datos1 <- LA_UNION_1


head(datos1)
library(tidyverse)
library(ISLR)
default1 <-LA_UNION_1$Xanthomonas
balance1<- LA_UNION_1$Northing + LA_UNION_1$Easting

modelo_logistico1 <- glm(default1 ~ balance1, data = datos1, family = "binomial")

ggplot(data = datos1, aes(x = balance1, y = default1)) +
  geom_point(aes(color = as.factor(default1)), shape = 1) + 
  stat_function(fun = function(x){predict(modelo_logistico1,
                                          newdata = data.frame(balance1 = x),
                                          type = "response")}) +
  theme_bw() +
  labs(title = "Regresión logística LA UNIÓN 1",
       y = "Probabilidad default") +
  theme(legend.position = "none")

datos2 <- LA_UNION_2


head(datos2)
default2 <- LA_UNION_2$Xanthomonas
balance2<- LA_UNION_2$Northing + LA_UNION_2$Easting

modelo_logistico2 <- glm(default2 ~ balance2, data = datos2, family = "binomial")

ggplot(data = datos2, aes(x = balance2, y = default2)) +
  geom_point(aes(color = as.factor(default2)), shape = 1) + 
  stat_function(fun = function(x){predict(modelo_logistico2,
                                          newdata = data.frame(balance2 = x),
                                          type = "response")}) +
  theme_bw() +
  labs(title = "Regresión logística LA UNIÓN 2",
       y = "Probabilidad default") +
  theme(legend.position = "none")

datos3 <-LA_UNION_3


head(datos3)
default3 <- LA_UNION_3$Xanthomonas
balance3<- LA_UNION_3$Northing +LA_UNION_3$Easting

modelo_logistico3 <- glm(default3 ~ balance3, data = datos3, family = "binomial")

ggplot(data = datos3, aes(x = balance3, y = default3)) +
  geom_point(aes(color = as.factor(default3)), shape = 1) + 
  stat_function(fun = function(x){predict(modelo_logistico3,
                                          newdata = data.frame(balance3 = x),
                                          type = "response")}) +
  theme_bw() +
  labs(title = "Regresión logística LA UNIÓN 3",
       y = "Probabilidad default") +
  theme(legend.position = "none")

