datos1 <- SAN_PEDRO_1


head(datos1)
library(tidyverse)
library(ISLR)
default1 <- SAN_PEDRO_1$Xanthomonas
balance1<- SAN_PEDRO_1$Northing + SAN_PEDRO_1$Easting

modelo_logistico1 <- glm(default1 ~ balance1, data = datos1, family = "binomial")

ggplot(data = datos1, aes(x = balance1, y = default1)) +
  geom_point(aes(color = as.factor(default1)), shape = 1) + 
  stat_function(fun = function(x){predict(modelo_logistico1,
                                          newdata = data.frame(balance1 = x),
                                          type = "response")}) +
  theme_bw() +
  labs(title = "Regresión logística SAN PEDRO 1",
       y = "Probabilidad default") +
  theme(legend.position = "none")

datos2 <- SAN_PEDRO_2


head(datos2)
default2 <- SAN_PEDRO_2$Xanthomonas
balance2<- SAN_PEDRO_2$Northing + SAN_PEDRO_2$Easting

modelo_logistico2 <- glm(default2 ~ balance2, data = datos2, family = "binomial")

ggplot(data = datos2, aes(x = balance2, y = default2)) +
  geom_point(aes(color = as.factor(default2)), shape = 1) + 
  stat_function(fun = function(x){predict(modelo_logistico2,
                                          newdata = data.frame(balance2 = x),
                                          type = "response")}) +
  theme_bw() +
  labs(title = "Regresión logística SAN PEDRO 2",
       y = "Probabilidad default") +
  theme(legend.position = "none")

datos3 <- SAN_PEDRO_3


head(datos3)
default3 <- SAN_PEDRO_3$Xanthomonas
balance3<- SAN_PEDRO_3$Northing + SAN_PEDRO_3$Easting

modelo_logistico3 <- glm(default3 ~ balance3, data = datos3, family = "binomial")

ggplot(data = datos3, aes(x = balance3, y = default3)) +
  geom_point(aes(color = as.factor(default3)), shape = 1) + 
  stat_function(fun = function(x){predict(modelo_logistico3,
                                          newdata = data.frame(balance3 = x),
                                          type = "response")}) +
  theme_bw() +
  labs(title = "Regresión logística SAN PEDRO 3",
       y = "Probabilidad default") +
  theme(legend.position = "none")

