Objetivo:
require(DT) #para a fun??o datatable
require(tidyverse)
require(mice) #para imputação
require(broom.mixed)
require(broom)
require(lme4)
require(readxl)
require(tidyr)
require(factoextra) #para o PCA
require(redres) #para os residuos
require(geoR) #para o Box cox de dois parametros
require(corrplot)
Planilha de dados
dados=read_excel("dados_renato.xlsx",sheet=1)
names(dados)=c("Ano","UF","Cod.UF","tx.latrc","tx.pres","gini.ibge","perc.jov.1524","perc.hom","pbf","densidade.urbana1","densidade.urbana2","taxa.casamentos","Taxa.desligamentos","raz.2020","raz.1040")
head(dados,options = list(pageLength = 5))
## # A tibble: 6 x 15
## Ano UF Cod.UF tx.latrc tx.pres gini.ibge perc.jov.1524 perc.hom pbf
## <dbl> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2005 Rond~ 1 1.30 298. 0.544 19.7 49.6 62.7
## 2 2006 Rond~ 1 1.60 272. 0.537 20.2 50.7 84.6
## 3 2007 Rond~ 1 1.51 354. 0.472 19.7 49.7 110.
## 4 2008 Rond~ 1 1.14 400. 0.478 19.1 50.2 119.
## 5 2009 Rond~ 1 0.997 465. 0.49 19.6 49.9 139.
## 6 2010 Rond~ 1 1.67 476. NA NA NA 145.
## # ... with 6 more variables: densidade.urbana1 <dbl>, densidade.urbana2 <dbl>,
## # taxa.casamentos <dbl>, Taxa.desligamentos <dbl>, raz.2020 <dbl>,
## # raz.1040 <dbl>
Variaveis Escolhidas para entrar no modelo:
Verificando os missing das variáveis:
variaveis = c("tx.latrc","Ano","UF","Cod.UF","perc.jov.1524","pbf","gini.ibge","Taxa.desligamentos","perc.hom","densidade.urbana1")
dados1 = dados %>%
select(variaveis)
## Note: Using an external vector in selections is ambiguous.
## i Use `all_of(variaveis)` instead of `variaveis` to silence this message.
## i See <https://tidyselect.r-lib.org/reference/faq-external-vector.html>.
## This message is displayed once per session.
summary(dados1)
## tx.latrc Ano UF Cod.UF
## Min. :0.03206 Min. :2005 Length:297 Min. : 1
## 1st Qu.:0.64466 1st Qu.:2007 Class :character 1st Qu.: 7
## Median :0.94540 Median :2010 Mode :character Median :14
## Mean :1.09195 Mean :2010 Mean :14
## 3rd Qu.:1.35786 3rd Qu.:2013 3rd Qu.:21
## Max. :5.42341 Max. :2015 Max. :27
## NA's :16
## perc.jov.1524 pbf gini.ibge Taxa.desligamentos
## Min. : 9.711 Min. : 22.04 Min. :0.4190 Min. :0.01196
## 1st Qu.:16.774 1st Qu.: 79.91 1st Qu.:0.4783 1st Qu.:0.03625
## Median :18.242 Median :137.69 Median :0.5025 Median :0.05304
## Mean :18.076 Mean :159.97 Mean :0.5055 Mean :0.06777
## 3rd Qu.:19.500 3rd Qu.:231.84 3rd Qu.:0.5272 3rd Qu.:0.09978
## Max. :23.500 Max. :423.79 Max. :0.6150 Max. :0.17911
## NA's :27 NA's :27
## perc.hom densidade.urbana1
## Min. :46.80 Min. : 34.29
## 1st Qu.:48.40 1st Qu.: 45.06
## Median :49.00 Median : 63.79
## Mean :49.06 Mean : 73.50
## 3rd Qu.:49.80 3rd Qu.: 97.48
## Max. :52.40 Max. :160.29
## NA's :27
summary(dados)
## Ano UF Cod.UF tx.latrc
## Min. :2005 Length:297 Min. : 1 Min. :0.03206
## 1st Qu.:2007 Class :character 1st Qu.: 7 1st Qu.:0.64466
## Median :2010 Mode :character Median :14 Median :0.94540
## Mean :2010 Mean :14 Mean :1.09195
## 3rd Qu.:2013 3rd Qu.:21 3rd Qu.:1.35786
## Max. :2015 Max. :27 Max. :5.42341
## NA's :16
## tx.pres gini.ibge perc.jov.1524 perc.hom
## Min. : 51.71 Min. :0.4190 Min. : 9.711 Min. :46.80
## 1st Qu.:156.22 1st Qu.:0.4783 1st Qu.:16.774 1st Qu.:48.40
## Median :228.64 Median :0.5025 Median :18.242 Median :49.00
## Mean :252.51 Mean :0.5055 Mean :18.076 Mean :49.06
## 3rd Qu.:337.17 3rd Qu.:0.5272 3rd Qu.:19.500 3rd Qu.:49.80
## Max. :634.53 Max. :0.6150 Max. :23.500 Max. :52.40
## NA's :2 NA's :27 NA's :27 NA's :27
## pbf densidade.urbana1 densidade.urbana2 taxa.casamentos
## Min. : 22.04 Min. : 34.29 Min. : 26.95 Min. :0.001847
## 1st Qu.: 79.91 1st Qu.: 45.06 1st Qu.: 38.80 1st Qu.:0.003916
## Median :137.69 Median : 63.79 Median : 53.12 Median :0.004859
## Mean :159.97 Mean : 73.50 Mean : 57.94 Mean :0.004876
## 3rd Qu.:231.84 3rd Qu.: 97.48 3rd Qu.: 75.40 3rd Qu.:0.005605
## Max. :423.79 Max. :160.29 Max. :131.26 Max. :0.008422
## NA's :27
## Taxa.desligamentos raz.2020 raz.1040
## Min. :0.01196 Min. : 9.034 Min. : 8.349
## 1st Qu.:0.03625 1st Qu.:14.177 1st Qu.:13.053
## Median :0.05304 Median :16.047 Median :14.912
## Mean :0.06777 Mean :16.825 Mean :15.515
## 3rd Qu.:0.09978 3rd Qu.:18.717 3rd Qu.:17.426
## Max. :0.17911 Max. :32.329 Max. :27.742
## NA's :54 NA's :54
Calculando o Número necessário de imputações:
[1] Rubin, D.B. (1987). Multiple Imputation for Nonresponse in Surveys. New York: John Wiley and Sons. Zaninotto, P.; Sacker, A. (2017) Missing Data in Longitudinal Surveys: A Comparison of Performance of Modern Techniques. https://digitalcommons.wayne.edu/cgi/viewcontent.cgi?article=2384&context=jmasm
lambda=1-nrow(dados1[complete.cases(dados1), ])/nrow(dados1)
a=0.99
N=round(lambda/(1/a-1),0)
N
## [1] 14
Transformando em wide table para imputar:
dados1_wide = dados1 %>%
pivot_wider(id_cols = Cod.UF,names_from = Ano, names_glue = "{.value}_{Ano}",values_from = c(tx.latrc,perc.jov.1524,pbf,gini.ibge,Taxa.desligamentos,perc.hom,densidade.urbana1))
Iniciando a imputação:
imp1 <- mice(dados1_wide, m = N,print=FALSE)
## Warning: Number of logged events: 473
Imputando os dados
imp_comp1 <- mice::complete(imp1, "all")
a1=imp_comp1[[1]]
Função para pivotar os dados imputados:
pivotar=function(dataset){
dataset %>%
pivot_longer(
!Cod.UF,
names_to = c("Variavel", "Ano"),
names_sep = "_")%>%
pivot_wider(
names_from = Variavel,
values_from = value )%>%
mutate(
Ano=as.numeric(Ano),
Cod.UF=as.factor(Cod.UF))
}
a1= pivotar(imp_comp1[[1]])
Pivotando os dados imputados para formato long table:
imp_comp2 = imp_comp1 %>%
lapply(pivotar)
a1=imp_comp2[[1]]
Modelo 1: Modelo com efeito aleatório no Ano (cada estado tem seu coeficiente de Ano) As variáveis significativas são:
formula1 = "tx.latrc ~ Ano + perc.jov.1524 + pbf + gini.ibge + Taxa.desligamentos + perc.hom + densidade.urbana1 + (Ano | Cod.UF)"
modelo_1 <- lapply(imp_comp2, lmer, formula =formula1)
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## boundary (singular) fit: see ?isSingular
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## boundary (singular) fit: see ?isSingular
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## boundary (singular) fit: see ?isSingular
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## unable to evaluate scaled gradient
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge: degenerate Hessian with 1 negative eigenvalues
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## boundary (singular) fit: see ?isSingular
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## boundary (singular) fit: see ?isSingular
