(Walpole et al., 2012)
library(ggplot2)
library(stringr) # String
library(stringi) # String
library(gtools)
library(dplyr)
library(knitr)
Tabla de probabilidad
discretas <- c(0,1) # 0 Que no gane, 1 que gane
n <- 5000
casos <- c(4997,3)
probabilidades <- casos / n
acumulada <- cumsum(probabilidades) # Acumulada
tabla <- data.frame(x=discretas,
casos = casos,
f.prob.x = probabilidades,
F.acum.x = acumulada)
tabla
## x casos f.prob.x F.acum.x
## 1 0 4997 0.9994 0.9994
## 2 1 3 0.0006 1.0000
Gráfica de barra
ggplot(data = tabla, aes(x = x, y=f.prob.x)) +
geom_bar(stat="identity")
Gráfica lineal acumulada
ggplot(data = tabla, aes(x = x, y=F.acum.x)) +
geom_point() +
geom_line()
54 días en los que no se vendió ningún automóvil,
117 días en los que se vendió 1 automóvil,
72 días en los que se vendieron 2 automóviles,
42 días en los que se vendieron 3 automóviles,
12 días en los que se vendieron 4 automóviles y
3 días en los que se vendieron 5 automóviles.
¿Cuál es la probabilida de que se venda exactamente un automoviles?
¿Cuál es la la probabilidad de que se venda al menos 2 automóviles?
Tabla de probabilidad o Contingencia
discretas <- 0:5 # c(0,1,2,3,4,5)
n <- 300
casos <- c(54, 117, 72, 42, 12, 3)
probabilidades <- casos /n
acumulada <- cumsum(probabilidades) # Acumulada
tabla <- data.frame(x=discretas,
casos = casos,
f.prob.x = probabilidades,
F.acum.x = acumulada)
tabla
## x casos f.prob.x F.acum.x
## 1 0 54 0.18 0.18
## 2 1 117 0.39 0.57
## 3 2 72 0.24 0.81
## 4 3 42 0.14 0.95
## 5 4 12 0.04 0.99
## 6 5 3 0.01 1.00
Grafica de Barras
ggplot(data = tabla, aes(x = x, y=f.prob.x)) +
#geom_bar(stat="identity")
geom_bar(stat="identity")
Grafica Lineal acumulada
ggplot(data = tabla, aes(x = x, y=F.acum.x)) +
geom_point() +
geom_line()
discretas <- 6:14
#n <- '?'
casos <- c(37369, 87436, 160840,239719,286719,306533,310787,302604,289168)
n <- sum(casos)
probabilidades <- casos /n
acumulada <- cumsum(probabilidades) # Acumulada
acumulada
## [1] 0.01848875 0.06174874 0.14132621 0.25992999 0.40178757 0.55344837 0.70721387
## [8] 0.85693075 1.00000000
tabla <- data.frame(x=discretas,
casos = casos,
f.prob.x = probabilidades,
F.acum.x = acumulada)
tabla
## x casos f.prob.x F.acum.x
## 1 6 37369 0.01848875 0.01848875
## 2 7 87436 0.04325998 0.06174874
## 3 8 160840 0.07957747 0.14132621
## 4 9 239719 0.11860378 0.25992999
## 5 10 286719 0.14185758 0.40178757
## 6 11 306533 0.15166079 0.55344837
## 7 12 310787 0.15376551 0.70721387
## 8 13 302604 0.14971687 0.85693075
## 9 14 289168 0.14306925 1.00000000
¿Cuál es la probabilida de elegir alumnos que tienen problemas de exactamente 10 años? es: 14.18%
¿Cuál es la probabilidad de encontrar alumnos por de 11 años o menos? 55.34%
Grafica de Barras
ggplot(data = tabla, aes(x = x, y=f.prob.x)) +
geom_bar(stat="identity")
Grafica Lineal Acumulada
ggplot(data = tabla, aes(x = x, y=F.acum.x)) +
geom_point() +
geom_line()
####Se muestra la distribución de frecuencias porcentuales para las puntuaciones dadas a la satisfacción con el trabajo por una muestra de directivos en sistemas de información de nivel alto y de nivel medio. Las puntuaciones van de 1 (muy insatisfecho) a 5 (muy satisfecho).(Anderson et al., 2008)
Tabla de probabilidad o Contingencia ##### Para directivos de alto nivel * Para este ejercicio se utiliza tabla1 y tabla2 como variables para identificar los valores de acuerdo al tipo de ejecutivo.
