datos1 <- JARDIN_1
head(datos1)
library(tidyverse)
library(ISLR)
default1 <- JARDIN_1$Xanthomonas
balance1<- JARDIN_1$Northing + JARDIN_1$Easting
modelo_logistico1 <- glm(default1 ~ balance1, data = datos1, family = "binomial")
ggplot(data = datos1, aes(x = balance1, y = default1)) +
geom_point(aes(color = as.factor(default1)), shape = 1) +
stat_function(fun = function(x){predict(modelo_logistico1,
newdata = data.frame(balance1 = x),
type = "response")}) +
theme_bw() +
labs(title = "Regresión logística JARDÍN 1",
y = "Probabilidad default") +
theme(legend.position = "none")

datos2 <- JARDIN_2
head(datos2)
default2 <- JARDIN_2$Xanthomonas
balance2<- JARDIN_2$Northing + JARDIN_2$Easting
modelo_logistico2 <- glm(default2 ~ balance2, data = datos2, family = "binomial")
ggplot(data = datos2, aes(x = balance2, y = default2)) +
geom_point(aes(color = as.factor(default2)), shape = 1) +
stat_function(fun = function(x){predict(modelo_logistico2,
newdata = data.frame(balance2 = x),
type = "response")}) +
theme_bw() +
labs(title = "Regresión logística JARDÍN 2",
y = "Probabilidad default") +
theme(legend.position = "none")

datos3 <- JARDIN_3
head(datos3)
default3 <- JARDIN_3$Xanthomonas
balance3<- JARDIN_3$Northing + JARDIN_3$Easting
modelo_logistico3 <- glm(default3 ~ balance3, data = datos3, family = "binomial")
ggplot(data = datos3, aes(x = balance3, y = default3)) +
geom_point(aes(color = as.factor(default3)), shape = 1) +
stat_function(fun = function(x){predict(modelo_logistico3,
newdata = data.frame(balance3 = x),
type = "response")}) +
theme_bw() +
labs(title = "Regresión logística JARDÍN 3",
y = "Probabilidad default") +
theme(legend.position = "none")

datos4 <- JARDIN_4
head(datos4)
default4 <- JARDIN_4$Xanthomonas
balance4<- JARDIN_4$Northing + JARDIN_4$Easting
modelo_logistico4 <- glm(default4 ~ balance4, data = datos4, family = "binomial")
ggplot(data = datos4, aes(x = balance4, y = default4)) +
geom_point(aes(color = as.factor(default4)), shape = 1) +
stat_function(fun = function(x){predict(modelo_logistico4,
newdata = data.frame(balance4 = x),
type = "response")}) +
theme_bw() +
labs(title = "Regresión logística JARDÍN 4",
y = "Probabilidad default") +
theme(legend.position = "none")