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## boundary (singular) fit: see ?isSingular
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## boundary (singular) fit: see ?isSingular
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## boundary (singular) fit: see ?isSingular
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## unable to evaluate scaled gradient
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge: degenerate Hessian with 1 negative eigenvalues
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## boundary (singular) fit: see ?isSingular
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## boundary (singular) fit: see ?isSingular
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## boundary (singular) fit: see ?isSingular
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## boundary (singular) fit: see ?isSingular
summary(pool(modelo_1), conf.int = TRUE)
## term estimate std.error statistic df
## 1 (Intercept) -1.443729e+02 5.303133e+01 -2.7224073740 247.5757
## 2 Ano 7.102654e-02 2.617048e-02 2.7139943556 249.7666
## 3 perc.jov.1524 -5.721289e-03 2.965749e-02 -0.1929121258 254.8117
## 4 pbf -1.536396e-03 9.880897e-04 -1.5549157134 247.2582
## 5 gini.ibge -1.045922e-03 1.621924e+00 -0.0006448652 231.6378
## 6 Taxa.desligamentos -7.197367e+00 2.858588e+00 -2.5178053286 251.1250
## 7 perc.hom 7.104641e-02 6.418192e-02 1.1069536235 135.3406
## 8 densidade.urbana1 8.920972e-04 3.095820e-03 0.2881618963 226.6340
## p.value 2.5 % 97.5 %
## 1 0.006941541 -2.488230e+02 -3.992279e+01
## 2 0.007110814 1.948358e-02 1.225695e-01
## 3 0.847181458 -6.412629e-02 5.268372e-02
## 4 0.121245156 -3.482542e-03 4.097498e-04
## 5 0.999486027 -3.196654e+00 3.194563e+00
## 6 0.012431790 -1.282723e+01 -1.567506e+00
## 7 0.270277561 -5.588279e-02 1.979756e-01
## 8 0.773486173 -5.208174e-03 6.992368e-03
Pendencias:
Resolvendo as pendências:
AIC do modelo 1 é a média dos AICs dos N modelos baseados em N dados imputados
AIC=lapply(modelo_1,AIC)%>%
unlist()%>%
mean()
AIC
## [1] 498.566
Redíduos condicionais:
rc_resids <- compute_redres(modelo_1[[1]])
## Loading required namespace: testthat
plot(rc_resids,main="resíduos condicionais versus índices")
plot_resqq(modelo_1[[1]])
Alternativa: Aplicação de Box Cox para o primeiro banco de dados - para verificar qual transformação - neste caso foi utilizado modelo linear (sem ser misto) e somente com a variável Ano
bc2 <- boxcoxfit(imp_comp2[[1]]$tx.latrc,imp_comp2[[1]]$Ano, lambda2 = TRUE)
l1 <- bc2$lambda[1]
l2 <- bc2$lambda[2]
l1
## lambda
## -1.911845
l2
## lambda2
## 3.00257
Nova estimação: Criando a variável transformada em todos os bancos
l1
## lambda
## -1.911845
l2
## lambda2
## 3.00257
trans=function(data){
data %>%
mutate(ytrans = ((tx.latrc + l2)^l1-1)/l1)
}
imp_comp3 = imp_comp2 %>%
lapply(trans)
a1=imp_comp3[[1]]
hist(a1$tx.latrc)
hist(a1$ytrans)
Ajustando modelo com transformação:
formula2 = "ytrans ~ Ano + perc.jov.1524 + pbf + gini.ibge + Taxa.desligamentos + perc.hom + densidade.urbana1 + (Ano | Cod.UF)"
modelo_2 <- lapply(imp_comp3, lmer, formula =formula2)
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## boundary (singular) fit: see ?isSingular
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## boundary (singular) fit: see ?isSingular
