datos1 <- SONSON_1


head(datos1)
library(tidyverse)
package 㤼㸱tidyverse㤼㸲 was built under R version 3.6.3Registered S3 methods overwritten by 'dbplyr':
  method         from
  print.tbl_lazy     
  print.tbl_sql      
-- Attaching packages --------------------------------------- tidyverse 1.3.0 --
v ggplot2 3.3.2     v purrr   0.3.4
v tibble  3.0.3     v dplyr   1.0.2
v tidyr   1.1.2     v stringr 1.4.0
v readr   1.3.1     v forcats 0.5.0
package 㤼㸱ggplot2㤼㸲 was built under R version 3.6.3package 㤼㸱tibble㤼㸲 was built under R version 3.6.3package 㤼㸱tidyr㤼㸲 was built under R version 3.6.3package 㤼㸱readr㤼㸲 was built under R version 3.6.3package 㤼㸱purrr㤼㸲 was built under R version 3.6.3package 㤼㸱dplyr㤼㸲 was built under R version 3.6.3package 㤼㸱stringr㤼㸲 was built under R version 3.6.3package 㤼㸱forcats㤼㸲 was built under R version 3.6.3-- Conflicts ------------------------------------------ tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag()    masks stats::lag()
library(ISLR)
package 㤼㸱ISLR㤼㸲 was built under R version 3.6.3
default1 <- SONSON_1$Xanthomonas
balance1<- SONSON_1$Northing + SONSON_1$Easting

modelo_logistico1 <- glm(default1 ~ balance1, data = datos1, family = "binomial")

ggplot(data = datos1, aes(x = balance1, y = default1)) +
  geom_point(aes(color = as.factor(default1)), shape = 1) + 
  stat_function(fun = function(x){predict(modelo_logistico1,
                                          newdata = data.frame(balance1 = x),
                                          type = "response")}) +
  theme_bw() +
  labs(title = "Regresión logística SONSON 1",
       y = "Probabilidad default") +
  theme(legend.position = "none")

datos2 <- SONSON_2


head(datos2)
default2 <- SONSON_2$Xanthomonas
balance2<- SONSON_2$Northing + SONSON_2$Easting

modelo_logistico2 <- glm(default2 ~ balance2, data = datos2, family = "binomial")

ggplot(data = datos2, aes(x = balance2, y = default2)) +
  geom_point(aes(color = as.factor(default2)), shape = 1) + 
  stat_function(fun = function(x){predict(modelo_logistico2,
                                          newdata = data.frame(balance2 = x),
                                          type = "response")}) +
  theme_bw() +
  labs(title = "Regresión logística SONSON 2",
       y = "Probabilidad default") +
  theme(legend.position = "none")

datos3 <- SONSON_3


head(datos3)
default3 <- SONSON_3$Xanthomonas
balance3<- SONSON_3$Northing + SONSON_3$Easting

modelo_logistico3 <- glm(default3 ~ balance3, data = datos3, family = "binomial")

ggplot(data = datos3, aes(x = balance3, y = default3)) +
  geom_point(aes(color = as.factor(default3)), shape = 1) + 
  stat_function(fun = function(x){predict(modelo_logistico3,
                                          newdata = data.frame(balance3 = x),
                                          type = "response")}) +
  theme_bw() +
  labs(title = "Regresión logística SONSON 3",
       y = "Probabilidad default") +
  theme(legend.position = "none")