discretas <- 1:5
#n <- '?'
casos <- c(5,9,3,42,41)
n <- sum(casos)
probabilidades <- casos /n
acumulada <- cumsum(probabilidades)
tabla1 <- data.frame(x=discretas,
casos = casos,
f.prob.x = probabilidades,
F.acum.x = acumulada)
tabla1
## x casos f.prob.x F.acum.x
## 1 1 5 0.05 0.05
## 2 2 9 0.09 0.14
## 3 3 3 0.03 0.17
## 4 4 42 0.42 0.59
## 5 5 41 0.41 1.00
paste("La probabilidad de que un ejecutivo de nivel alto dé una puntuación de 4 o 5 a su satisfacción con el trabajo es:", round(sum(tabla1$f.prob.x[4], tabla1$f.prob.x[5]) * 100, 2), "%")
## [1] "La probabilidad de que un ejecutivo de nivel alto dé una puntuación de 4 o 5 a su satisfacción con el trabajo es: 83 %"
Gráfica de barra
ggplot(data = tabla1, aes(x = x, y=f.prob.x, fill=x)) +
geom_bar(stat="identity")
Gráfica lineal acumulada
ggplot(data = tabla1, aes(x = x, y=F.acum.x)) +
geom_point(colour="blue") +
geom_line(colour="red")
Para directivos de nivel medio * ¿Cuál es la probabilidad de que un ejecutivo de nivel medio esté muy satisfecho?
discretas <- 1:5
#n <- '?'
casos <- c(4, 10, 12, 46, 28)
n <- sum(casos)
probabilidades <- casos /n
acumulada <- cumsum(probabilidades)
tabla2 <- data.frame(x=discretas,
casos = casos,
f.prob.x = probabilidades,
F.acum.x = acumulada)
tabla2
## x casos f.prob.x F.acum.x
## 1 1 4 0.04 0.04
## 2 2 10 0.10 0.14
## 3 3 12 0.12 0.26
## 4 4 46 0.46 0.72
## 5 5 28 0.28 1.00
paste(" La probabilidad de que un ejecutivo de nivel medio esté muy satisfecho es:", round(tabla2$f.prob.x[5] * 100, 2), "%")
## [1] " La probabilidad de que un ejecutivo de nivel medio esté muy satisfecho es: 28 %"
Gráfica de barra
ggplot(data = tabla2, aes(x = x, y=f.prob.x, fill=x)) +
geom_bar(stat="identity")
Gráfica lineal acumulada
ggplot(data = tabla2, aes(x = x, y=F.acum.x)) +
geom_point(colour="blue") +
geom_line(colour="red")
* Observando las gráficas de barras y las tablas de probabilidad, los directivos de alto nivel están más satisfechos con el trabajo.
S <- c("NNN", "NND", "NDN", "DNN",
"NDD", "DND", "DDN", "DDD")
S
## [1] "NNN" "NND" "NDN" "DNN" "NDD" "DND" "DDN" "DDD"
Tabla de probabilidad o Contingencia
discretas <- 0:3
#n <- '?'
casos <- c(1,3,3,1)
n <- sum(casos)
probabilidades <- casos /n
acumulada <- cumsum(probabilidades) # Acumulada
tabla <- data.frame(x=discretas,
casos = casos,
f.prob.x = probabilidades,
F.acum.x = acumulada)
tabla
## x casos f.prob.x F.acum.x
## 1 0 1 0.125 0.125
## 2 1 3 0.375 0.500
## 3 2 3 0.375 0.875
## 4 3 1 0.125 1.000
x <- 1
paste("La probabilidad de que haya 1 defecto es: ",round(tabla$f.prob.x[x+1] * 100, 2), "%")
## [1] "La probabilidad de que haya 1 defecto es: 37.5 %"
x <- 2
paste("La probabilidad de que haya 2 defectos o mas es: ",round(sum(tabla$f.prob.x[x+1], tabla$f.prob.x[x+2]) * 100, 2), "%")
## [1] "La probabilidad de que haya 2 defectos o mas es: 50 %"
Gráfica de barra
ggplot(data = tabla, aes(x = x, y=f.prob.x)) +
#geom_bar(stat="identity")
geom_bar(stat="identity")
Gráfica lineal acumulada
ggplot(data = tabla, aes(x = x, y=F.acum.x)) +
geom_point() +
geom_line()