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## boundary (singular) fit: see ?isSingular
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## unable to evaluate scaled gradient
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge: degenerate Hessian with 1 negative eigenvalues
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## boundary (singular) fit: see ?isSingular
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## boundary (singular) fit: see ?isSingular
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## boundary (singular) fit: see ?isSingular
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## boundary (singular) fit: see ?isSingular
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## boundary (singular) fit: see ?isSingular
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## boundary (singular) fit: see ?isSingular
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## unable to evaluate scaled gradient
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge: degenerate Hessian with 1 negative eigenvalues
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## boundary (singular) fit: see ?isSingular
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## boundary (singular) fit: see ?isSingular
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## boundary (singular) fit: see ?isSingular
summary(pool(modelo_2), conf.int = TRUE)
## term estimate std.error statistic df p.value
## 1 (Intercept) -1.730115e+00 7.526430e-01 -2.2987194 250.7797 0.022343793
## 2 Ano 1.091214e-03 3.718509e-04 2.9345466 251.9334 0.003648603
## 3 perc.jov.1524 -6.501304e-05 4.229665e-04 -0.1537073 253.6830 0.877962726
## 4 pbf -1.387150e-05 1.403960e-05 -0.9880273 249.5522 0.324096267
## 5 gini.ibge 7.058729e-03 2.324246e-02 0.3036998 234.3480 0.761626107
## 6 Taxa.desligamentos -9.244382e-02 4.138488e-02 -2.2337581 251.4782 0.026378717
## 7 perc.hom 5.712140e-04 8.967967e-04 0.6369492 170.7264 0.525011083
## 8 densidade.urbana1 9.824996e-06 4.526585e-05 0.2170510 239.4096 0.828353476
## 2.5 % 97.5 %
## 1 -3.2124220341 -2.478083e-01
## 2 0.0003588814 1.823546e-03
## 3 -0.0008979861 7.679600e-04
## 4 -0.0000415227 1.377970e-05
## 5 -0.0387321332 5.284959e-02
## 6 -0.1739489532 -1.093869e-02
## 7 -0.0011990238 2.341452e-03
## 8 -0.0000793452 9.899519e-05
AIC=lapply(modelo_2,AIC)%>%
unlist()%>%
mean()
AIC
## [1] -1727.854
Redíduos condicionais Modelo 2 - transformado:
rc_resids <- compute_redres(modelo_2[[1]])
plot(rc_resids,main="resíduos condicionais versus índices")
plot_resqq(modelo_2[[1]])
shapiro.test(rc_resids)
##
## Shapiro-Wilk normality test
##
## data: rc_resids
## W = 0.99521, p-value = 0.5682
Análise dos efeitos aleatorios
random <- ranef(modelo_2[[1]])
aleatorio = random[["Cod.UF"]][["(Intercept)"]]
aleatorio2= random[["Cod.UF"]][["Ano"]]
plot(aleatorio,main="efeitos aleatórios versus índices")
abline(h=55, lty=3)
abline(h=-55, lty=3)
abline(h=0,lty=3,col=4)
plot_ranef(modelo_2[[1]])
shapiro.test(aleatorio)
##
## Shapiro-Wilk normality test
##
## data: aleatorio
## W = 0.9718, p-value = 0.65
shapiro.test(aleatorio2)
##
## Shapiro-Wilk normality test
##
## data: aleatorio2
## W = 0.9718, p-value = 0.65
Idéia: Teste shapiro dos resíduos condicionais:
