 0.817266 202.1667  4.492692
## 228  844015.0  956397.3   7.963308   19.38825 0.789837 200.5000  4.355658
## 229  843512.2  956415.5   9.048643   18.20879 0.812592 212.3333  3.567334
## 230  843529.4  956430.5   8.881460   17.97930 0.837166 212.5000  2.958468
## 231  843563.1  956422.5  10.835075   18.14640 0.830340 210.6667  3.911258
## 232  843590.2  956427.5  10.506455   17.76495 0.815107 210.1667  2.740343
## 233  843616.8  956432.7   9.840000   16.97415 0.837437 210.8889  2.434887
## 234  843651.0  956423.7  10.916683   17.68562 0.839855 211.8333  1.462050
## 235  843680.7  956426.6  11.010927   17.45429 0.843084 211.6667  1.574458
## 236  843708.0  956431.1  13.424340   18.47732 0.849661 211.1667  1.191299
## 237  843742.6  956422.9  12.675188   17.95838 0.829123 210.3333  1.963581
## 238  843774.0  956423.0  12.447763   17.93237 0.814726 209.3333  2.510633
## 239  843802.0  956424.4  12.444867   17.68103 0.859755 208.1111  3.357586
## 240  843830.4  956428.2  11.632409   17.55151 0.860111 205.6667  5.573225
## 241  843865.0  956419.9  12.971378   18.85073 0.836932 205.0000  3.883573
## 242  843886.0  956433.0  13.262604   19.25704 0.833459 205.3333  3.425505
## 243  843925.6  956418.2  10.691591   18.11443 0.862390 205.3333  2.397526
## 244  843950.3  956426.9  10.110577   18.56411 0.835272 203.5000  3.529828
## 245  843979.7  956430.9  10.214864   18.50148 0.820129 202.3333  1.757121
## 246  844017.8  956412.4   9.330150   20.68170 0.813438 201.8333  1.321386
## 247  843544.5  956443.5   8.808750   17.69575 0.801299 211.0000  3.843770
## 248  843560.6  956457.1   9.284254   17.66615 0.814951 209.6667  2.339072
## 249  843592.3  956454.0   9.965915   17.60387 0.810631 210.0000  3.372290
## 250  843619.9  956459.8  10.322586   17.42128 0.830254 210.8333  1.331963
## 251  843650.0  956460.1   9.753217   16.80468 0.829867 211.5000  2.331430
## 252  843684.4  956450.6  10.107022   17.01939 0.830576 211.3333  1.753202
## 253  843707.9  956460.8  12.064159   17.70423 0.829442 210.7500  1.982079
## 254  843741.6  956459.3  13.318076   18.44122 0.807566 210.6667  1.994592
## 255  843772.7  956449.8  11.840000   18.03844 0.830631 210.5000  3.652555
## 256  843801.1  956456.3  11.691589   17.92762 0.869058 208.8333  4.000510
## 257  843828.8  956460.5  12.471000   18.34732 0.876872 207.2500  4.344182
## 258  843861.3  956452.7  11.860000   17.76506 0.856497 206.5000  2.025263
## 259  843890.0  956457.0  11.974023   18.34123 0.855178 206.7500  2.143036
## 260  843919.6  956459.4  12.494547   19.32316 0.865053 205.6667  3.054682
## 261  843960.3  956445.0   9.845591   18.51041 0.856615 203.5000  3.507347
## 262  843978.2  956454.1  10.792130   18.86935 0.833807 202.3333  1.699703
## 263  843592.1  956482.6   9.899631   17.45368 0.799654 210.5000  3.195748
## 264  843620.6  956487.7  10.453354   17.65788 0.841748 211.7778  3.074642
## 265  843648.4  956490.9  10.972456   18.56572 0.840825 212.6667  2.340314
## 266  843680.8  956485.4   9.714850   17.08600 0.842335 211.8889  3.682146
## 267  843712.1  956484.6  11.064222   17.15713 0.842948 210.0000  1.380508
## 268  843736.3  956492.1  12.026567   17.66037 0.823280 210.2222  1.494623
## 269  843770.9  956483.4  12.136029   17.96648 0.835574 211.0000  1.180966
## 270  843801.3  956485.2  12.298185   18.43244 0.855167 210.3333  3.630946
## 271  843828.9  956490.4  12.122456   18.10990 0.856197 208.0000  4.508540
## 272  843860.3  956485.2  12.715985   18.00555 0.846907 207.0000  1.229972
## 273  843891.9  956483.2  11.433000   17.89280 0.848410 207.5000  3.308189
## 274  843916.0  956492.3  11.097524   18.34174 0.861704 207.0000  5.720357
## 275  843951.1  956484.3  12.078147   19.67345 0.866817 204.5000  5.589362
## 276  843626.5  956509.8   9.787512   17.72488 0.818078 212.6667  2.291358
## 277  843680.6  956518.9   9.977851   17.93497 0.844989 212.0000  3.971073
## 278  843707.0  956512.5  10.401154   17.04784 0.848807 210.0000  1.192970
## 279  843739.0  956519.2  10.185048   17.19309 0.838659 210.0000  0.281328
## 280  843770.5  956519.4  11.695016   17.65305 0.831923 210.5000  2.276920
## 281  843804.1  956510.8  12.247611   18.35720 0.843948 210.3333  1.731291
## 282  843829.2  956518.5  12.025920   18.36328 0.839912 209.5000  3.270202
## 283  843860.5  956518.7  11.256382   18.32035 0.829359 208.3333  4.489935
## 284  843892.1  956512.4  11.515895   18.41900 0.832789 209.0000  4.915900
## 285  843920.2  956516.8  11.611375   18.73189 0.852465 209.3333  4.350432
## 286  843660.3  956536.8   9.577556   17.74167 0.804340 213.1667  1.191299
## 287  843674.5  956548.0   9.894512   17.67345 0.831047 212.1111  3.048190
## 288  843710.2  956542.8  10.346464   17.80915 0.838290 211.3333  3.132002
## 289  843741.2  956545.8  10.386561   17.27867 0.828603 210.7778  3.312014
## 290  843766.1  956552.8   9.972537   16.80343 0.833425 211.3333  2.262116
## 291  843801.1  956543.4  11.363155   17.82667 0.843895 210.7778  2.962719
## 292  843831.9  956544.6  11.511292   18.15106 0.836312 209.8333  2.286170
## 293  843857.5  956552.3  11.321532   18.56879 0.808821 209.0000  2.715691
## 294  843892.2  956543.8  11.403831   18.60643 0.804109 208.6667  4.780660
## 295  843919.6  956540.9  12.237587   19.39965 0.828916 209.8889  2.595346
## 296  843694.2  956563.6  10.013111   17.44778 0.802328 212.8333  2.800913
## 297  843710.2  956576.4   9.645260   17.53826 0.826260 212.5000  3.006227
## 298  843743.4  956572.6  10.961389   18.04187 0.835826 212.5000  2.802492
## 299  843770.5  956577.7   9.826764   17.54689 0.843641 212.5000  2.385940
## 300  843800.3  956580.0   9.692833   17.14611 0.840611 212.6667  3.459422
## 301  843835.4  956570.0  11.477929   18.16683 0.824012 210.0000  7.497325
## 302  843859.4  956579.0  11.563340   18.74846 0.814689 207.1667  6.410306
## 303  843886.9  956575.1  10.787655   18.61794 0.815784 205.5000  6.839028
## 