LS0tDQp0aXRsZTogIk1PREVMT1MgSkFSRMONTiINCm91dHB1dDogaHRtbF9ub3RlYm9vaw0KLS0tDQpgYGB7cn0NCmRhdG9zMSA8LSBKQVJESU5fMQ0KDQoNCmhlYWQoZGF0b3MxKQ0KYGBgDQpgYGB7cn0NCmxpYnJhcnkodGlkeXZlcnNlKQ0KbGlicmFyeShJU0xSKQ0KZGVmYXVsdDEgPC0gSkFSRElOXzEkWGFudGhvbW9uYXMNCmJhbGFuY2UxPC0gSkFSRElOXzEkTm9ydGhpbmcgKyBKQVJESU5fMSRFYXN0aW5nDQoNCm1vZGVsb19sb2dpc3RpY28xIDwtIGdsbShkZWZhdWx0MSB+IGJhbGFuY2UxLCBkYXRhID0gZGF0b3MxLCBmYW1pbHkgPSAiYmlub21pYWwiKQ0KDQpnZ3Bsb3QoZGF0YSA9IGRhdG9zMSwgYWVzKHggPSBiYWxhbmNlMSwgeSA9IGRlZmF1bHQxKSkgKw0KICBnZW9tX3BvaW50KGFlcyhjb2xvciA9IGFzLmZhY3RvcihkZWZhdWx0MSkpLCBzaGFwZSA9IDEpICsgDQogIHN0YXRfZnVuY3Rpb24oZnVuID0gZnVuY3Rpb24oeCl7cHJlZGljdChtb2RlbG9fbG9naXN0aWNvMSwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG5ld2RhdGEgPSBkYXRhLmZyYW1lKGJhbGFuY2UxID0geCksDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICB0eXBlID0gInJlc3BvbnNlIil9KSArDQogIHRoZW1lX2J3KCkgKw0KICBsYWJzKHRpdGxlID0gIlJlZ3Jlc2nDs24gbG9nw61zdGljYSBKQVJEw41OIDEiLA0KICAgICAgIHkgPSAiUHJvYmFiaWxpZGFkIGRlZmF1bHQiKSArDQogIHRoZW1lKGxlZ2VuZC5wb3NpdGlvbiA9ICJub25lIikNCmBgYA0KYGBge3J9DQpkYXRvczIgPC0gSkFSRElOXzINCg0KDQpoZWFkKGRhdG9zMikNCmBgYA0KYGBge3J9DQpkZWZhdWx0MiA8LSBKQVJESU5fMiRYYW50aG9tb25hcw0KYmFsYW5jZTI8LSBKQVJESU5fMiROb3J0aGluZyArIEpBUkRJTl8yJEVhc3RpbmcNCg0KbW9kZWxvX2xvZ2lzdGljbzIgPC0gZ2xtKGRlZmF1bHQyIH4gYmFsYW5jZTIsIGRhdGEgPSBkYXRvczIsIGZhbWlseSA9ICJiaW5vbWlhbCIpDQoNCmdncGxvdChkYXRhID0gZGF0b3MyLCBhZXMoeCA9IGJhbGFuY2UyLCB5ID0gZGVmYXVsdDIpKSArDQogIGdlb21fcG9pbnQoYWVzKGNvbG9yID0gYXMuZmFjdG9yKGRlZmF1bHQyKSksIHNoYXBlID0gMSkgKyANCiAgc3RhdF9mdW5jdGlvbihmdW4gPSBmdW5jdGlvbih4KXtwcmVkaWN0KG1vZGVsb19sb2dpc3RpY28yLA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbmV3ZGF0YSA9IGRhdGEuZnJhbWUoYmFsYW5jZTIgPSB4KSwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHR5cGUgPSAicmVzcG9uc2UiKX0pICsNCiAgdGhlbWVfYncoKSArDQogIGxhYnModGl0bGUgPSAiUmVncmVzacOzbiBsb2fDrXN0aWNhIEpBUkTDjU4gMiIsDQogICAgICAgeSA9ICJQcm9iYWJpbGlkYWQgZGVmYXVsdCIpICsNCiAgdGhlbWUobGVnZW5kLnBvc2l0aW9uID0gIm5vbmUiKQ0KYGBgDQpgYGB7cn0NCmRhdG9zMyA8LSBKQVJESU5fMw0KDQoNCmhlYWQoZGF0b3MzKQ0KYGBgDQpgYGB7cn0NCmRlZmF1bHQzIDwtIEpBUkRJTl8zJFhhbnRob21vbmFzDQpiYWxhbmNlMzwtIEpBUkRJTl8zJE5vcnRoaW5nICsgSkFSRElOXzMkRWFzdGluZw0KDQptb2RlbG9fbG9naXN0aWNvMyA8LSBnbG0oZGVmYXVsdDMgfiBiYWxhbmNlMywgZGF0YSA9IGRhdG9zMywgZmFtaWx5ID0gImJpbm9taWFsIikNCg0KZ2dwbG90KGRhdGEgPSBkYXRvczMsIGFlcyh4ID0gYmFsYW5jZTMsIHkgPSBkZWZhdWx0MykpICsNCiAgZ2VvbV9wb2ludChhZXMoY29sb3IgPSBhcy5mYWN0b3IoZGVmYXVsdDMpKSwgc2hhcGUgPSAxKSArIA0KICBzdGF0X2Z1bmN0aW9uKGZ1biA9IGZ1bmN0aW9uKHgpe3ByZWRpY3QobW9kZWxvX2xvZ2lzdGljbzMsDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBuZXdkYXRhID0gZGF0YS5mcmFtZShiYWxhbmNlMyA9IHgpLA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgdHlwZSA9ICJyZXNwb25zZSIpfSkgKw0KICB0aGVtZV9idygpICsNCiAgbGFicyh0aXRsZSA9ICJSZWdyZXNpw7NuIGxvZ8Otc3RpY2EgSkFSRMONTiAzIiwNCiAgICAgICB5ID0gIlByb2JhYmlsaWRhZCBkZWZhdWx0IikgKw0KICB0aGVtZShsZWdlbmQucG9zaXRpb24gPSAibm9uZSIpDQpgYGANCmBgYHtyfQ0KZGF0b3M0IDwtIEpBUkRJTl80DQoNCg0KaGVhZChkYXRvczQpDQpgYGANCmBgYHtyfQ0KZGVmYXVsdDQgPC0gSkFSRElOXzQkWGFudGhvbW9uYXMNCmJhbGFuY2U0PC0gSkFSRElOXzQkTm9ydGhpbmcgKyBKQVJESU5fNCRFYXN0aW5nDQoNCm1vZGVsb19sb2dpc3RpY280IDwtIGdsbShkZWZhdWx0NCB+IGJhbGFuY2U0LCBkYXRhID0gZGF0b3M0LCBmYW1pbHkgPSAiYmlub21pYWwiKQ0KDQpnZ3Bsb3QoZGF0YSA9IGRhdG9zNCwgYWVzKHggPSBiYWxhbmNlNCwgeSA9IGRlZmF1bHQ0KSkgKw0KICBnZW9tX3BvaW50KGFlcyhjb2xvciA9IGFzLmZhY3RvcihkZWZhdWx0NCkpLCBzaGFwZSA9IDEpICsgDQogIHN0YXRfZnVuY3Rpb24oZnVuID0gZnVuY3Rpb24oeCl7cHJlZGljdChtb2RlbG9fbG9naXN0aWNvNCwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG5ld2RhdGEgPSBkYXRhLmZyYW1lKGJhbGFuY2U0ID0geCksDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICB0eXBlID0gInJlc3BvbnNlIil9KSArDQogIHRoZW1lX2J3KCkgKw0KICBsYWJzKHRpdGxlID0gIlJlZ3Jlc2nDs24gbG9nw61zdGljYSBKQVJEw41OIDQiLA0KICAgICAgIHkgPSAiUHJvYmFiaWxpZGFkIGRlZmF1bHQiKSArDQogIHRoZW1lKGxlZ2VuZC5wb3NpdGlvbiA9ICJub25lIikNCmBgYA0KDQo=