library(tidyverse)
package 㤼㸱tidyverse㤼㸲 was built under R version 3.6.3Registered S3 methods overwritten by 'dbplyr':
  method         from
  print.tbl_lazy     
  print.tbl_sql      
-- Attaching packages --------------------------------------- tidyverse 1.3.0 --
v ggplot2 3.3.2     v purrr   0.3.4
v tibble  3.0.3     v dplyr   1.0.2
v tidyr   1.1.2     v stringr 1.4.0
v readr   1.3.1     v forcats 0.5.0
package 㤼㸱ggplot2㤼㸲 was built under R version 3.6.3package 㤼㸱tibble㤼㸲 was built under R version 3.6.3package 㤼㸱tidyr㤼㸲 was built under R version 3.6.3package 㤼㸱readr㤼㸲 was built under R version 3.6.3package 㤼㸱purrr㤼㸲 was built under R version 3.6.3package 㤼㸱dplyr㤼㸲 was built under R version 3.6.3package 㤼㸱stringr㤼㸲 was built under R version 3.6.3package 㤼㸱forcats㤼㸲 was built under R version 3.6.3-- Conflicts ------------------------------------------ tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag()    masks stats::lag()
library(ISLR)
package 㤼㸱ISLR㤼㸲 was built under R version 3.6.3
datos <- Don_matias_1


head(datos)
default <- Don_matias_1$Xanthomonas
balance<- Don_matias_1$Northing + Don_matias_1$Easting
modelo_logistico <- glm(default ~ balance, data = datos, family = "binomial")
ggplot(data = datos, aes(x = balance, y = default)) +
  geom_point(aes(color = as.factor(default)), shape = 1) + 
  stat_function(fun = function(x){predict(modelo_logistico,
                                          newdata = data.frame(balance = x),
                                          type = "response")}) +
  theme_bw() +
  labs(title = "Regresión logística Don matias 2",
       y = "Probabilidad default") +
  theme(legend.position = "none")

datos1 <- don_matias_3


head(datos1)
default1 <- don_matias_3$Xanthomonas
balance1<- don_matias_3$Northing + don_matias_3$Easting
modelo_logistico1 <- glm(default1 ~ balance1, data = datos1, family = "binomial")
ggplot(data = datos1, aes(x = balance1, y = default1)) +
  geom_point(aes(color = as.factor(default1)), shape = 1) + 
  stat_function(fun = function(x){predict(modelo_logistico1,
                                          newdata = data.frame(balance1 = x),
                                          type = "response")}) +
  theme_bw() +
  labs(title = "Regresión logística Don matias 1",
       y = "Probabilidad default") +
  theme(legend.position = "none")

datos2 <- don_matias_2


head(datos2)
default2 <- don_matias_2$Xanthomonas
balance2<- don_matias_2$Northing + don_matias_2$Easting

modelo_logistico2 <- glm(default2 ~ balance2, data = datos2, family = "binomial")

ggplot(data = datos2, aes(x = balance2, y = default2)) +
  geom_point(aes(color = as.factor(default2)), shape = 1) + 
  stat_function(fun = function(x){predict(modelo_logistico2,
                                          newdata = data.frame(balance2 = x),
                                          type = "response")}) +
  theme_bw() +
  labs(title = "Regresión logística Don matias 3",
       y = "Probabilidad default") +
  theme(legend.position = "none")