rc_resids2 <- lapply(modelo_2,compute_redres)
shapiro=lapply(rc_resids2,shapiro.test)
shapiro
## $`1`
##
## Shapiro-Wilk normality test
##
## data: X[[i]]
## W = 0.99521, p-value = 0.5682
##
##
## $`2`
##
## Shapiro-Wilk normality test
##
## data: X[[i]]
## W = 0.99462, p-value = 0.4591
##
##
## $`3`
##
## Shapiro-Wilk normality test
##
## data: X[[i]]
## W = 0.9945, p-value = 0.4387
##
##
## $`4`
##
## Shapiro-Wilk normality test
##
## data: X[[i]]
## W = 0.99342, p-value = 0.284
##
##
## $`5`
##
## Shapiro-Wilk normality test
##
## data: X[[i]]
## W = 0.99336, p-value = 0.2767
##
##
## $`6`
##
## Shapiro-Wilk normality test
##
## data: X[[i]]
## W = 0.99407, p-value = 0.372
##
##
## $`7`
##
## Shapiro-Wilk normality test
##
## data: X[[i]]
## W = 0.995, p-value = 0.5278
##
##
## $`8`
##
## Shapiro-Wilk normality test
##
## data: X[[i]]
## W = 0.99255, p-value = 0.1945
##
##
## $`9`
##
## Shapiro-Wilk normality test
##
## data: X[[i]]
## W = 0.99472, p-value = 0.4769
##
##
## $`10`
##
## Shapiro-Wilk normality test
##
## data: X[[i]]
## W = 0.99541, p-value = 0.6069
##
##
## $`11`
##
## Shapiro-Wilk normality test
##
## data: X[[i]]
## W = 0.99327, p-value = 0.2661
##
##
## $`12`
##
## Shapiro-Wilk normality test
##
## data: X[[i]]
## W = 0.99452, p-value = 0.4423
##
##
## $`13`
##
## Shapiro-Wilk normality test
##
## data: X[[i]]
## W = 0.99523, p-value = 0.5717
##
##
## $`14`
##
## Shapiro-Wilk normality test
##
## data: X[[i]]
## W = 0.99366, p-value = 0.3143
Gráfico de correlograma por estado:
l1
## lambda
## -1.911845
l2
## lambda2
## 3.00257
variaveis = c("tx.latrc","Ano","UF","Cod.UF","perc.jov.1524","pbf","gini.ibge","Taxa.desligamentos","perc.hom","densidade.urbana1","tx.pres","taxa.casamentos")
dados1 = dados %>%
select(variaveis)
dados1 = dados1 %>%
mutate(ytrans = ((tx.latrc + l2)^l1-1)/l1)
#só dá pra fazer correlação com os dados completos (sem missing)
teste=dados1[complete.cases(dados1),]
correlacao=list()
i=1
while(i<=27){
estados = teste %>% filter(Cod.UF==i)
titulo=estados$UF
estados = estados %>%
select(-c(UF,Cod.UF))
correlacao[[i]]=cor(estados)
corrplot.mixed(cor(estados),lower.col = "black", number.cex = 1,main=titulo)
i=i+1
}
Gráfico de correlograma:
Neste gráfico de correlograma sem ser por estados, não é possível identificar correlações!! elas se perdem nos estados!! #só dá pra fazer correlação com os dados completos (sem missing)
teste=dados1[complete.cases(dados1),]
teste2 = teste %>%
select(-c(UF,Cod.UF))
corrplot.mixed(cor(teste2),lower.col = "black", number.cex = 1)
Agora criando um gráfico de correlações para ver como se comporta ao longo dos estados
print("valores de correlacao para o estado de Rondonia")
## [1] "valores de correlacao para o estado de Rondonia"
correlacao[[1]]