LS0tDQp0aXRsZTogIk1PREVMT1MgU09OU09OIg0Kb3V0cHV0OiBodG1sX25vdGVib29rDQotLS0NCmBgYHtyfQ0KZGF0b3MxIDwtIFNPTlNPTl8xDQoNCg0KaGVhZChkYXRvczEpDQpgYGANCmBgYHtyfQ0KbGlicmFyeSh0aWR5dmVyc2UpDQpsaWJyYXJ5KElTTFIpDQpkZWZhdWx0MSA8LSBTT05TT05fMSRYYW50aG9tb25hcw0KYmFsYW5jZTE8LSBTT05TT05fMSROb3J0aGluZyArIFNPTlNPTl8xJEVhc3RpbmcNCg0KbW9kZWxvX2xvZ2lzdGljbzEgPC0gZ2xtKGRlZmF1bHQxIH4gYmFsYW5jZTEsIGRhdGEgPSBkYXRvczEsIGZhbWlseSA9ICJiaW5vbWlhbCIpDQoNCmdncGxvdChkYXRhID0gZGF0b3MxLCBhZXMoeCA9IGJhbGFuY2UxLCB5ID0gZGVmYXVsdDEpKSArDQogIGdlb21fcG9pbnQoYWVzKGNvbG9yID0gYXMuZmFjdG9yKGRlZmF1bHQxKSksIHNoYXBlID0gMSkgKyANCiAgc3RhdF9mdW5jdGlvbihmdW4gPSBmdW5jdGlvbih4KXtwcmVkaWN0KG1vZGVsb19sb2dpc3RpY28xLA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbmV3ZGF0YSA9IGRhdGEuZnJhbWUoYmFsYW5jZTEgPSB4KSwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHR5cGUgPSAicmVzcG9uc2UiKX0pICsNCiAgdGhlbWVfYncoKSArDQogIGxhYnModGl0bGUgPSAiUmVncmVzacOzbiBsb2fDrXN0aWNhIFNPTlNPTiAxIiwNCiAgICAgICB5ID0gIlByb2JhYmlsaWRhZCBkZWZhdWx0IikgKw0KICB0aGVtZShsZWdlbmQucG9zaXRpb24gPSAibm9uZSIpDQpgYGANCmBgYHtyfQ0KZGF0b3MyIDwtIFNPTlNPTl8yDQoNCg0KaGVhZChkYXRvczIpDQpgYGANCmBgYHtyfQ0KZGVmYXVsdDIgPC0gU09OU09OXzIkWGFudGhvbW9uYXMNCmJhbGFuY2UyPC0gU09OU09OXzIkTm9ydGhpbmcgKyBTT05TT05fMiRFYXN0aW5nDQoNCm1vZGVsb19sb2dpc3RpY28yIDwtIGdsbShkZWZhdWx0MiB+IGJhbGFuY2UyLCBkYXRhID0gZGF0b3MyLCBmYW1pbHkgPSAiYmlub21pYWwiKQ0KDQpnZ3Bsb3QoZGF0YSA9IGRhdG9zMiwgYWVzKHggPSBiYWxhbmNlMiwgeSA9IGRlZmF1bHQyKSkgKw0KICBnZW9tX3BvaW50KGFlcyhjb2xvciA9IGFzLmZhY3RvcihkZWZhdWx0MikpLCBzaGFwZSA9IDEpICsgDQogIHN0YXRfZnVuY3Rpb24oZnVuID0gZnVuY3Rpb24oeCl7cHJlZGljdChtb2RlbG9fbG9naXN0aWNvMiwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG5ld2RhdGEgPSBkYXRhLmZyYW1lKGJhbGFuY2UyID0geCksDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICB0eXBlID0gInJlc3BvbnNlIil9KSArDQogIHRoZW1lX2J3KCkgKw0KICBsYWJzKHRpdGxlID0gIlJlZ3Jlc2nDs24gbG9nw61zdGljYSBTT05TT04gMiIsDQogICAgICAgeSA9ICJQcm9iYWJpbGlkYWQgZGVmYXVsdCIpICsNCiAgdGhlbWUobGVnZW5kLnBvc2l0aW9uID0gIm5vbmUiKQ0KYGBgDQpgYGB7cn0NCmRhdG9zMyA8LSBTT05TT05fMw0KDQoNCmhlYWQoZGF0b3MzKQ0KYGBgDQpgYGB7cn0NCmRlZmF1bHQzIDwtIFNPTlNPTl8zJFhhbnRob21vbmFzDQpiYWxhbmNlMzwtIFNPTlNPTl8zJE5vcnRoaW5nICsgU09OU09OXzMkRWFzdGluZw0KDQptb2RlbG9fbG9naXN0aWNvMyA8LSBnbG0oZGVmYXVsdDMgfiBiYWxhbmNlMywgZGF0YSA9IGRhdG9zMywgZmFtaWx5ID0gImJpbm9taWFsIikNCg0KZ2dwbG90KGRhdGEgPSBkYXRvczMsIGFlcyh4ID0gYmFsYW5jZTMsIHkgPSBkZWZhdWx0MykpICsNCiAgZ2VvbV9wb2ludChhZXMoY29sb3IgPSBhcy5mYWN0b3IoZGVmYXVsdDMpKSwgc2hhcGUgPSAxKSArIA0KICBzdGF0X2Z1bmN0aW9uKGZ1biA9IGZ1bmN0aW9uKHgpe3ByZWRpY3QobW9kZWxvX2xvZ2lzdGljbzMsDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBuZXdkYXRhID0gZGF0YS5mcmFtZShiYWxhbmNlMyA9IHgpLA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgdHlwZSA9ICJyZXNwb25zZSIpfSkgKw0KICB0aGVtZV9idygpICsNCiAgbGFicyh0aXRsZSA9ICJSZWdyZXNpw7NuIGxvZ8Otc3RpY2EgU09OU09OIDMiLA0KICAgICAgIHkgPSAiUHJvYmFiaWxpZGFkIGRlZmF1bHQiKSArDQogIHRoZW1lKGxlZ2VuZC5wb3NpdGlvbiA9ICJub25lIikNCmBgYA0KDQo=