304  843743.6  956602.9  10.040680   17.56948 0.819922 213.1111  1.389929
## 305  843771.6  956605.5  11.507673   17.99358 0.839661 212.6667  1.531505
## 306  843798.2  956611.2   9.891250   18.13896 0.826877 213.3333  2.869667
## 307  843830.7  956603.6   9.972969   17.30525 0.825225 211.8333  8.230437
## 308  843862.9  956604.0  10.590700   18.89458 0.834841 207.0000  9.589556
## 309  843776.7  956629.2   9.565263   18.37484 0.800520 211.7500  3.309488
## 310  843799.6  956639.4   9.002500   18.15950 0.820314 212.1667  4.362813
## 311  843832.1  956638.0   9.762534   18.99889 0.837665 212.7500  4.403135
## 312  843857.0  956627.6   9.225618   18.51444 0.796948 209.6667  8.798860
## 313  843809.0  956654.7   9.394625   18.19100 0.777866 212.0000  2.791830
##        Avg_z
## 1   193.0512
## 2   193.2986
## 3   193.5659
## 4   194.4116
## 5   193.9931
## 6   195.3814
## 7   196.6780
## 8   194.9936
## 9   196.1356
## 10  197.8522
## 11  196.9330
## 12  198.0175
## 13  197.7762
## 14  195.8610
## 15  196.5075
## 16  197.4861
## 17  199.9242
## 18  199.1996
## 19  199.2844
## 20  197.4021
## 21  197.2999
## 22  197.7400
## 23  198.8052
## 24  199.7561
## 25  200.2470
## 26  200.0841
## 27  200.0516
## 28  198.6690
## 29  198.8767
## 30  198.0322
## 31  198.9863
## 32  199.0529
## 33  199.4091
## 34  200.2416
## 35  200.4325
## 36  200.7606
## 37  201.2179
## 38  201.1689
## 39  198.6975
## 40  197.1639
## 41  195.1000
## 42  195.2742
## 43  195.7090
## 44  196.6163
## 45  196.6843
## 46  197.5293
## 47  199.8418
## 48  200.1707
## 49  200.8024
## 50  201.0412
## 51  201.2643
## 52  201.3608
## 53  200.7411
## 54  198.9216
## 55  198.8203
## 56  195.6087
## 57  196.0870
## 58  196.1448
## 59  196.4108
## 60  197.4217
## 61  197.9413
## 62  198.2749
## 63  198.1177
## 64  198.8206
## 65  200.6089
## 66  201.0759
## 67  201.1798
## 68  200.8173
## 69  203.1204
## 70  201.7512
## 71  201.4652
## 72  201.3465
## 73  201.2001
## 74  200.1021
## 75  198.3504
## 76  197.8452
## 77  197.3573
## 78  197.0722
## 79  198.1134
## 80  198.8306
## 81  199.8018
## 82  199.2333
## 83  200.0127
## 84  201.2964
## 85  202.1158
## 86  202.1501
## 87  201.8758
## 88  204.5230
## 89  201.9955
## 90  201.7849
## 91  201.6944
## 92  199.8109
## 93  198.8574
## 94  198.8165
## 95  198.1910
## 96  198.3609
## 97  199.0324
## 98  199.9175
## 99  201.0765
## 100 202.0215
## 101 201.3854
## 102 202.4915
## 103 203.2807
## 104 203.4541
## 105 203.0027
## 106 204.2055
## 107 204.8999
## 108 201.7845
## 109 201.8522
## 110 201.4426
## 111 199.7676
## 112 199.0601
## 113 198.3139
## 114 197.9799
## 115 199.1988
## 116 199.6428
## 117 200.2269
## 118 201.0782
## 119 202.3012
## 120 202.6912
## 121 202.6254
## 122 203.7258
## 123 204.1337
## 124 204.7050
## 125 203.4641
## 126 203.7717
## 127 204.8091
## 128 201.9826
## 129 200.9807
## 130 199.6393
## 131 198.6265
## 132 198.2778
## 133 199.2195
## 134 200.2588
## 135 200.8218
## 136 201.5015
## 137 202.4989
## 138 203.3595
## 139 204.4179
## 140 203.6451
## 141 204.4681
## 142 205.4655
## 143 206.1004
## 144 204.2725
## 145 204.0167
## 146 201.6800
## 147 201.5062
## 148 200.5268
## 149 199.7099
## 150 198.5984
## 151 199.7960
## 152 200.2779
## 153 201.3893
## 154 202.0203
## 155 202.6132
## 156 203.7657
## 157 204.5432
## 158 205.7407
## 159 204.5445
## 160 204.9341
## 161 205.8528
## 162 206.3428
## 163 205.1603
## 164 204.1542
## 165 202.9000
## 166 203.4336
## 167 201.4334
## 168 200.1442
## 169 199.8272
## 170 198.7313
## 171 201.5489
## 172 202.5080
## 173 203.1635
## 174 203.5593
## 175 204.7211
## 176 205.2250
## 177 206.9010
## 178 205.6902
## 179 204.9596
## 180 206.3974
## 181 206.1927
## 182 205.5291
## 183 204.3245
## 184 202.7165
## 185 202.3656
## 186 201.2474
## 187 200.5020
## 188 199.8491
## 189 198.5972
## 190 202.7712
## 191 203.2853
## 192 203.6961
## 193 204.2412
## 194 205.0853
## 195 205.9503
## 196 207.7375
## 197 206.7987
## 198 204.8491
## 199 206.4087
## 200 206.0711
## 201 205.9899
## 202 204.7037
## 203 204.3314
## 204 202.1066
## 205 201.1195
## 206 200.8034
## 207 199.7839
## 208 198.6119
## 209 197.4881
## 210 203.6242
## 211 204.1438
## 212 204.2841
## 213 204.7361
## 214 205.4088
## 215 206.3681
## 216 207.6834
## 217 207.2423
## 218 205.3834
## 219 205.9602
## 220 205.7391
## 221 205.9970
## 222 204.5509
## 223 204.8136
## 224 201.8857
## 225 201.3896
## 226 200.8387
## 227 199.5112
## 228 198.6991
## 229 204.5661
## 230 204.0985
## 231 204.9926
## 232 205.3672
## 233 205.4851
## 234 206.6006
## 235 206.9225
## 236 206.9044
## 237 205.8225
## 238 205.4299
## 239 207.9852
## 240 211.9958
## 241 205.4668
## 242 204.7264
## 243 202.1130
## 244 201.4283
## 245 200.8799
## 246 199.5737
## 247 204.1000
## 248 204.1985
## 249 205.5335
## 250 205.8982
## 251 205.7017
## 252 206.8975
## 253 206.8196
## 254 206.3962
## 255 205.9474
## 256 205.4009
## 257 204.7141
## 258 212.3547
## 259 208.9608
## 260 204.7026
## 261 201.5060
## 262 201.5401
## 263 205.3600
## 264 205.9236
## 265 206.6825
## 266 205.9591
## 267 206.3634
## 268 206.4892
## 269 206.3979
## 270 205.9306
## 271 205.4732
## 272 204.6796
## 273 210.9083
## 274 212.1226
## 275 205.4466
## 276 205.9218
## 277 207.1207
## 278 206.7147
## 279 206.9503
## 280 206.2647
## 281 206.4828
## 282 206.1123
## 283 205.3742
## 284 204.6418
## 285 208.2343
## 286 206.9770
## 287 207.8832
## 288 207.5258
## 289 207.4212
## 290 207.1158
## 291 206.1141
## 292 206.2850
## 293 205.8256
## 294 205.4207
## 295 204.7865
## 296 208.1229
## 297 208.1408
## 298 207.5593
## 299 206.4362
## 300 205.2322
## 301 206.2511
## 302 206.1078
## 303 205.4652
## 304 207.7260
## 305 207.4729
## 306 207.5030
## 307 205.3955
## 308 206.0401
## 309 207.5483
## 310 207.6438
## 311 207.4406
## 312 205.7614
## 313 207.6968
plot(data$Avg_X_MCB,data$Avg_Y_MCE,col="brown",pch=16,main="PUNTOS DE MUESTREO ESPACIAL")