## tx.latrc Ano perc.jov.1524 pbf gini.ibge
## tx.latrc 1.0000000 -0.8438022 0.7794218 -0.8274713 0.6971187
## Ano -0.8438022 1.0000000 -0.9198848 0.8277164 -0.8352030
## perc.jov.1524 0.7794218 -0.9198848 1.0000000 -0.6008418 0.7682724
## pbf -0.8274713 0.8277164 -0.6008418 1.0000000 -0.8370118
## gini.ibge 0.6971187 -0.8352030 0.7682724 -0.8370118 1.0000000
## Taxa.desligamentos -0.8979143 0.8444182 -0.6776513 0.9244673 -0.7287720
## perc.hom -0.4085620 0.5630963 -0.3763502 0.5547607 -0.3176786
## densidade.urbana1 0.4794933 -0.5295523 0.3606178 -0.7659649 0.7811743
## tx.pres -0.7134867 0.8883842 -0.8391680 0.7105695 -0.7872394
## taxa.casamentos -0.8431928 0.9731741 -0.8761485 0.8356287 -0.7861810
## ytrans 0.9943131 -0.8459905 0.7754893 -0.8292293 0.7005267
## Taxa.desligamentos perc.hom densidade.urbana1 tx.pres
## tx.latrc -0.8979143 -0.40856204 0.47949334 -0.7134867
## Ano 0.8444182 0.56309628 -0.52955229 0.8883842
## perc.jov.1524 -0.6776513 -0.37635015 0.36061777 -0.8391680
## pbf 0.9244673 0.55476070 -0.76596489 0.7105695
## gini.ibge -0.7287720 -0.31767861 0.78117427 -0.7872394
## Taxa.desligamentos 1.0000000 0.54114979 -0.64174972 0.6734873
## perc.hom 0.5411498 1.00000000 -0.04930337 0.2703692
## densidade.urbana1 -0.6417497 -0.04930337 1.00000000 -0.6567274
## tx.pres 0.6734873 0.27036924 -0.65672743 1.0000000
## taxa.casamentos 0.9014743 0.56153063 -0.53950413 0.8384147
## ytrans -0.8925181 -0.44944694 0.43883757 -0.6758367
## taxa.casamentos ytrans
## tx.latrc -0.8431928 0.9943131
## Ano 0.9731741 -0.8459905
## perc.jov.1524 -0.8761485 0.7754893
## pbf 0.8356287 -0.8292293
## gini.ibge -0.7861810 0.7005267
## Taxa.desligamentos 0.9014743 -0.8925181
## perc.hom 0.5615306 -0.4494469
## densidade.urbana1 -0.5395041 0.4388376
## tx.pres 0.8384147 -0.6758367
## taxa.casamentos 1.0000000 -0.8402260
## ytrans -0.8402260 1.0000000
#cria um banco de dados de correlações, somente com ytrans e as outras variaveis
correl_todos=c()
i=1
while(i<=27){
correl=data.frame(correlacao[[i]])
correl1=correl$ytrans
names(correl1)=c("tx.latr","Ano","perc.jov.1524","pbf","gini.ibge","Taxa.desligamentos","perc.hom","densidade.urbana1","tx.pres","taxa.casamentos","ytrans")
correl_todos=rbind(correl_todos,correl1)
i=i+1
}
print("valores de correlacao de ytrans com as outras variaveis")
## [1] "valores de correlacao de ytrans com as outras variaveis"
correl_todos
## tx.latr Ano perc.jov.1524 pbf gini.ibge
## correl1 0.9943131 -0.84599050 0.77548926 -0.82922932 0.70052667
## correl1 0.9921504 0.72312425 -0.27882655 0.62113963 -0.45933279
## correl1 0.9897239 0.87640417 -0.34832305 0.78357266 0.35514439
## correl1 0.9869996 0.76439686 -0.46215435 0.56357486 -0.51650777
## correl1 0.9905846 -0.34660223 0.27265889 -0.37112707 0.11029840
## correl1 0.9814112 0.39673735 -0.80076673 0.41423878 -0.72046462
## correl1 0.9958380 -0.05329137 0.20262171 0.05300161 -0.31482471
## correl1 0.9969543 0.46521790 -0.39296750 0.31177242 -0.44363257
## correl1 0.9916645 0.85515612 -0.55365235 0.84446769 -0.75785890
## correl1 0.9956740 -0.65079214 0.72599098 -0.47504438 0.57177604
## correl1 0.9904150 0.22547550 -0.15475770 0.04425063 -0.49830181
## correl1 0.9958239 -0.17350317 0.06709496 -0.30880693 0.37589661
## correl1 0.9577949 -0.77551941 0.84007337 -0.88451632 0.89061234
## correl1 0.9879361 0.75109366 -0.52970894 0.82287790 -0.75967658
## correl1 0.9890593 0.93369181 -0.71350539 0.89894829 -0.23738907
## correl1 0.9988395 0.77418231 -0.58953791 0.70496696 -0.76070247
## correl1 0.9966946 -0.15940353 0.30953162 -0.13181995 0.27844959
## correl1 0.9916368 0.87879959 -0.84080832 0.89873569 -0.85132654
## correl1 0.9985521 -0.82855906 0.60695945 -0.82436232 0.87050959
## correl1 0.9989739 0.60425700 -0.43606886 