LS0tDQp0aXRsZTogIk1vZGVsb3MiDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KYGBge3J9DQpsaWJyYXJ5KHRpZHl2ZXJzZSkNCmxpYnJhcnkoSVNMUikNCmRhdG9zIDwtIERvbl9tYXRpYXNfMQ0KDQoNCmhlYWQoZGF0b3MpDQpgYGANCmBgYHtyfQ0KZGVmYXVsdCA8LSBEb25fbWF0aWFzXzEkWGFudGhvbW9uYXMNCmJhbGFuY2U8LSBEb25fbWF0aWFzXzEkTm9ydGhpbmcgKyBEb25fbWF0aWFzXzEkRWFzdGluZw0KDQpgYGANCmBgYHtyfQ0KbW9kZWxvX2xvZ2lzdGljbyA8LSBnbG0oZGVmYXVsdCB+IGJhbGFuY2UsIGRhdGEgPSBkYXRvcywgZmFtaWx5ID0gImJpbm9taWFsIikNCmBgYA0KYGBge3J9DQpnZ3Bsb3QoZGF0YSA9IGRhdG9zLCBhZXMoeCA9IGJhbGFuY2UsIHkgPSBkZWZhdWx0KSkgKw0KICBnZW9tX3BvaW50KGFlcyhjb2xvciA9IGFzLmZhY3RvcihkZWZhdWx0KSksIHNoYXBlID0gMSkgKyANCiAgc3RhdF9mdW5jdGlvbihmdW4gPSBmdW5jdGlvbih4KXtwcmVkaWN0KG1vZGVsb19sb2dpc3RpY28sDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBuZXdkYXRhID0gZGF0YS5mcmFtZShiYWxhbmNlID0geCksDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICB0eXBlID0gInJlc3BvbnNlIil9KSArDQogIHRoZW1lX2J3KCkgKw0KICBsYWJzKHRpdGxlID0gIlJlZ3Jlc2nDs24gbG9nw61zdGljYSBEb24gbWF0aWFzIDIiLA0KICAgICAgIHkgPSAiUHJvYmFiaWxpZGFkIGRlZmF1bHQiKSArDQogIHRoZW1lKGxlZ2VuZC5wb3NpdGlvbiA9ICJub25lIikNCmBgYA0KDQpgYGB7cn0NCmRhdG9zMSA8LSBkb25fbWF0aWFzXzMNCg0KDQpoZWFkKGRhdG9zMSkNCmBgYA0KYGBge3J9DQpkZWZhdWx0MSA8LSBkb25fbWF0aWFzXzMkWGFudGhvbW9uYXMNCmJhbGFuY2UxPC0gZG9uX21hdGlhc18zJE5vcnRoaW5nICsgZG9uX21hdGlhc18zJEVhc3RpbmcNCmBgYA0KYGBge3J9DQptb2RlbG9fbG9naXN0aWNvMSA8LSBnbG0oZGVmYXVsdDEgfiBiYWxhbmNlMSwgZGF0YSA9IGRhdG9zMSwgZmFtaWx5ID0gImJpbm9taWFsIikNCmBgYA0KYGBge3J9DQpnZ3Bsb3QoZGF0YSA9IGRhdG9zMSwgYWVzKHggPSBiYWxhbmNlMSwgeSA9IGRlZmF1bHQxKSkgKw0KICBnZW9tX3BvaW50KGFlcyhjb2xvciA9IGFzLmZhY3RvcihkZWZhdWx0MSkpLCBzaGFwZSA9IDEpICsgDQogIHN0YXRfZnVuY3Rpb24oZnVuID0gZnVuY3Rpb24oeCl7cHJlZGljdChtb2RlbG9fbG9naXN0aWNvMSwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG5ld2RhdGEgPSBkYXRhLmZyYW1lKGJhbGFuY2UxID0geCksDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICB0eXBlID0gInJlc3BvbnNlIil9KSArDQogIHRoZW1lX2J3KCkgKw0KICBsYWJzKHRpdGxlID0gIlJlZ3Jlc2nDs24gbG9nw61zdGljYSBEb24gbWF0aWFzIDEiLA0KICAgICAgIHkgPSAiUHJvYmFiaWxpZGFkIGRlZmF1bHQiKSArDQogIHRoZW1lKGxlZ2VuZC5wb3NpdGlvbiA9ICJub25lIikNCmBgYA0KYGBge3J9DQpkYXRvczIgPC0gZG9uX21hdGlhc18yDQoNCg0KaGVhZChkYXRvczIpDQpgYGANCmBgYHtyfQ0KZGVmYXVsdDIgPC0gZG9uX21hdGlhc18yJFhhbnRob21vbmFzDQpiYWxhbmNlMjwtIGRvbl9tYXRpYXNfMiROb3J0aGluZyArIGRvbl9tYXRpYXNfMiRFYXN0aW5nDQoNCm1vZGVsb19sb2dpc3RpY28yIDwtIGdsbShkZWZhdWx0MiB+IGJhbGFuY2UyLCBkYXRhID0gZGF0b3MyLCBmYW1pbHkgPSAiYmlub21pYWwiKQ0KDQpnZ3Bsb3QoZGF0YSA9IGRhdG9zMiwgYWVzKHggPSBiYWxhbmNlMiwgeSA9IGRlZmF1bHQyKSkgKw0KICBnZW9tX3BvaW50KGFlcyhjb2xvciA9IGFzLmZhY3RvcihkZWZhdWx0MikpLCBzaGFwZSA9IDEpICsgDQogIHN0YXRfZnVuY3Rpb24oZnVuID0gZnVuY3Rpb24oeCl7cHJlZGljdChtb2RlbG9fbG9naXN0aWNvMiwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG5ld2RhdGEgPSBkYXRhLmZyYW1lKGJhbGFuY2UyID0geCksDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICB0eXBlID0gInJlc3BvbnNlIil9KSArDQogIHRoZW1lX2J3KCkgKw0KICBsYWJzKHRpdGxlID0gIlJlZ3Jlc2nDs24gbG9nw61zdGljYSBEb24gbWF0aWFzIDMiLA0KICAgICAgIHkgPSAiUHJvYmFiaWxpZGFkIGRlZmF1bHQiKSArDQogIHRoZW1lKGxlZ2VuZC5wb3NpdGlvbiA9ICJub25lIikNCmBgYA0KDQo=