###VARIABLE RESPUESTA: CONDUCTIVIDAD ELECTRICA APARENTE 07 Parte exploratoria

#Variables explicativas
X=as.matrix(data.frame(data$Avg_CEa_15,data$NDVI,data$DEM,data$SLOPE,data$Avg_z))
X
##        data.Avg_CEa_15 data.NDVI data.DEM data.SLOPE data.Avg_z
##   [1,]        18.02656  0.863030 199.0000   6.385167   193.0512
##   [2,]        18.02737  0.866502 197.1667   1.981082   193.2986
##   [3,]        18.70444  0.874883 197.0000   0.577682   193.5659
##   [4,]        18.34237  0.845838 197.0000   1.175075   194.4116
##   [5,]        17.92409  0.797179 197.0000   0.210996   193.9931
##   [6,]        18.39441  0.758272 197.6667   4.357386   195.3814
##   [7,]        17.84332  0.763436 199.7500   6.628445   196.6780
##   [8,]        18.75812  0.823320 197.1667   1.462050   194.9936
##   [9,]        18.85396  0.759923 197.3333   1.663344   196.1356
##  [10,]        18.34269  0.757382 197.6667   3.541936   197.8522
##  [11,]        18.35662  0.775947 199.6667   5.092919   196.9330
##  [12,]        18.40508  0.757534 201.5000   2.800611   198.0175
##  [13,]        18.00057  0.786412 201.4444   2.361177   197.7762
##  [14,]        18.60609  0.822730 198.5000   4.355658   195.8610
##  [15,]        18.65902  0.751389 198.5000   2.763125   196.5075
##  [16,]        18.87923  0.782599 199.0000   2.106899   197.4861
##  [17,]        18.66895  0.837023 200.6667   3.431262   199.9242
##  [18,]        18.72236  0.827783 202.0000   1.192970   199.1996
##  [19,]        18.63938  0.815532 201.6667   1.590627   199.2844
##  [20,]        19.16011  0.849303 198.4444   5.012258   197.4021
##  [21,]        18.82934  0.784440 200.5000   2.915162   197.2999
##  [22,]        19.41561  0.792788 199.7778   2.759113   197.7400
##  [23,]        19.12467  0.830265 199.3333   2.352002   198.8052
##  [24,]        19.31950  0.836988 200.4444   3.071998   199.7561
##  [25,]        18.73330  0.856579 202.0000   2.045438   200.2470
##  [26,]        19.30920  0.848950 201.2222   3.057894   200.0841
##  [27,]        18.90811  0.846561 200.1667   3.000087   200.0516
##  [28,]        18.64561  0.851043 200.7778   3.986067   198.6690
##  [29,]        18.36692  0.854749 201.8333   2.074468   198.8767
##  [30,]        18.83954  0.808107 199.0000   4.708445   198.0322
##  [31,]        19.16427  0.704767 201.0000   1.474276   198.9863
##  [32,]        18.79867  0.829590 200.8333   1.545263   199.0529
##  [33,]        19.61115  0.796595 200.7500   3.036000   199.4091
##  [34,]        20.20234  0.800730 201.3333   3.673525   200.2416
##  [35,]        19.50311  0.822610 202.7500   3.780945   200.4325
##  [36,]        19.52706  0.812524 201.6667   5.572433   200.7606
##  [37,]        18.46507  0.851740 198.7500   6.139762   201.2179
##  [38,]        18.55415  0.861789 199.0000   6.402925   201.1689
##  [39,]        18.25549  0.855028 200.5000   5.598307   198.6975
##  [40,]        19.10358  0.868394 199.0000   6.668860   197.1639
##  [41,]        20.23771  0.863231 198.4444   3.801271   195.1000
##  [42,]        19.87461  0.842880 199.0000   3.790430   195.2742
##  [43,]        19.67751  0.821701 198.3333   4.396922   195.7090
##  [44,]        19.46209  0.798429 196.8333   3.904072   196.6163
##  [45,]        19.08687  0.737705 199.3333   2.923768   196.6843
##  [46,]        19.03361  0.750449 200.5000   2.458677   197.5293
##  [47,]        18.77033  0.835305 201.3333   1.687156   199.8418
##  [48,]        18.43818  0.752140 202.3333   3.230637   200.1707
##  [49,]        19.63138  0.715250 203.5556   4.476171   200.8024
##  [50,]        19.60230  0.739356 205.0000   4.121137   201.0412
##  [51,]        18.37293  0.856687 200.3333  10.745049   201.2643
##  [52,]        18.36260  0.852410 197.4444   5.309658   201.3608
##  [53,]        18.36884  0.849109 197.5000   3.681294   200.7411
##  [54,]        18.65739  0.855608 196.8889   3.572474   198.9216
##  [55,]        18.22589  0.837410 196.1667   1.894812   198.8203
##  [56,]        20.57460  0.813314 201.0000   6.860100   195.6087
##  [57,]        19.67821  0.785680 201.2500   5.779408   196.0870
##  [58,]        19.23891  0.828626 200.5000   5.703887   196.1448
##  [59,]        18.72799  0.843965 199.2500   6.287442   196.4108
##  [60,]        18.37157  0.847600 199.0000   5.979193   197.4217
##  [61,]        18.29050  0.837913 200.0000   5.017095   197.9413
##  [62,]        18.35272  0.758228 200.5000   4.258302   198.2749
##  [63,]        18.69217  0.782020 201.5000   5.531510   198.1177
##  [64,]        18.67237  0.843852 202.0000   1.791052   198.8206
##  [65,]        19.00990  0.803169 201.5000   3.412350   200.6089
##  [66,]        18.38075  0.805965 203.3333   6.380927   201.0759
##  [67,]        18.76165  0.786369 205.0000   5.288365   201.1798
##  [68,]        19.52911  0.815856 206.5000   5.275273   200.8173
##  [69,]        19.22582  0.862998 205.2500  11.876602   203.1204
##  [70,]        18.39832  0.848414 200.6667  12.718485   201.7512
##  [71,]        18.32854  0.847895 198.0000   7.269520   201.4652
##  [72,]        18.00271  0.865199 197.1667   5.617575   201.3465
##  [73,]        17.90945  0.870017 196.7500   3.788360   201.2001
##  [74,]        17.68600  0.871002 197.1667   3.364663   200.1021
##  [75,]        19.74619  0.758252 204.5000   5.642858   198.3504
##  [76,]        19.62213  0.867244 203.7778   6.482583   197.8452
##  [77,]        18.89116  0.867638 202.3333   6.083620   197.3573
##  [78,]        18.37173  0.870942 201.1111   2.459150   197.0722
##  [79,]        18.26270  0.872671 201.0000   0.455108   198.1134
##  [80,]        18.85450  0.868578 202.1111   4.101172   198.8306
##  [81,]        18.48699  0.848237 203.6667   2.456326   199.8018
##  [82,]        18.90836  0.851545 202.3333   4.217897   199.2333
##  [83,]        18.87077  0.819059 200.8333   2.518604   200.0127
##  [84,]        18.75718  0.804251 200.2222   4.984981   201.2964
##  [85,]        18.26178  0.815396 201.8333   8.670177   202.1158
##  [86,]        18.64194  0.823529 206.0000   7.582604   202.1501
##  [87,]        20.20002  0.841616 207.3333   4.667620   201.8758
##  [88,]        19.18990  0.849396 203.0000   8.109317   204.5230
##  [89,]        18.35493  0.866166 202.5556  11.049718   201.9955
##  [90,]        18.28569  0.864788 201.1667  11.253322   201.7849
##  [91,]        18.28127  0.855187 199.1111   7.486137   201.6944
##  [92,]        17.21669  0.856369 200.3333   6.899040   199.8109
##  [93,]        19.52137  0.824327 207.0000   5.684828   198.8574
##  [94,]        19.17876  0.862673 205.2500   7.447565   198.8165
##  [95,]        19.24670  0.861911 203.0000   7.774040   198.1910
##  [96,]        18.44053  0.870474 201.5000   4.397030   198.3609
##  [97,]        18.28480  0.877252 202.8333   4.143000   199.0324
##  [98,]        18.78468  0.860681 204.2500   1.997852   199.9175
##  [99,]        19.17412  0.845406 204.0000   3.836572   201.0765
## [100,]        19.24459  0.841513 202.0000   6.512908   202.0215
## [101,]        18.78436  0.825845 199.6667   4.350432   201.3854
## [102,]        18.74436  0.808722 200.0000   4.851805   202.4915
## [103,]        18.27571  0.817211 203.1667   7.158753   203.2807
## [104,]        18.19102  0.844389 205.2500   3.089440   203.4541
## [105,]        20.15741  0.848573 204.8333   1.423512   203.0027
## [106,]        19.54010  0.848647 205.0000   1.982079   204.2055
## [107,]        19.09805  0.856381 206.6667   3.747822   204.8999
## [108,]        18.10189  0.849230 205.7500   7.037877   201.7845
## [109,]        18.08600  0.843651 202.1667   5.566600   201.8522
## [110,]        18.65290  0.843616 201.0000   1.501851   201.4426
## [111,]        18.13158  0.849739 202.3333   5.030968   199.7676
## [112,]        17.89883  0.860130 203.0000   4.671025   199.0601
## [113,]        19.12731  0.843663 207.8333   3.271004   198.3139
## [114,]        19.70359  0.853745 206.4444   6.858296   197.9799
## [115,]        19.29691  0.856553 205.0000   7.369337   199.1988
## [116,]        18.58095  0.866439 204.1111   4.006299   199.6428
## [117,]        18.78757  0.840555 204.8333   1.462050   200.2269
## [118,]        18.86411  0.841259 204.8889   1.218358   201.0782
## [119,]        18.64261  0.861820 204.0000   3.836572   202.3012
## [120,]        18.89210  0.832131 201.6667   5.265142   202.6912
## [121,]        18.64730  0.827554 201.5000   5.385043   202.6254
## [122,]        18.61331  0.824167 204.1111   7.128587   203.7258
## [123,]        18.67009  0.827009 206.0000   5.358540   204.1337
## [124,]        18.44155  0.836960 204.7778   3.626926   204.7050
## [125,]        19.95739  0.847317 203.6667   2.962247   203.4641
## [126,]        19.64090  0.865341 204.7778   5.460382   203.7717
## [127,]        18.55275  0.857880 205.5000   4.828302   204.8091
## [128,]        17.91605  0.843587 202.3333   5.443827   201.9826
## [129,]        18.36079  0.870549 201.5556   1.737311   200.9807
## [130,]        18.23818  0.862629 202.0000   0.397830   199.6393
## [131,]        18.13873  0.836774 200.8889   4.574136   198.6265
## [132,]        19.58104  0.831675 209.3333   3.588530   198.2778
## [133,]        19.21278  0.837706 208.0000   6.125635   199.2195
## [134,]        19.23244  0.856900 206.1667   5.162935   200.2588
## [135,]        18.87300  0.865854 205.2500   2.218411   200.8218
## [136,]        18.57587  0.872514 205.3333   2.080359   201.5015
## [137,]        18.34819  0.872568 204.5000   3.006227   202.4989
## [138,]        18.47270  0.852908 202.3333   4.674987   203.3595
## [139,]        18.57563  0.833239 201.5000   4.727215   204.4179
## [140,]        19.03598  0.841123 206.3333   9.757872   203.6451
## [141,]        19.02223  0.838892 209.2500   5.480415   204.4681
## [142,]        18.92078  0.854460 206.3333   8.254676   205.4655
## [143,]        18.23724  0.866290 203.7500   3.371925   206.1004
## [144,]        19.28098  0.858144 203.3333   2.225776   204.2725
## [145,]        19.30587  0.863999 203.7500   2.808880   204.0167
## [146,]        17.46971  0.862478 201.5000   2.990262   201.6800
## [147,]        17.72365  0.873844 201.8333   2.530224   201.5062
## [148,]        18.51354  0.836021 202.5000   2.276920   200.5268
## [149,]        18.28281  0.812793 201.8333   2.716172   199.7099
## [150,]        18.76485  0.827297 200.5000   4.612540   198.5984
## [151,]        19.33087  0.820116 210.3333   4.002342   199.7960
## [152,]        19.51658  0.836631 209.8889   7.841606   200.2779
## [153,]        19.08338  0.863915 207.8333   8.257585   201.3893
## [154,]        18.92654  0.873334 206.4444   3.857106   202.0203
## [155,]        18.44366  0.875065 205.1667   3.487768   