Use Sekhar’s method to create award and category matrices

## Warning: package 'dplyr' was built under R version 3.1.3
## 
## Attaching package: 'dplyr'
## 
## The following object is masked from 'package:stats':
## 
##     filter
## 
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
## Warning: package 'tidyr' was built under R version 3.1.3
##   movie_id year category_id won
## 1        1 2010           1   0
## 2        2 2010           1   0
## 3        2 2010           4   0
## 4        2 2010           6   0
## 5        2 2010           7   0
## 6        2 2010           8   0
## Source: local data frame [6 x 25]
## 
##   movie_id year  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19
## 1        1 2010  0 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## 2        2 2010  0 NA NA  0 NA  0  0  0  0 NA NA NA NA NA NA  0 NA NA  0
## 3        3 2010  0 NA NA NA NA NA  0 NA  0 NA NA  1 NA  1 NA  0 NA NA  0
## 4        4 2010  1  0 NA  0 NA  0  0  0  1 NA NA  0 NA  0 NA  1 NA NA  0
## 5        5 2010  0 NA NA NA NA NA NA NA NA NA NA  0 NA  0  0  0 NA NA NA
## 6        6 2010 NA  1 NA  1 NA NA NA NA  0 NA NA  0 NA NA NA  0 NA NA NA
## Variables not shown: 20 (int), 21 (int), 22 (int), 23 (int)

Correlation Matrix

Modify awards matrix to set NA = 0

awards_mod <- awards_re_modified #create new var to preserve original
awards_mod[is.na(awards_mod)] <- 0 #set NA = 0

Correlation matrix, display circles

library(corrplot)
## Warning: package 'corrplot' was built under R version 3.1.3
W <- cor(awards_mod[3:25]) #correlate c1:c23
corrplot(W, method = "circle")

Correlation matrix, display numbers

corrplot(W, method = "number")

Correlation matrix, display squares

corrplot(W, method = "square")

***Correlation matrix, using ggplot2

library(ggplot2)
library(reshape2)
## Warning: package 'reshape2' was built under R version 3.1.3
qplot(x=Var1, y=Var2, data=melt(cor(awards_mod[3:25])), fill=value, geom="tile")