LS0tDQp0aXRsZTogIk1PREVMT1MgTEEgVU5Jw5NOIiANCm91dHB1dDogaHRtbF9ub3RlYm9vaw0KLS0tDQpgYGB7cn0NCmRhdG9zMSA8LSBMQV9VTklPTl8xDQoNCg0KaGVhZChkYXRvczEpDQpgYGANCmBgYHtyfQ0KbGlicmFyeSh0aWR5dmVyc2UpDQpsaWJyYXJ5KElTTFIpDQpkZWZhdWx0MSA8LUxBX1VOSU9OXzEkWGFudGhvbW9uYXMNCmJhbGFuY2UxPC0gTEFfVU5JT05fMSROb3J0aGluZyArIExBX1VOSU9OXzEkRWFzdGluZw0KDQptb2RlbG9fbG9naXN0aWNvMSA8LSBnbG0oZGVmYXVsdDEgfiBiYWxhbmNlMSwgZGF0YSA9IGRhdG9zMSwgZmFtaWx5ID0gImJpbm9taWFsIikNCg0KZ2dwbG90KGRhdGEgPSBkYXRvczEsIGFlcyh4ID0gYmFsYW5jZTEsIHkgPSBkZWZhdWx0MSkpICsNCiAgZ2VvbV9wb2ludChhZXMoY29sb3IgPSBhcy5mYWN0b3IoZGVmYXVsdDEpKSwgc2hhcGUgPSAxKSArIA0KICBzdGF0X2Z1bmN0aW9uKGZ1biA9IGZ1bmN0aW9uKHgpe3ByZWRpY3QobW9kZWxvX2xvZ2lzdGljbzEsDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBuZXdkYXRhID0gZGF0YS5mcmFtZShiYWxhbmNlMSA9IHgpLA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgdHlwZSA9ICJyZXNwb25zZSIpfSkgKw0KICB0aGVtZV9idygpICsNCiAgbGFicyh0aXRsZSA9ICJSZWdyZXNpw7NuIGxvZ8Otc3RpY2EgTEEgVU5Jw5NOIDEiLA0KICAgICAgIHkgPSAiUHJvYmFiaWxpZGFkIGRlZmF1bHQiKSArDQogIHRoZW1lKGxlZ2VuZC5wb3NpdGlvbiA9ICJub25lIikNCmBgYA0KYGBge3J9DQpkYXRvczIgPC0gTEFfVU5JT05fMg0KDQoNCmhlYWQoZGF0b3MyKQ0KYGBgDQpgYGB7cn0NCmRlZmF1bHQyIDwtIExBX1VOSU9OXzIkWGFudGhvbW9uYXMNCmJhbGFuY2UyPC0gTEFfVU5JT05fMiROb3J0aGluZyArIExBX1VOSU9OXzIkRWFzdGluZw0KDQptb2RlbG9fbG9naXN0aWNvMiA8LSBnbG0oZGVmYXVsdDIgfiBiYWxhbmNlMiwgZGF0YSA9IGRhdG9zMiwgZmFtaWx5ID0gImJpbm9taWFsIikNCg0KZ2dwbG90KGRhdGEgPSBkYXRvczIsIGFlcyh4ID0gYmFsYW5jZTIsIHkgPSBkZWZhdWx0MikpICsNCiAgZ2VvbV9wb2ludChhZXMoY29sb3IgPSBhcy5mYWN0b3IoZGVmYXVsdDIpKSwgc2hhcGUgPSAxKSArIA0KICBzdGF0X2Z1bmN0aW9uKGZ1biA9IGZ1bmN0aW9uKHgpe3ByZWRpY3QobW9kZWxvX2xvZ2lzdGljbzIsDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBuZXdkYXRhID0gZGF0YS5mcmFtZShiYWxhbmNlMiA9IHgpLA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgdHlwZSA9ICJyZXNwb25zZSIpfSkgKw0KICB0aGVtZV9idygpICsNCiAgbGFicyh0aXRsZSA9ICJSZWdyZXNpw7NuIGxvZ8Otc3RpY2EgTEEgVU5Jw5NOIDIiLA0KICAgICAgIHkgPSAiUHJvYmFiaWxpZGFkIGRlZmF1bHQiKSArDQogIHRoZW1lKGxlZ2VuZC5wb3NpdGlvbiA9ICJub25lIikNCmBgYA0KYGBge3J9DQpkYXRvczMgPC1MQV9VTklPTl8zDQoNCg0KaGVhZChkYXRvczMpDQpgYGANCmBgYHtyfQ0KZGVmYXVsdDMgPC0gTEFfVU5JT05fMyRYYW50aG9tb25hcw0KYmFsYW5jZTM8LSBMQV9VTklPTl8zJE5vcnRoaW5nICtMQV9VTklPTl8zJEVhc3RpbmcNCg0KbW9kZWxvX2xvZ2lzdGljbzMgPC0gZ2xtKGRlZmF1bHQzIH4gYmFsYW5jZTMsIGRhdGEgPSBkYXRvczMsIGZhbWlseSA9ICJiaW5vbWlhbCIpDQoNCmdncGxvdChkYXRhID0gZGF0b3MzLCBhZXMoeCA9IGJhbGFuY2UzLCB5ID0gZGVmYXVsdDMpKSArDQogIGdlb21fcG9pbnQoYWVzKGNvbG9yID0gYXMuZmFjdG9yKGRlZmF1bHQzKSksIHNoYXBlID0gMSkgKyANCiAgc3RhdF9mdW5jdGlvbihmdW4gPSBmdW5jdGlvbih4KXtwcmVkaWN0KG1vZGVsb19sb2dpc3RpY28zLA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbmV3ZGF0YSA9IGRhdGEuZnJhbWUoYmFsYW5jZTMgPSB4KSwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHR5cGUgPSAicmVzcG9uc2UiKX0pICsNCiAgdGhlbWVfYncoKSArDQogIGxhYnModGl0bGUgPSAiUmVncmVzacOzbiBsb2fDrXN0aWNhIExBIFVOScOTTiAzIiwNCiAgICAgICB5ID0gIlByb2JhYmlsaWRhZCBkZWZhdWx0IikgKw0KICB0aGVtZShsZWdlbmQucG9zaXRpb24gPSAibm9uZSIpDQpgYGANCg0K