202.6132
## [156,]        18.25748  0.866960 203.2222   6.914147   203.7657
## [157,]        18.19536  0.834331 201.1667   4.310694   204.5432
## [158,]        18.57058  0.839068 205.7778  11.296110   205.7407
## [159,]        18.72233  0.856831 210.0000   1.747159   204.5445
## [160,]        18.78246  0.857267 208.5556   6.130330   204.9341
## [161,]        18.81255  0.857484 205.5000   5.711950   205.8528
## [162,]        17.76493  0.850752 205.0000   4.719129   206.3428
## [163,]        18.51562  0.857664 204.8333   5.374358   205.1603
## [164,]        19.12765  0.855681 203.3333   5.159998   204.1542
## [165,]        18.40430  0.863387 203.8333   5.796872   202.9000
## [166,]        18.19295  0.874638 204.1111   4.943022   203.4336
## [167,]        17.73712  0.848241 204.0000   3.505737   201.4334
## [168,]        18.28652  0.840399 203.3333   3.730053   200.1442
## [169,]        18.95797  0.841652 201.5000   4.479237   199.8272
## [170,]        20.93098  0.795073 199.7778   3.182941   198.7313
## [171,]        19.53766  0.810811 211.7500   7.183032   201.5489
## [172,]        19.02414  0.864632 208.3333   7.453835   202.5080
## [173,]        18.98034  0.874916 206.7500   3.146847   203.1635
## [174,]        18.44244  0.854908 205.8333   6.620357   203.5593
## [175,]        18.10246  0.844776 204.2500   7.818020   204.7211
## [176,]        17.86002  0.850159 206.1667   7.750718   205.2250
## [177,]        18.50285  0.856557 209.2500   4.140995   206.9010
## [178,]        18.46745  0.834661 209.5000   2.622039   205.6902
## [179,]        18.37955  0.836137 208.2500   6.048235   204.9596
## [180,]        18.25584  0.847999 208.1667   6.774420   206.3974
## [181,]        17.39117  0.846368 208.0000   6.397650   206.1927
## [182,]        17.85763  0.844550 205.6667   5.088587   205.5291
## [183,]        18.83256  0.862181 206.0000   3.834015   204.3245
## [184,]        18.69707  0.865831 206.5000   3.339427   202.7165
## [185,]        18.36255  0.851753 205.5000   3.257628   202.3656
## [186,]        17.95162  0.853442 203.6667   3.698943   201.2474
## [187,]        17.97419  0.857861 202.7500   3.159929   200.5020
## [188,]        18.78384  0.845244 201.3333   4.151367   199.8491
## [189,]        20.02344  0.774291 200.2500   4.271058   198.5972
## [190,]        18.82817  0.804610 209.8889   4.661827   202.7712
## [191,]        18.78765  0.855494 209.3333   5.267915   203.2853
## [192,]        18.73316  0.849169 209.2222   6.872354   203.6961
## [193,]        17.58596  0.848935 208.6667   7.365235   204.2412
## [194,]        17.82763  0.853871 209.0000   5.953982   205.0853
## [195,]        17.63924  0.850449 210.5000   5.253798   205.9503
## [196,]        18.32854  0.832890 211.0000   3.526908   207.7375
## [197,]        17.95658  0.823946 211.3333   5.185570   206.7987
## [198,]        17.76955  0.840283 211.3333   4.988912   204.8491
## [199,]        17.67884  0.848761 210.5000   5.430198   206.4087
## [200,]        17.49098  0.853740 208.0000   5.881513   206.0711
## [201,]        17.08335  0.870374 207.1667   3.109163   205.9899
## [202,]        18.87552  0.859950 207.2222   1.517558   204.7037
## [203,]        18.86659  0.831997 206.0000   5.347407   204.3314
## [204,]        18.38086  0.825287 203.4444   3.258100   202.1066
## [205,]        17.21194  0.829966 203.0000   0.281328   201.1195
## [206,]        17.63315  0.831045 203.0000   2.432128   200.8034
## [207,]        21.51339  0.804012 202.5000   5.575297   199.7839
## [208,]        19.53128  0.773180 199.6667   7.781784   198.6119
## [209,]        18.29086  0.794779 197.5000   5.738217   197.4881
## [210,]        18.33692  0.804623 210.7500   4.400325   203.6242
## [211,]        18.34056  0.851234 212.3333   4.360802   204.1438
## [212,]        18.50075  0.850611 211.5000   4.597890   204.2841
## [213,]        18.06068  0.836540 211.1667   1.883871   204.7361
## [214,]        17.67702  0.831368 211.2500   1.786949   205.4088
## [215,]        17.87506  0.840000 211.8333   1.462050   206.3681
## [216,]        18.10650  0.838095 212.2500   1.786949   207.6834
## [217,]        18.21894  0.841190 212.3333   1.680566   207.2423
## [218,]        17.80500  0.865160 211.5000   2.549555   205.3834
## [219,]        17.62178  0.849108 210.0000   3.990678   205.9602
## [220,]        17.61648  0.841961 208.5000   3.257628   205.7391
## [221,]        16.88126  0.848782 207.5000   3.292012   205.9970
## [222,]        18.68069  0.828928 205.0000   6.269660   204.5509
## [223,]        18.82575  0.811157 203.1667   2.430204   204.8136
## [224,]        18.02683  0.820088 203.5000   3.299475   201.8857
## [225,]        18.37085  0.830938 204.5000   3.254442   201.3896
## [226,]        18.90360  0.804511 204.0000   2.554135   200.8387
## [227,]        21.20233  0.817266 202.1667   4.492692   199.5112
## [228,]        19.38825  0.789837 200.5000   4.355658   198.6991
## [229,]        18.20879  0.812592 212.3333   3.567334   204.5661
## [230,]        17.97930  0.837166 212.5000   2.958468   204.0985
## [231,]        18.14640  0.830340 210.6667   3.911258   204.9926
## [232,]        17.76495  0.815107 210.1667   2.740343   205.3672
## [233,]        16.97415  0.837437 210.8889   2.434887   205.4851
## [234,]        17.68562  0.839855 211.8333   1.462050   206.6006
## [235,]        17.45429  0.843084 211.6667   1.574458   206.9225
## [236,]        18.47732  0.849661 211.1667   1.191299   206.9044
## [237,]        17.95838  0.829123 210.3333   1.963581   205.8225
## [238,]        17.93237  0.814726 209.3333   2.510633   205.4299
## [239,]        17.68103  0.859755 208.1111   3.357586   207.9852
## [240,]        17.55151  0.860111 205.6667   5.573225   211.9958
## [241,]        18.85073  0.836932 205.0000   3.883573   205.4668
## [242,]        19.25704  0.833459 205.3333   3.425505   204.7264
## [243,]        18.11443  0.862390 205.3333   2.397526   202.1130
## [244,]        18.56411  0.835272 203.5000   3.529828   201.4283
## [245,]        18.50148  0.820129 202.3333   1.757121   200.8799
## [246,]        20.68170  0.813438 201.8333   1.321386   199.5737
## [247,]        17.69575  0.801299 211.0000   3.843770   204.1000
## [248,]        17.66615  0.814951 209.6667   2.339072   204.1985
## [249,]        17.60387  0.810631 210.0000   3.372290   205.5335
## [250,]        17.42128  0.830254 210.8333   1.331963   205.8982
## [251,]        16.80468  0.829867 211.5000   2.331430   205.7017
## [252,]        17.01939  0.830576 211.3333   1.753202   206.8975
## [253,]        17.70423  0.829442 210.7500   1.982079   206.8196
## [254,]        18.44122  0.807566 210.6667   1.994592   206.3962
## [255,]        18.03844  0.830631 210.5000   3.652555   205.9474
## [256,]        17.92762  0.869058 208.8333   4.000510   205.4009
## [257,]        18.34732  0.876872 207.2500   4.344182   204.7141
## [258,]        17.76506  0.856497 206.5000   2.025263   212.3547
## [259,]        18.34123  0.855178 206.7500   2.143036   208.9608
## [260,]        19.32316  0.865053 205.6667   3.054682   204.7026
## [261,]        18.51041  0.856615 203.5000   3.507347   201.5060
## [262,]        18.86935  0.833807 202.3333   1.699703   201.5401
## [263,]        17.45368  0.799654 210.5000   3.195748   205.3600
## [264,]        17.65788  0.841748 211.7778   3.074642   205.9236
## [265,]        18.56572  0.840825 212.6667   2.340314   206.6825
## [266,]        17.08600  0.842335 211.8889   3.682146   205.9591
## [267,]        17.15713  0.842948 210.0000   1.380508   206.3634
## [268,]        17.66037  0.823280 210.2222   1.494623   206.4892
## [269,]        17.96648  0.835574 211.0000   1.180966   206.3979
## [270,]        18.43244  0.855167 210.3333   3.630946   205.9306
## [271,]        18.10990  0.856197 208.0000   4.508540   205.4732
## [272,]        18.00555  0.846907 207.0000   1.229972   204.6796
## [273,]        17.89280  0.848410 207.5000   3.308189   210.9083
## [274,]        18.34174  0.861704 207.0000   5.720357   212.1226
## [275,]        19.67345  0.866817 204.5000   5.589362   205.4466
## [276,]        17.72488  0.818078 212.6667   2.291358   205.9218
## [277,]        17.93497  0.844989 212.0000   3.971073   207.1207
## [278,]        17.04784  0.848807 210.0000   1.192970   206.7147
## [279,]        17.19309  0.838659 210.0000   0.281328   206.9503
## [280,]        17.65305  0.831923 210.5000   2.276920   206.2647
## [281,]        18.35720  0.843948 210.3333   1.731291   206.4828
## [282,]        18.36328  0.839912 209.5000   3.270202   206.1123
## [283,]        18.32035  0.829359 208.3333   4.489935   205.3742
## [284,]        18.41900  0.832789 209.0000   4.915900   204.6418
## [285,]        18.73189  0.852465 209.3333   4.350432   208.2343
## [286,]        17.74167  0.804340 213.1667   1.191299   206.9770
## [287,]        17.67345  0.831047 212.1111   3.048190   207.8832
## [288,]        17.80915  0.838290 211.3333   3.132002   207.5258
## [289,]        17.27867  0.828603 210.7778   3.312014   207.4212
## [290,]        16.80343  0.833425 211.3333   2.262116   207.1158
## [291,]        17.82667  0.843895 210.7778   2.962719   206.1141
## [292,]        18.15106  0.836312 209.8333   2.286170   206.2850
## [293,]        18.56879  0.808821 209.0000   2.715691   205.8256
## [294,]        18.60643  0.804109 208.6667   4.780660   205.4207
## [295,]        19.39965  0.828916 209.8889   2.595346   204.7865
## [296,]        17.44778  0.802328 212.8333   2.800913   208.1229
## [297,]        17.53826  0.826260 212.5000   3.006227   208.1408
## [298,]        18.04187  0.835826 212.5000   2.802492   207.5593
## [299,]        17.54689  0.843641 212.5000   2.385940   206.4362
## [300,]        17.14611  0.840611 212.6667   3.459422   205.2322
## [301,]        18.16683  0.824012 210.0000   7.497325   206.2511
## [302,]        18.74846  0.814689 207.1667   6.410306   206.1078
## [303,]        18.61794  0.815784 205.5000   6.839028   205.4652
## [304,]        17.56948  0.819922 213.1111   1.389929   207.7260
## [305,]        17.99358  0.839661 212.6667   1.531505   207.4729
## [306,]        18.13896  0.826877 213.3333   2.869667   207.5030
## [307,]        17.30525  0.825225 211.8333   8.230437   205.3955
## [308,]        18.89458  0.834841 207.0000   9.589556   206.0401
## [309,]        18.37484  0.800520 211.7500   3.309488   207.5483
## [310,]        18.15950  0.820314 212.1667   4.362813   207.6438
## [311,]        18.99889  0.837665 212.7500   4.403135   207.4406
## [312,]        18.51444  0.796948 209.6667   8.798860   205.7614
## [313,]        18.19100  0.777866 212.0000   2.791830   207.6968
#variable respuesta
CEa07 = data[,3]