LS0tDQp0aXRsZTogIk1PREVMT1MgU0FOIFBFRFJPIg0Kb3V0cHV0OiBodG1sX25vdGVib29rDQotLS0NCmBgYHtyfQ0KZGF0b3MxIDwtIFNBTl9QRURST18xDQoNCg0KaGVhZChkYXRvczEpDQpgYGANCg0KYGBge3J9DQpsaWJyYXJ5KHRpZHl2ZXJzZSkNCmxpYnJhcnkoSVNMUikNCmRlZmF1bHQxIDwtIFNBTl9QRURST18xJFhhbnRob21vbmFzDQpiYWxhbmNlMTwtIFNBTl9QRURST18xJE5vcnRoaW5nICsgU0FOX1BFRFJPXzEkRWFzdGluZw0KDQptb2RlbG9fbG9naXN0aWNvMSA8LSBnbG0oZGVmYXVsdDEgfiBiYWxhbmNlMSwgZGF0YSA9IGRhdG9zMSwgZmFtaWx5ID0gImJpbm9taWFsIikNCg0KZ2dwbG90KGRhdGEgPSBkYXRvczEsIGFlcyh4ID0gYmFsYW5jZTEsIHkgPSBkZWZhdWx0MSkpICsNCiAgZ2VvbV9wb2ludChhZXMoY29sb3IgPSBhcy5mYWN0b3IoZGVmYXVsdDEpKSwgc2hhcGUgPSAxKSArIA0KICBzdGF0X2Z1bmN0aW9uKGZ1biA9IGZ1bmN0aW9uKHgpe3ByZWRpY3QobW9kZWxvX2xvZ2lzdGljbzEsDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBuZXdkYXRhID0gZGF0YS5mcmFtZShiYWxhbmNlMSA9IHgpLA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgdHlwZSA9ICJyZXNwb25zZSIpfSkgKw0KICB0aGVtZV9idygpICsNCiAgbGFicyh0aXRsZSA9ICJSZWdyZXNpw7NuIGxvZ8Otc3RpY2EgU0FOIFBFRFJPIDEiLA0KICAgICAgIHkgPSAiUHJvYmFiaWxpZGFkIGRlZmF1bHQiKSArDQogIHRoZW1lKGxlZ2VuZC5wb3NpdGlvbiA9ICJub25lIikNCmBgYA0KDQpgYGB7cn0NCmRhdG9zMiA8LSBTQU5fUEVEUk9fMg0KDQoNCmhlYWQoZGF0b3MyKQ0KYGBgDQoNCmBgYHtyfQ0KZGVmYXVsdDIgPC0gU0FOX1BFRFJPXzIkWGFudGhvbW9uYXMNCmJhbGFuY2UyPC0gU0FOX1BFRFJPXzIkTm9ydGhpbmcgKyBTQU5fUEVEUk9fMiRFYXN0aW5nDQoNCm1vZGVsb19sb2dpc3RpY28yIDwtIGdsbShkZWZhdWx0MiB+IGJhbGFuY2UyLCBkYXRhID0gZGF0b3MyLCBmYW1pbHkgPSAiYmlub21pYWwiKQ0KDQpnZ3Bsb3QoZGF0YSA9IGRhdG9zMiwgYWVzKHggPSBiYWxhbmNlMiwgeSA9IGRlZmF1bHQyKSkgKw0KICBnZW9tX3BvaW50KGFlcyhjb2xvciA9IGFzLmZhY3RvcihkZWZhdWx0MikpLCBzaGFwZSA9IDEpICsgDQogIHN0YXRfZnVuY3Rpb24oZnVuID0gZnVuY3Rpb24oeCl7cHJlZGljdChtb2RlbG9fbG9naXN0aWNvMiwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG5ld2RhdGEgPSBkYXRhLmZyYW1lKGJhbGFuY2UyID0geCksDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICB0eXBlID0gInJlc3BvbnNlIil9KSArDQogIHRoZW1lX2J3KCkgKw0KICBsYWJzKHRpdGxlID0gIlJlZ3Jlc2nDs24gbG9nw61zdGljYSBTQU4gUEVEUk8gMiIsDQogICAgICAgeSA9ICJQcm9iYWJpbGlkYWQgZGVmYXVsdCIpICsNCiAgdGhlbWUobGVnZW5kLnBvc2l0aW9uID0gIm5vbmUiKQ0KYGBgDQpgYGB7cn0NCmRhdG9zMyA8LSBTQU5fUEVEUk9fMw0KDQoNCmhlYWQoZGF0b3MzKQ0KYGBgDQpgYGB7cn0NCmRlZmF1bHQzIDwtIFNBTl9QRURST18zJFhhbnRob21vbmFzDQpiYWxhbmNlMzwtIFNBTl9QRURST18zJE5vcnRoaW5nICsgU0FOX1BFRFJPXzMkRWFzdGluZw0KDQptb2RlbG9fbG9naXN0aWNvMyA8LSBnbG0oZGVmYXVsdDMgfiBiYWxhbmNlMywgZGF0YSA9IGRhdG9zMywgZmFtaWx5ID0gImJpbm9taWFsIikNCg0KZ2dwbG90KGRhdGEgPSBkYXRvczMsIGFlcyh4ID0gYmFsYW5jZTMsIHkgPSBkZWZhdWx0MykpICsNCiAgZ2VvbV9wb2ludChhZXMoY29sb3IgPSBhcy5mYWN0b3IoZGVmYXVsdDMpKSwgc2hhcGUgPSAxKSArIA0KICBzdGF0X2Z1bmN0aW9uKGZ1biA9IGZ1bmN0aW9uKHgpe3ByZWRpY3QobW9kZWxvX2xvZ2lzdGljbzMsDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBuZXdkYXRhID0gZGF0YS5mcmFtZShiYWxhbmNlMyA9IHgpLA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgdHlwZSA9ICJyZXNwb25zZSIpfSkgKw0KICB0aGVtZV9idygpICsNCiAgbGFicyh0aXRsZSA9ICJSZWdyZXNpw7NuIGxvZ8Otc3RpY2EgU0FOIFBFRFJPIDMiLA0KICAgICAgIHkgPSAiUHJvYmFiaWxpZGFkIGRlZmF1bHQiKSArDQogIHRoZW1lKGxlZ2VuZC5wb3NpdGlvbiA9ICJub25lIikNCmBgYA0KDQo=