0.60304631 -0.29141789
## correl1 0.9991751 0.15123639 -0.09424226 -0.18206776 -0.08243027
## correl1 0.9965860 0.81669634 -0.78393293 0.67836377 -0.75053473
## correl1 0.9982751 0.08444825 0.08916271 -0.04718006 -0.06772723
## correl1 0.9919347 0.76175893 -0.57516656 0.74414352 -0.48938034
## correl1 0.9978744 0.07649031 0.29385288 -0.11621506 -0.25869724
## correl1 0.9892110 0.68147638 -0.22611736 0.50462436 -0.66677980
## correl1 0.9893143 -0.73131424 0.34262768 -0.72306719 0.58995956
## Taxa.desligamentos perc.hom densidade.urbana1 tx.pres
## correl1 -0.89251809 -0.44944694 0.438837568 -0.67583671
## correl1 0.78567234 0.15257365 0.247098357 0.80162542
## correl1 0.51374135 0.31673296 0.663299166 0.88151004
## correl1 0.66691049 -0.48963854 0.818000206 0.60066937
## correl1 -0.34523095 0.13919226 0.165764840 -0.46301060
## correl1 0.26838983 0.81865395 0.053365090 0.38085846
## correl1 -0.19312501 -0.28632328 0.200789594 0.06443223
## correl1 0.31558571 -0.18445360 -0.506958077 0.57562910
## correl1 0.84157691 -0.04856339 -0.868712343 0.74544051
## correl1 -0.60069427 -0.37614813 0.606765597 -0.66916133
## correl1 -0.06635059 -0.52900010 -0.199472825 0.04094857
## correl1 -0.29067447 0.08294620 0.167853366 0.03575094
## correl1 -0.82531634 0.72129243 0.656260006 -0.69117528
## correl1 0.81453590 -0.68161830 -0.708673495 0.74951519
## correl1 0.87464632 0.12469211 -0.907338443 0.86887424
## correl1 0.61003569 -0.71939262 -0.795671391 0.06738001
## correl1 -0.27095316 0.56092700 0.057930614 -0.32276770
## correl1 0.82698265 -0.09999539 -0.437071301 0.88405695
## correl1 -0.84243520 0.25107348 0.896035777 -0.63767229
## correl1 0.45795096 -0.30732917 -0.238414781 0.59300440
## correl1 -0.17567243 0.65185914 -0.255530807 0.15071802
## correl1 0.71721815 0.20406011 -0.721245261 0.85736076
## correl1 -0.10391945 -0.49378624 0.001294581 -0.52300970
## correl1 0.78244109 -0.03022237 -0.728226320 0.67418992
## correl1 0.08757922 0.04611564 -0.101551564 0.23474819
## correl1 0.41754061 0.21069853 -0.528108714 0.70409856
## correl1 -0.72108145 0.09670058 -0.520238873 -0.69252580
## taxa.casamentos ytrans
## correl1 -0.84022601 1
## correl1 -0.48191466 1
## correl1 0.73897122 1
## correl1 0.60058258 1
## correl1 -0.49252184 1
## correl1 0.63115020 1
## correl1 -0.22195378 1
## correl1 0.43101311 1
## correl1 0.51204494 1
## correl1 -0.44100784 1
## correl1 -0.02375323 1
## correl1 -0.76878265 1
## correl1 -0.81427731 1
## correl1 0.58296041 1
## correl1 0.22096259 1
## correl1 -0.09470244 1
## correl1 0.07117994 1
## correl1 0.60329632 1
## correl1 -0.76900103 1
## correl1 0.38162820 1
## correl1 0.52835808 1
## correl1 0.49681893 1
## correl1 -0.15624649 1
## correl1 0.60086516 1
## correl1 -0.11898673 1
## correl1 0.37853599 1
## correl1 -0.60229762 1
correl_todos=data.frame(correl_todos)
j=2
variaveis=c("tx.latr","Ano","perc.jov.1524","pbf","gini.ibge","Taxa.desligamentos","perc.hom","densidade.urbana1","tx.pres","taxa.casamentos","ytrans")
while(j<=length(variaveis)){
titulo=variaveis[j]
a=correl_todos[,j]
plot(a,main=titulo)
j=j+1
}
Abordagem com GLM - distribuição gamma para a variável resposta
Abordagem com modelos robustos: para high-dimensional longitudinal data
Abordagem não paramétrica
Abordagem Bayesiana