options(digits = 12)

#Estandarizar matriz de pesos (hacer que la suma de los pesos valga 1)
distancias=as.matrix(data[,1:2])
matrizpesos= as.matrix(dist(distancias,diag = T, upper = T))
matpesinv <-as.matrix(1/matrizpesos)
diag(matpesinv) <- 0
W = as.matrix(matpesinv)
SUMA=apply(W,1,sum)
We=W/SUMA #estandarizacion
apply(We,1,sum) #verificar estandarizacion
##   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19  20 
##   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1 
##  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40 
##   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1 
##  41  42  43  44  45  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60 
##   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1 
##  61  62  63  64  65  66  67  68  69  70  71  72  73  74  75  76  77  78  79  80 
##   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1 
##  81  82  83  84  85  86  87  88  89  90  91  92  93  94  95  96  97  98  99 100 
##   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1 
## 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 
##   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1 
## 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 
##   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1 
## 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 
##   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1 
## 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 
##   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1 
## 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 
##   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1 
## 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 
##   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1 
## 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 
##   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1 
## 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 
##   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1 
## 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 
##   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1 
## 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 
##   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1 
## 301 302 303 304 305 306 307 308 309 310 311 312 313 
##   1   1   1   1   1   1   1   1   1   1   1   1   1
#Indice de moran
im=list()
for(j in 3:8){
  im[j]=(Moran.I(data[,j], We))$p.value
}
im #parece que las variables tienen dependencia espacial
## [[1]]
## NULL
## 
## [[2]]
## NULL
## 
## [[3]]
## [1] 0
## 
## [[4]]
## [1] 0
## 
## [[5]]
## [1] 0
## 
## [[6]]
## [1] 0
## 
## [[7]]
## [1] 0
## 
## [[8]]
## [1] 0
#Matrices correlacion "redundancia entre variables"
mcp = rcorr(as.matrix(data[,3:8]),type="pearson")
mcs = rcorr(as.matrix(data[,3:8]),type="spearman")

mcorp = mcp$r
mcorp
##                  Avg_CEa_07       Avg_CEa_15             NDVI             DEM
## Avg_CEa_07  1.0000000000000  0.0108976446727  0.0355258288637  0.532294803241
## Avg_CEa_15  0.0108976446727  1.0000000000000 -0.1763621587086 -0.384197582508
## NDVI        0.0355258288637 -0.1763621587086  1.0000000000000  0.101588171642
## DEM         0.5322948032409 -0.3841975825076  0.1015881716416  1.000000000000
## SLOPE      -0.1364233442100  0.1871994566118  0.0961053729259 -0.119589789382
## Avg_z       0.6218586550181 -0.4643154559311  0.2135202781596  0.790106047430
##                       SLOPE            Avg_z
## Avg_CEa_07 -0.1364233442100  0.6218586550181
## Avg_CEa_15  0.1871994566118 -0.4643154559311
## NDVI        0.0961053729259  0.2135202781596
## DEM        -0.1195897893818  0.7901060474300
## SLOPE       1.0000000000000 -0.0462311077091
## Avg_z      -0.0462311077091  1.0000000000000
mcors = mcs$r
mcors
##                  Avg_CEa_07       Avg_CEa_15              NDVI
## Avg_CEa_07  1.0000000000000 -0.0701079155272 -0.08775845956612
## Avg_CEa_15 -0.0701079155272  1.0000000000000 -0.09073419813942
## NDVI       -0.0877584595661 -0.0907341981394  1.00000000000000
## DEM         0.5546506518114 -0.3909867462043 -0.00100131186398
## SLOPE      -0.1373202076802  0.2188553773020  0.10790987884449
## Avg_z       0.6497519696071 -0.5066230141524  0.08779798476284
##                          DEM           SLOPE            Avg_z
## Avg_CEa_07  0.55465065181140 -0.137320207680  0.6497519696071
## Avg_CEa_15 -0.39098674620425  0.218855377302 -0.5066230141524
## NDVI       -0.00100131186398  0.107909878844  0.0877979847628
## DEM         1.00000000000000 -0.135329719189  0.8161090885564
## SLOPE      -0.13532971918932  1.000000000000 -0.1057240527070
## Avg_z       0.81610908855642 -0.105724052707  1.0000000000000
library(corrplot)
## Warning: package 'corrplot' was built under R version 4.0.3
## corrplot 0.84 loaded
par(mfrow=c(1,2))
corrplot(mcorp,order="hclust",tl.col="black",main="pearson")
corrplot(mcors,order="hclust",tl.col="black",main="spearman")

#Las mayores relaciones de dan entre DEM y Avg_z, pero tambien se ve una relacion considerable de Avg_z con CEa_07. Negativamente, CEa_15 se relaciona conAvg_z y en menor medida con DEM. "DEM y Avg_z son ambas medidas de alturas"

library(psych) #Normalidad
## 
## Attaching package: 'psych'
## The following object is masked from 'package:asbio':
## 
##     skew
## The following object is masked from 'package:Hmisc':
## 
##     describe
## The following objects are masked from 'package:ggplot2':
## 
##     %+%, alpha
options(digits = 5)
describe(data[,3:8])
##            vars   n   mean   sd median trimmed  mad    min    max range  skew
## Avg_CEa_07    1 313   9.77 1.53   9.65    9.76 1.40   6.17  13.60  7.44  0.10
## Avg_CEa_15    2 313  18.50 0.74  18.44   18.47 0.64  16.80  21.51  4.71  0.57
## NDVI          3 313   0.83 0.03   0.84    0.84 0.02   0.70   0.88  0.17 -1.39
## DEM           4 313 205.11 4.55 204.83  205.13 5.68 196.17 213.33 17.17  0.06
## SLOPE         5 313   4.13 2.16   3.78    3.94 2.10   0.21  12.72 12.51  0.95
## Avg_z         6 313 202.47 3.66 202.49  202.57 4.34 193.05 212.35 19.30 -0.14
##            kurtosis   se
## Avg_CEa_07    -0.28 0.09
## Avg_CEa_15     1.22 0.04
## NDVI           2.48 0.00
## DEM           -1.13 0.26
## SLOPE          1.25 0.12
## Avg_z         -0.54 0.21
boxplot(data[,3], main ="Boxplot Conductividad Electrica 07") 
hist(data[,3],main = "histograma Conductividad Electrica 07", xlab="CE_07")

cvm.test(data[,3])
## 
##  Cramer-von Mises normality test
## 
## data:  data[, 3]
## W = 0.131, p-value = 0.043
shapiro=list()
for(j in 3:8){
  shapiro[j]=(sf.test(data[,j]))$p.value
}
shapiro #No todas las variables son normales, revisar simetria
## [[1]]
## NULL
## 
## [[2]]
## NULL
## 
## [[3]]
## [1] 0.20125
## 
## [[4]]
## [1] 0.00014139
## 
## [[5]]
## [1] 5.1932e-12
## 
## [[6]]
## [1] 1.6549e-06
## 
## [[7]]
## [1] 4.5506e-08
## 
## [[8]]
## [1] 0.00057707

