This week, we’ll work out some Taylor Series expansions of popular functions.

  • f(x) = 1/(1−x)
  • f(x) = e^x
  • f(x) = ln(1 + x)

For each function, only consider its valid ranges as indicated in the notes when you are computing the Taylor Series expansion. Please submit your assignment as a R-Markdown document.

f(x) = 1/(1−x)

Derivatives

\[ f'(x) = 1/(1−x)^2 \]

\[ f′′(x))=2/(1−x)^3 \]

\[ f'''(x) = 6/(1-x)^4 \]

\[ f''''(x) = 24/(1-x)^5 \]

x = 0

\[ f(0)=1=0! \] \[ f′(0)=1(1−0)^2=1=1! \]

\[ f′′(0)=2(1−0)^3=2=2! \]

\[ f′′′(0)=6(1−0)4=6=3! \]

\[ f′′′′(0)=24(1−0)5=24=4! \]

Series

\[ 1+(1/1!)*x+(2/2!)*x^2+(6/3!)*x^3+(24/4!)*x^4+...=1+x+x^2+x^3+x^4 \]

f(x) = e^x

Derivatives

\[ f′(x)=e^x \] \[ f′′(x)=e^x \] \[ f′′′(x)=e^x \]

\[ f′′′′(x)=e^x \]

x=0

\[ f(0)=e^0=1 \] \[ f′(0)=e^0=1 \] \[ f′′(0)=e^0=1 \] \[ f′′′(0)=e^0=1 \] \[ f′′′′(0)=e^0=1 \]

Series

\[ 1+(1/1!)x+(1/2!)x^2+(1/3!)x^3+(1/4!)x^4 \]

ln(1 + x)

Derivatives

\[ f′(x)=1/(1+x) \] \[ f''(x)=-1/(1+x)^{-2} \] \[ f'''(x)=2/(1+x)^{-3} \] \[ f′′′′(x)=−6/⋅(1+x)^{−4} \] ## x=0 \[ f(0) = ln(1+0) = 0 \] \[ f'(0) = 1 \] \[ f''(0) = -1 \] \[ f'''(0) = 2 \] \[ f''''(0) = -6 \]

Series