datos1 <- ANDES
head(datos1)
library(tidyverse)
library(ISLR)
default1 <-ANDES$Xanthomonas
balance1<- ANDES$Northing + ANDES$Easting
modelo_logistico1 <- glm(default1 ~ balance1, data = datos1, family = "binomial")
ggplot(data = datos1, aes(x = balance1, y = default1)) +
geom_point(aes(color = as.factor(default1)), shape = 1) +
stat_function(fun = function(x){predict(modelo_logistico1,
newdata = data.frame(balance1 = x),
type = "response")}) +
theme_bw() +
labs(title = "Regresión logística ANDES",
y = "Probabilidad default") +
theme(legend.position = "none")

LS0tDQp0aXRsZTogIk1PREVMTyBBTkRFUyINCm91dHB1dDogaHRtbF9ub3RlYm9vaw0KLS0tDQpgYGB7cn0NCmRhdG9zMSA8LSBBTkRFUw0KDQoNCmhlYWQoZGF0b3MxKQ0KYGBgDQpgYGB7cn0NCmxpYnJhcnkodGlkeXZlcnNlKQ0KbGlicmFyeShJU0xSKQ0KZGVmYXVsdDEgPC1BTkRFUyRYYW50aG9tb25hcw0KYmFsYW5jZTE8LSBBTkRFUyROb3J0aGluZyArIEFOREVTJEVhc3RpbmcNCg0KbW9kZWxvX2xvZ2lzdGljbzEgPC0gZ2xtKGRlZmF1bHQxIH4gYmFsYW5jZTEsIGRhdGEgPSBkYXRvczEsIGZhbWlseSA9ICJiaW5vbWlhbCIpDQoNCmdncGxvdChkYXRhID0gZGF0b3MxLCBhZXMoeCA9IGJhbGFuY2UxLCB5ID0gZGVmYXVsdDEpKSArDQogIGdlb21fcG9pbnQoYWVzKGNvbG9yID0gYXMuZmFjdG9yKGRlZmF1bHQxKSksIHNoYXBlID0gMSkgKyANCiAgc3RhdF9mdW5jdGlvbihmdW4gPSBmdW5jdGlvbih4KXtwcmVkaWN0KG1vZGVsb19sb2dpc3RpY28xLA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbmV3ZGF0YSA9IGRhdGEuZnJhbWUoYmFsYW5jZTEgPSB4KSwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHR5cGUgPSAicmVzcG9uc2UiKX0pICsNCiAgdGhlbWVfYncoKSArDQogIGxhYnModGl0bGUgPSAiUmVncmVzacOzbiBsb2fDrXN0aWNhIEFOREVTIiwNCiAgICAgICB5ID0gIlByb2JhYmlsaWRhZCBkZWZhdWx0IikgKw0KICB0aGVtZShsZWdlbmQucG9zaXRpb24gPSAibm9uZSIpDQpgYGANCg0K