##MODELOS MODELO NO ESPACIAL (clásico)

modc = lm(data$Avg_CEa_07~data$Avg_CEa_15+data$NDVI+data$DEM+data$SLOPE+data$Avg_z)
summary(modc) #CEa15,SLOPE,Avg_z relacionados a CE07
## 
## Call:
## lm(formula = data$Avg_CEa_07 ~ data$Avg_CEa_15 + data$NDVI + 
##     data$DEM + data$SLOPE + data$Avg_z)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.3453 -0.6871 -0.0586  0.5934  3.0400 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     -72.7183     4.9502  -14.69  < 2e-16 ***
## data$Avg_CEa_15   0.8582     0.0931    9.22  < 2e-16 ***
## data$NDVI        -2.3132     2.1204   -1.09     0.28    
## data$DEM          0.0281     0.0216    1.30     0.19    
## data$SLOPE       -0.1164     0.0284   -4.10  5.2e-05 ***
## data$Avg_z        0.3124     0.0282   11.08  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.05 on 307 degrees of freedom
## Multiple R-squared:  0.536,  Adjusted R-squared:  0.529 
## F-statistic:   71 on 5 and 307 DF,  p-value: <2e-16
resmodc=modc$residuals
shapiro.test(resmodc) #no normalidad
## 
##  Shapiro-Wilk normality test
## 
## data:  resmodc
## W = 0.99, p-value = 0.024
cvm.test(resmodc) #normales al 4% 
## 
##  Cramer-von Mises normality test
## 
## data:  resmodc
## W = 0.132, p-value = 0.041
imrc=Moran.I(resmodc,We)
imrc #Como hay dependencia espacial en residuales este modelo NO SIRVE
## $observed
## [1] 0.16159
## 
## $expected
## [1] -0.0032051
## 
## $sd
## [1] 0.0046648
## 
## $p.value
## [1] 0
library(normtest)
skewness.norm.test(resmodc) #simetria para normalidad 5%
## 
##  Skewness test for normality
## 
## data:  resmodc
## T = 0.273, p-value = 0.042
estimadoCE7=modc$fitted.values
plot(data$Avg_CEa_07,estimadoCE7) #se ve cierta relacion muy marcada pero de igualmente no se ajusta perfectamente

MODELO AUTOREGRESIVO PURO

#contorno convexo
cc = chull(distancias)
cc = c(cc,cc[1])
plot(distancias,main="CONTORNO CONVEXO",col="orange",pch=16)
lines(distancias[cc,], type='l',col="purple")

distan = as.matrix(dist(distancias))
min(distan[distan!=0])
## [1] 5.1759
max(distan)
## [1] 853.01
dim(distan)
## [1] 313 313
contnb = dnearneigh(coordinates(distancias),0,max(distan),longlat = F)
contnb
## Neighbour list object:
## Number of regions: 313 
## Number of nonzero links: 97656 
## Percentage nonzero weights: 99.681 
## Average number of links: 312
dlist <- nbdists(contnb,distancias)
dlist <- lapply(dlist, function(x) 1/x)
wve=nb2listw(contnb,glist=dlist,style="W") #estandarizado;acotar landa para poder comparar e interpretar el valor
map= spautolm(CEa07~1,data=data,listw=wve)
summary(map) #landa significativo; autodependencia
## 
## Call: spautolm(formula = CEa07 ~ 1, data = data, listw = wve)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -3.258254 -0.650679 -0.071829  0.824652  3.063002 
## 
## Coefficients: 
##             Estimate Std. Error z value Pr(>|z|)
## (Intercept)   5.6941     5.5177   1.032   0.3021
## 
## Lambda: 0.98811 LR test value: 162.5 p-value: < 2.22e-16 
## Numerical Hessian standard error of lambda: 0.011866 
## 
## Log likelihood: -494.82 
## ML residual variance (sigma squared): 1.347, (sigma: 1.1606)
## Number of observations: 313 
## Number of parameters estimated: 3 
## AIC: 995.65
#menor AIC, mejor modelo
#sacar modelo
CE07e = map$fit$fitted.values 
CE07e
##       1       2       3       4       5       6       7       8       9      10 
##  8.6308  8.6776  8.9153  8.9056  8.8236  8.8560  8.9267  9.0756  9.0054  8.9769 
##      11      12      13      14      15      16      17      18      19      20 
##  8.8846  8.8911  9.0060  9.1184  9.0633  9.0784  9.0171  8.9640  9.0108  9.1408 
##      21      22      23      24      25      26      27      28      29      30 
##  9.1678  9.1535  9.1619  9.1763  9.0825  9.0567  9.0478  9.0672  9.0447  9.1880 
##      31      32      33      34      35      36      37      38      39      40 
##  9.1637  9.2192  9.2347  9.2775  9.2092  9.1145  9.1417  9.0571  9.0632  9.0851 
##      41      42      43      44      45      46      47      48      49      50 
##  9.3782  9.4087  9.3506  9.3033  9.1994  9.2065  9.2210  9.2981  9.3359  9.3437 
##      51      52      53      54      55      56      57      58      59      60 
##  9.1671  9.2176  9.1321  9.1396  9.2313  9.3898  9.3622  9.3639  9.3071  9.2695 
##      61      62      63      64      65      66      67      68      69      70 
##  9.2370  9.2178  9.2240  9.2513  9.3058  9.3910  9.4173  9.4125  9.3594  9.2655 
##      71      72      73      74      75      76      77      78      79      80 
##  9.3239  9.2164  9.2656  9.3774  9.3644  9.3646  9.3213  9.2619  9.2327  9.2311 
##      81      82      83      84      85      86      87      88      89      90 
##  9.2489  9.2862  9.3333  9.4118  9.4733  9.5075  9.4876  9.4922  9.4381  9.3610 
##      91      92      93      94      95      96      97      98      99     100 
##  9.4106  9.5162  9.3367  9.3264  9.2866  9.2545  9.2576  9.2849  9.3203  9.3817 
##     101     102     103     104     105     106     107     108     109     110 
##  9.4590  9.5114  9.5719  9.6277  9.5854  9.6143  9.6095  9.5499  9.5690  9.5446 
##     111     112     113     114     115     116     117     118     119     120 
##  9.6038  9.6738  9.3280  9.3182  9.2953  9.2850  9.3124  9.3656  9.4151  9.4837 
##     121     122     123     124     125     126     127     128     129     130 
##  9.5574  9.6224  9.6810  9.7327  9.7106  9.7839  9.7116  9.6820  9.6372  9.7157 
##     131     132     133     134     135     136     137     138     139     140 
##  9.8259  9.3429  9.3451  9.3261  9.3542  9.3945  9.4620  9.5138  9.5859  9.6685 
##     141     142     143     144     145     146     147     148     149     150 
##  9.7419  9.8130  9.8626  9.8637  9.9185  9.8194  9.8963  9.7944  9.9096 10.0180 
##     151     152     153     154     155     156     157     158     159     160 
##  9.3705  9.3963  9.3978  9.4401  9.4755  9.5495  9.5940  9.6980  9.7920  9.8731 
##     161     162     163     164     165     166     167     168     169     170 
##  9.9467 10.0081 10.0306 10.0494  9.9619 10.0184 10.0643 10.0020 10.1681 10.0806 
##     171     172     173     174     175     176     177     178     179     180 
##  9.4504  9.4740  9.5055  9.5540  9.6177  9.7048  9.8234  9.9248 10.0229 10.0915 
##     181     182     183     184     185     186     187     188     189     190 
## 10.1567 10.2052 10.1909 10.1217 10.2187 10.2377 10.2423 10.2441 10.2290  9.4994 
##     191     192     193     194     195     196     197     198     199     200 
##  9.5343  9.5627  9.6535  9.7414  9.8607 10.0037 10.0919 10.1894 10.2583 10.3270 
##     201     202     203     204     205     206     207     208     209     210 
## 10.3895 10.3665 10.4452 10.3516 10.3532 10.4099 10.1819 10.1901 10.1525  9.5697 
##     211     212     213     214     215     216     217     218     219     220 
##  9.6149  9.6843  9.7804  9.8942 10.0048 10.1651 10.2510 10.3339 10.4222 10.4946 
##     221     222     223     224     225     226     227     228     229     230 
## 10.5156 10.5303 10.5659 10.4488 10.3972 10.3374 10.0945 10.1034  9.6453  9.7259 
##     231     232     233     234     235     236     237     238     239     240 
##  9.8020  9.9227 10.0388 10.1558 10.3017 10.3613 10.4819 10.5475 10.5711 10.6251 
##     241     242     243     244     245     246     247     248     249     250 
## 10.6139 10.5648 10.4490 10.3797 10.2696 10.0658  9.7964  9.8558  9.9555 10.0398 
##     251     252     253     254     255     256     257     258     259     260 
## 10.1606 10.3221 10.3718 10.4630 10.5717 10.6140 10.6161 10.6422 10.6120 10.4919 
##     261     262     263     264     265     266     267     268     269     270 
## 10.3797 10.2952  9.9715 10.0433 10.1069 10.2565 10.3711 10.4114 10.5254 10.5896 
##     271     272     273     274     275     276     277     278     279     280 
## 10.6187 10.5942 10.6018 10.5574 10.4023 10.0749 10.1916 10.2864 10.3859 10.4369 
##     281     282     283     284     285     286     287     288     289     290 
## 10.5489 10.5654 10.5766 10.5609 10.5157 10.1271 10.1347 10.2299 10.3079 10.3587 
##     291     292     293     294     295     296     297     298     299     300 
## 10.4448 10.5030 10.4969 10.5031 10.4499 10.1627 10.1992 10.2353 10.3047 10.3435 
##     301     302     303     304     305     306     307     308     309     310 
## 10.4126 10.3965 10.4263 10.2179 10.1799 10.2282 10.2952 10.3118 10.1904 10.1663 
##     311     312     313 
## 10.1790 10.2662 10.1322
plot(CEa07,CE07e,ylab="CEa estimada",xlab="CEa observada")

cor(CEa07,CE07e) #Se observa cierto tipo de correlación
## [1] 0.79772
resCE7=map$fit$residuals
moran.mc(map$fit$residuals,wve,nsim = 2000) #residuales u por dependencia espacial
## 
##  Monte-Carlo simulation of Moran I
## 
## data:  map$fit$residuals 
## weights: wve  
## number of simulations + 1: 2001 
## 
## statistic = 0.167, observed rank = 2001, p-value = 5e-04
## alternative hypothesis: greater
#$$Y=\lambda W Y +u$$

plot(CEa07,CE07e,ylab="estimado modelo autoregresivo puro",xlab="valores reales")

plot(distancias[,1],distancias[,2],cex=abs(resCE7)*0.8,pch=20)
points(distancias[,1],distancias[,2],col=floor(abs(CE07e))+2,pch=1,cex=0.5)

library(plotly)
## Warning: package 'plotly' was built under R version 4.0.3
## 
## Attaching package: 'plotly'
## The following object is masked from 'package:Hmisc':
## 
##     subplot
## The following object is masked from 'package:ggplot2':
## 
##     last_plot
## The following object is masked from 'package:stats':
## 
##     filter
## The following object is masked from 'package:graphics':
## 
##     layout
plot_ly(data.frame(data[,1:2]),
        x = data$Avg_X_MCB,
        y = data$Avg_Y_MCE,
        size = CE07e)
## No trace type specified:
##   Based on info supplied, a 'scatter' trace seems appropriate.
##   Read more about this trace type -> https://plot.ly/r/reference/#scatter
## No scatter mode specifed:
##   Setting the mode to markers
##   Read more about this attribute -> https://plot.ly/r/reference/#scatter-mode
## Warning: `arrange_()` is deprecated as of dplyr 0.7.0.
## Please use `arrange()` instead.
## See vignette('programming') for more help
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_warnings()` to see where this warning was generated.
## Warning: `line.width` does not currently support multiple values.
plot_ly(data.frame(data[,1:2]),
        x = data$Avg_X_MCB,
        y = data$Avg_Y_MCE,
        size = CEa07)
## No trace type specified:
##   Based on info supplied, a 'scatter' trace seems appropriate.
##   Read more about this trace type -> https://plot.ly/r/reference/#scatter
## No scatter mode specifed:
##   Setting the mode to markers
##   Read more about this attribute -> https://plot.ly/r/reference/#scatter-mode
## Warning: `line.width` does not currently support multiple values.
plot_ly(data.frame(data[,1:2]),
        x = data$Avg_X_MCB,
        y = data$Avg_Y_MCE,
        size = map$fit$residuals)
## No trace type specified:
##   Based on info supplied, a 'scatter' trace seems appropriate.
##   Read more about this trace type -> https://plot.ly/r/reference/#scatter
## No scatter mode specifed:
##   Setting the mode to markers
##   Read more about this attribute -> https://plot.ly/r/reference/#scatter-mode
## Warning: `line.width` does not currently support multiple values.
hist(map$fit$residuals,main="histograma residuales")

modap<-lm(CEa07~1,data=data)
modap
## 
## Call:
## lm(formula = CEa07 ~ 1, data = data)
## 
## Coefficients:
## (Intercept)  
##        9.77
#Normalidad de residuales
shapiro.test(modap$residuals) #residuales normales al 9%
## 
##  Shapiro-Wilk normality test
## 
## data:  modap$residuals
## W = 0.992, p-value = 0.098
cvm.test(modap$residuals) #residuales normales al 4%
## 
##  Cramer-von Mises normality test
## 
## data:  modap$residuals
## W = 0.131, p-value = 0.043
ad.test(modap$residuals) #residuales normales al 6%
## 
##  Anderson-Darling normality test
## 
## data:  modap$residuals
## A = 0.702, p-value = 0.066
lillie.test(modap$residuals) #residuales normales al 8%
## 
##  Lilliefors (Kolmogorov-Smirnov) normality test
## 
## data:  modap$residuals
## D = 0.0473, p-value = 0.088
pearson.test(modap$residuals) #residuales normales
## 
##  Pearson chi-square normality test
## 
## data:  modap$residuals
## P = 19.2, p-value = 0.32
Moran.I(modap$residuals,We) #resiuales con dependencia espacial
## $observed
## [1] 0.26875
## 
## $expected
## [1] -0.0032051
## 
## $sd
## [1] 0.0046659
## 
## $p.value
## [1] 0
#Simetria
skewness.norm.test(modap$residuals)
## 
##  Skewness test for normality
## 
## data:  modap$residuals
## T = 0.101, p-value = 0.46
map_sarar=sacsarlm(CEa07~1,data=data,listw=wve)
## Warning in sacsarlm(CEa07 ~ 1, data = data, listw = wve): inversion of asymptotic covariance matrix failed for tol.solve = 2.22044604925031e-16 
##   número de condición recíproco = 5.77785e-20 - using numerical Hessian.
summary(map_sarar) #Modelo muy malo, según AIC; pero mejor que el anterior
## 
## Call:sacsarlm(formula = CEa07 ~ 1, data = data, listw = wve)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -3.405867 -0.620449 -0.028054  0.640915  2.891325 
## 
## Type: sac 
## Coefficients: (numerical Hessian approximate standard errors) 
##             Estimate Std. Error z value Pr(>|z|)
## (Intercept)  -1.7267     3.2577   -0.53   0.5961
## 
## Rho: 0.97863
## Approximate (numerical Hessian) standard error: 0.021305
##     z-value: 45.935, p-value: < 2.22e-16
## Lambda: 0.97863
## Approximate (numerical Hessian) standard error: 0.021299
##     z-value: 45.946, p-value: < 2.22e-16
## 
## LR test value: 254.56, p-value: < 2.22e-16
## 
## Log likelihood: -448.79 for sac model
## ML residual variance (sigma squared): 0.98538, (sigma: 0.99267)
## Number of observations: 313 
## Number of parameters estimated: 4 
## AIC: 905.59, (AIC for lm: 1156.2)
cee7mm2=map_sarar$fitted.values
resce72=map_sarar$residuals
moran.mc(resce72,wve,nsim=2000) 
## 
##  Monte-Carlo simulation of Moran I
## 
## data:  resce72 
## weights: wve  
## number of simulations + 1: 2001 
## 
## statistic = 0.105, observed rank = 2001, p-value = 5e-04
## alternative hypothesis: greater
shapiro.test(resce72) #CUMPLE NORMALIDAD
## 
##  Shapiro-Wilk normality test
## 
## data:  resce72
## W = 0.994, p-value = 0.27
#Rho es significativo por lo que también hay autocorrelación de los residuales, residuales con dependencia espacial

plot(CEa07,cee7mm2,ylab="estimado modelo sarar autoregresivo puro",xlab="valores reales")

INTERPOLACIÓN MODELO AUTOREGRESIVO PURO

library(akima)
## Warning: package 'akima' was built under R version 4.0.3
plot(data$Avg_X_MCB,data$Avg_Y_MCE, main="CONTORNO CONVEXO", col="orange",pch=16)
points(843750,956280,col="red",pch=15,cex=1)

interpola=interp(x=distancias[,1],y=distancias[,2],z=CE07e,nx=500,ny=500,linear=F)
image(interpola)
contour(interpola,add=T)
points(843750,956280,col="blue",pch=10,cex=1) #valores estimados

interpola1=interp(x=distancias[,1],y=distancias[,2],z=data$Avg_CEa_07,nx=500,ny=500,linear=F)
image(interpola1)
contour(interpola1,add=T)
points(843750,956280,col="blue",pch=10,cex=1) #valores reales

distancias1=rbind(distancias,c(843750,956280)) #posición 314
matrizpesos1= as.matrix(dist(distancias1,diag = T, upper = T))
matpesinv1 <-as.matrix(1/matrizpesos1)
diag(matpesinv1) <- 0
W1 = as.matrix(matpesinv1)
SUMA1=apply(W1,1,sum)
we1=W1/SUMA1
i=diag(1,314,314)
CEest=5.6941*(i-(0.98811*we1))^-1
CEest[314,314] #Se acerca un poco a los valores reales, más no a los estimados
## [1] 5.6941

Como el modelo es muy malo los valores estimados son muy altos con respecto a los datos reales

MODELOS QUE INVOLUCRAN VARIABLES EXPLICATIVAS

#MODELO ESPACIAL DEL ERROR
mser1=errorsarlm(formula = CEa07~NDVI+Avg_CEa_15+DEM+SLOPE+Avg_z,data = data,listw = wve)
summary(mser1)
## 
## Call:errorsarlm(formula = CEa07 ~ NDVI + Avg_CEa_15 + DEM + SLOPE + 
##     Avg_z, data = data, listw = wve)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -2.019160 -0.540466 -0.045367  0.513314  2.592838 
## 
## Type: error 
## Coefficients: (asymptotic standard errors) 
##               Estimate Std. Error  z value  Pr(>|z|)
## (Intercept) -64.737579   5.752902 -11.2530 < 2.2e-16
## NDVI         -2.395368   1.907913  -1.2555  0.209301
## Avg_CEa_15    0.859898   0.083054  10.3535 < 2.2e-16
## DEM           0.036792   0.020974   1.7542  0.079402
## SLOPE        -0.073067   0.024760  -2.9510  0.003168
## Avg_z         0.257034   0.028465   9.0299 < 2.2e-16
## 
## Lambda: 0.9825, LR test value: 99.359, p-value: < 2.22e-16
## Asymptotic standard error: 0.012342
##     z-value: 79.604, p-value: < 2.22e-16
## Wald statistic: 6336.8, p-value: < 2.22e-16
## 
## Log likelihood: -406.1 for error model
## ML residual variance (sigma squared): 0.76603, (sigma: 0.87523)
## Number of observations: 313 
## Number of parameters estimated: 8 
## AIC: 828.2, (AIC for lm: 925.56)
mser2=errorsarlm(formula = CEa07~Avg_CEa_15+DEM+SLOPE+Avg_z,data = data,listw = wve)
summary(mser2)
## 
## Call:errorsarlm(formula = CEa07 ~ Avg_CEa_15 + DEM + SLOPE + Avg_z, 
##     data = data, listw = wve)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -2.068942 -0.573110 -0.041672  0.535538  2.620533 
## 
## Type: error 
## Coefficients: (asymptotic standard errors) 
##               Estimate Std. Error  z value  Pr(>|z|)
## (Intercept) -66.334323   5.621358 -11.8004 < 2.2e-16
## Avg_CEa_15    0.871288   0.082765  10.5273 < 2.2e-16
## DEM           0.039380   0.020925   1.8819  0.059845
## SLOPE        -0.074849   0.024782  -3.0203  0.002525
## Avg_z         0.251732   0.028220   8.9203 < 2.2e-16
## 
## Lambda: 0.98246, LR test value: 98.998, p-value: < 2.22e-16
## Asymptotic standard error: 0.012369
##     z-value: 79.427, p-value: < 2.22e-16
## Wald statistic: 6308.6, p-value: < 2.22e-16
## 
## Log likelihood: -406.89 for error model
## ML residual variance (sigma squared): 0.76989, (sigma: 0.87744)
## Number of observations: 313 
## Number of parameters estimated: 7 
## AIC: 827.77, (AIC for lm: 924.77)
mser3=errorsarlm(formula = CEa07~Avg_CEa_15+SLOPE+Avg_z,data = data,listw = wve) #ya se seleccionaron las mejores variables significativas para la variable respuesta
summary(mser3) #mejor modelo por el AIC pero este sigue siendo muy alto
## 
## Call:errorsarlm(formula = CEa07 ~ Avg_CEa_15 + SLOPE + Avg_z, data = data, 
##     listw = wve)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -2.150527 -0.558459 -0.045187  0.540349  2.578564 
## 
## Type: error 
## Coefficients: (asymptotic standard errors) 
##               Estimate Std. Error z value  Pr(>|z|)
## (Intercept) -65.325177   5.620712 -11.622 < 2.2e-16
## Avg_CEa_15    0.874324   0.083217  10.507 < 2.2e-16
## SLOPE        -0.079881   0.024777  -3.224  0.001264
## Avg_z         0.286926   0.021256  13.498 < 2.2e-16
## 
## Lambda: 0.98237, LR test value: 97.514, p-value: < 2.22e-16
## Asymptotic standard error: 0.012433
##     z-value: 79.011, p-value: < 2.22e-16
## Wald statistic: 6242.7, p-value: < 2.22e-16
## 
## Log likelihood: -408.65 for error model
## ML residual variance (sigma squared): 0.77863, (sigma: 0.8824)
## Number of observations: 313 
## Number of parameters estimated: 6 
## AIC: 829.3, (AIC for lm: 924.81)
resCE7m3=mser3$residuals
shapiro.test(resCE7m3)#Normalidad
## 
##  Shapiro-Wilk normality test
## 
## data:  resCE7m3
## W = 0.993, p-value = 0.19
moran.mc(resCE7m3,wve,nsim=2000)#dependencia espacial
## 
##  Monte-Carlo simulation of Moran I
## 
## data:  resCE7m3 
## weights: wve  
## number of simulations + 1: 2001 
## 
## statistic = 0.128, observed rank = 2001, p-value = 5e-04
## alternative hypothesis: greater
plot(CEa07,mser3$fitted.values,ylab="estimado modelo espacial del error",xlab="valores reales")

mser3.1=sacsarlm(formula = CEa07~Avg_CEa_15+SLOPE+Avg_z,data = data,listw = wve)
summary(mser3.1)#rho significativo, y tiene el mejor AIC de todos los modelos 
## 
## Call:sacsarlm(formula = CEa07 ~ Avg_CEa_15 + SLOPE + Avg_z, data = data, 
##     listw = wve)
## 
## Residuals:
##         Min          1Q      Median          3Q         Max 
## -2.11409261 -0.48405766 -0.00093026  0.51350443  2.20507300 
## 
## Type: sac 
## Coefficients: (asymptotic standard errors) 
##               Estimate Std. Error z value  Pr(>|z|)
## (Intercept) -59.437373  14.726433 -4.0361 5.435e-05
## Avg_CEa_15    0.857117   0.073143 11.7183 < 2.2e-16
## SLOPE        -0.065991   0.021538 -3.0639  0.002185
## Avg_z         0.213388   0.028874  7.3904 1.463e-13
## 
## Rho: 0.97498
## Asymptotic standard error: 0.37591
##     z-value: 2.5937, p-value: 0.0094956
## Lambda: 0.97212
## Asymptotic standard error: 0.41932
##     z-value: 2.3183, p-value: 0.020433
## 
## LR test value: 179.22, p-value: < 2.22e-16
## 
## Log likelihood: -367.79 for sac model
## ML residual variance (sigma squared): 0.58887, (sigma: 0.76738)
## Number of observations: 313 
## Number of parameters estimated: 7 
## AIC: 749.59, (AIC for lm: 924.81)
shapiro.test(mser3.1$residuals)#Normalidad
## 
##  Shapiro-Wilk normality test
## 
## data:  mser3.1$residuals
## W = 0.995, p-value = 0.5
moran.mc(mser3.1$residuals,wve,nsim=2000)#dependencia espacial
## 
##  Monte-Carlo simulation of Moran I
## 
## data:  mser3.1$residuals 
## weights: wve  
## number of simulations + 1: 2001 
## 
## statistic = 0.0916, observed rank = 2001, p-value = 5e-04
## alternative hypothesis: greater
plot(CEa07,mser3$fitted.values,ylab="estimado modelo espacial del error sarar",xlab="valores reales") #mejor ajuste

INTERPOLACIÓN MODELO ESPACIAL DEL ERROR SARAR

interpola2=interp(x=distancias[,1],y=distancias[,2],z=mser3$fitted.values,nx=500,ny=500,linear=F)
image(interpola2)
contour(interpola2,add=T)
points(843750,956280,col="blue",pch=10,cex=1) #valores estimados

#los estimados se ajustan mucho más a los valores reales

ARTICULO

La conductividad electrica muestra la salinidad en un suelo o en el agua debido a que cuantifica la cantidad de sales que estan presentes en el medio; según el protocolo para la identificación y evaluación de la degradación de suelos por salinización desarrollado por el IDEAM, CAR y U.D.C.A. (http://www.andi.com.co/Uploads/11.%20Protocolo_Salinizacion.pdf) la salinización en el suelo se presenta, generalmente, en zonas de poca pendiente o terrenos concavos; esto se debe a que en estos lugares todas las sales que son “lavadas” de los suelos se precipitan y acumulan en estos lugares aumentando la conductividad electrica; por el contrario, en zonas con mucha pendiente se favorece el lavado de las sales por el gradiente de altura y por ende esta propiedad disminuye. Teniendo en cuenta esto, también es común que estas sales se desplacen entre horizontes de horizontes superiores a otros subsuperficiales. Adicional a esto, Coitiño-Lopez, J et al en 2015 tambien determinaron que en donde la pendiente era menor y la altura mayor era donde se registraban los mayores valors de CEa (http://www.scielo.edu.uy/scielo.php?script=sci_arttext&pid=S2301-15482015000100012); esto puede explicarse debido a que según agrosal (http://agrosal.ivia.es/evaluar.html) e infoagro (https://www.infoagro.com/documentos/la_conductividad_electrica_al_servicio_agricultura_y_cespedes_deportivos.asp) la conductividad electrica de un suelo depende fuertemente con la temperatura, si la tempertura aumenta la CEa tambien; teniendo en cuenta que la temperatura depende a su vez de la altura del terreno ya que a mayor altura hay menor presión atmosferica y por ende menos temperatura (http://meteo.navarra.es/definiciones/elementosFactores.cfm#:~:text=Es%20la%20distancia%20vertical%20de,al%20perder%20presi%C3%B3n%20pierde%20temperatura.) por ende, se puede decir que la altura y la CEa tienen una relación indirecta pero significativa.