***Correlatio matrix, numerical results

x <- awards_mod[3:25]
y <- awards_mod[3:25]
cor(x, y)
##               c1           c2            c3           c4           c5
## c1   1.000000000  0.031442183  0.0637557625  0.069755123 -0.007796584
## c2   0.031442183  1.000000000  0.0447025037  0.090204750 -0.007314613
## c3   0.063755763  0.044702504  1.0000000000  0.108928458 -0.007749632
## c4   0.069755123  0.090204750  0.1089284579  1.000000000 -0.007314613
## c5  -0.007796584 -0.007314613 -0.0077496318 -0.007314613  1.000000000
## c6   0.072506810  0.080054937  0.0839561720  0.125503007 -0.008813338
## c7   0.058936153  0.087843420  0.0595665577  0.132112232 -0.009061580
## c8   0.078686034  0.033580145  0.0420486161  0.073047923 -0.007559144
## c9   0.267328311  0.197464921  0.0879173749  0.120839042 -0.007796584
## c10 -0.018964075 -0.017791749 -0.0188498701 -0.017791749 -0.007062251
## c11 -0.018825820 -0.017662041 -0.0187124480 -0.017662041 -0.007010764
## c12  0.131378762  0.101967154  0.0182542530  0.101967154 -0.007413321
## c13  0.007197662  0.009224239  0.0272607454 -0.011783712 -0.004677423
## c14  0.074022300  0.039563592  0.0347082404  0.028980108  0.016754610
## c15  0.030521724  0.021538257  0.0055738644 -0.018676191  0.025842324
## c16  0.295265477  0.174406734  0.1138887590  0.135644487 -0.007702417
## c17 -0.020168626 -0.018921837 -0.0200471669 -0.018921837 -0.007510827
## c18 -0.023553485 -0.022097450 -0.0234116423 -0.022097450 -0.008771354
## c19  0.091877626  0.113451180 -0.0075252400  0.060501973 -0.007510827
## c20 -0.013917970  0.005933184 -0.0138341537 -0.013057585  0.041930610
## c21  0.016160545  0.002224411  0.0004362834 -0.014693358 -0.005832377
## c22  0.272537746  0.141419198  0.1728635223  0.132467112 -0.011380431
## c23 -0.004497010 -0.004219012 -0.0044699280 -0.004219012 -0.001674693
##               c6          c7           c8           c9          c10
## c1   0.072506810  0.05893615  0.078686034  0.267328311 -0.018964075
## c2   0.080054937  0.08784342  0.033580145  0.197464921 -0.017791749
## c3   0.083956172  0.05956656  0.042048616  0.087917375 -0.018849870
## c4   0.125503007  0.13211223  0.073047923  0.120839042 -0.017791749
## c5  -0.008813338 -0.00906158 -0.007559144 -0.007796584 -0.007062251
## c6   1.000000000  0.37068628  0.417374104  0.222109306 -0.021437183
## c7   0.370686282  1.00000000  0.223022531  0.256699968 -0.022040997
## c8   0.417374104  0.22302253  1.000000000  0.152924338 -0.018386537
## c9   0.222109306  0.25669997  0.152924338  1.000000000 -0.018964075
## c10 -0.021437183 -0.02204100 -0.018386537 -0.018964075  1.000000000
## c11 -0.021280899 -0.02188031 -0.018252492 -0.018825820 -0.017052681
## c12  0.257903256  0.28276926  0.162519375  0.408735615 -0.018031842
## c13  0.073692036  0.03676774  0.069235822  0.046713306 -0.011377161
## c14  0.236824382  0.19461560  0.200844175  0.213373931 -0.023111450
## c15  0.022362133  0.04241460  0.032648003  0.043128854 -0.004165055
## c16  0.268522271  0.23922825  0.217791704  0.720580863 -0.018735026
## c17 -0.022798820 -0.02344099 -0.019554404 -0.020168626 -0.018269012
## c18 -0.026625099 -0.02737504 -0.022836180 -0.023553485 -0.021335064
## c19  0.209798842  0.18154401  0.147168546  0.253722211 -0.018269012
## c20  0.016047368  0.07669114  0.023303969  0.057524736 -0.012607084
## c21  0.095541216  0.05073911  0.066768589  0.032071581 -0.014186421
## c22  0.152717654  0.13958953  0.126487780  0.407247664 -0.027681270
## c23 -0.005083466 -0.00522665 -0.004360056 -0.004497010 -0.004073452
##              c11          c12          c13         c14          c15
## c1  -0.018825820  0.131378762  0.007197662  0.07402230  0.030521724
## c2  -0.017662041  0.101967154  0.009224239  0.03956359  0.021538257
## c3  -0.018712448  0.018254253  0.027260745  0.03470824  0.005573864
## c4  -0.017662041  0.101967154 -0.011783712  0.02898011 -0.018676191
## c5  -0.007010764 -0.007413321 -0.004677423  0.01675461  0.025842324
## c6  -0.021280899  0.257903256  0.073692036  0.23682438  0.022362133
## c7  -0.021880311  0.282769264  0.036767744  0.19461560  0.042414599
## c8  -0.018252492  0.162519375  0.069235822  0.20084417  0.032648003
## c9  -0.018825820  0.408735615  0.046713306  0.21337393  0.043128854
## c10 -0.017052681 -0.018031842 -0.011377161 -0.02311145 -0.004165055
## c11  1.000000000 -0.017900384 -0.011294218 -0.02294296 -0.017900384
## c12 -0.017900384  1.000000000  0.008795693  0.25782754  0.073701618
## c13 -0.011294218  0.008795693  1.000000000  0.03381370  0.029534115
## c14 -0.022942959  0.257827544  0.033813704  1.00000000  0.174245949
## c15 -0.017900384  0.073701618  0.029534115  0.17424595  1.000000000
## c16 -0.018598441  0.401247896  0.067549655  0.21648362  0.044108527
## c17 -0.018135825 -0.019177180 -0.012099810 -0.02457943 -0.019177180
## c18 -0.009288812 -0.022395647 -0.014130497 -0.02870455 -0.022395647
## c19 -0.018135825  0.372846880  0.049337977  0.23334904  0.020025226
## c20 -0.012515174  0.155490284  0.079791297  0.02744237  0.005513327
## c21 -0.014082997  0.118714091  0.095297214  0.06002750  0.068611942
## c22 -0.027479464  0.218385155  0.023215303  0.13718831  0.015128829
## c23 -0.004043755 -0.004275947 -0.002697901 -0.00548049 -0.004275947
##              c16          c17          c18          c19          c20
## c1   0.295265477 -0.020168626 -0.023553485  0.091877626 -0.013917970
## c2   0.174406734 -0.018921837 -0.022097450  0.113451180  0.005933184
## c3   0.113888759 -0.020047167 -0.023411642 -0.007525240 -0.013834154
## c4   0.135644487 -0.018921837 -0.022097450  0.060501973 -0.013057585
## c5  -0.007702417 -0.007510827 -0.008771354 -0.007510827  0.041930610
## c6   0.268522271 -0.022798820 -0.026625099  0.209798842  0.016047368
## c7   0.239228246 -0.023440987 -0.027375040  0.181544012  0.076691137
## c8   0.217791704 -0.019554404 -0.022836180  0.147168546  0.023303969
## c9   0.720580863 -0.020168626 -0.023553485  0.253722211  0.057524736
## c10 -0.018735026 -0.018269012 -0.021335064 -0.018269012 -0.012607084
## c11 -0.018598441 -0.018135825 -0.009288812 -0.018135825 -0.012515174
## c12  0.401247896 -0.019177180 -0.022395647  0.372846880  0.155490284
## c13  0.067549655 -0.012099810 -0.014130497  0.049337977  0.079791297
## c14  0.216483617 -0.024579432 -0.028704548  0.233349036  0.027442375
## c15  0.044108527 -0.019177180 -0.022395647  0.020025226  0.005513327
## c16  1.000000000 -0.019925028 -0.023269005  0.269773396  0.040460535
## c17 -0.019925028  1.000000000 -0.022690214 -0.019429415 -0.013407855
## c18 -0.023269005 -0.022690214  1.000000000 -0.022690214 -0.015658068
## c19  0.269773396 -0.019429415 -0.022690214  1.000000000  0.245771967
## c20  0.040460535 -0.013407855 -0.015658068  0.245771967  1.000000000
## c21  0.048918152 -0.015087507 -0.017619613  0.199308678  0.273509746
## c22  0.429787279 -0.029439516 -0.034380290  0.110189225 -0.007795813
## c23 -0.004442695 -0.004332187 -0.005059250 -0.004332187 -0.002989557
##               c21           c22          c23
## c1   0.0161605455  0.2725377457 -0.004497010
## c2   0.0022244112  0.1414191978 -0.004219012
## c3   0.0004362834  0.1728635223 -0.004469928
## c4  -0.0146933581  0.1324671121 -0.004219012
## c5  -0.0058323766 -0.0113804313 -0.001674693
## c6   0.0955412164  0.1527176545 -0.005083466
## c7   0.0507391100  0.1395895318 -0.005226650
## c8   0.0667685886  0.1264877804 -0.004360056
## c9   0.0320715813  0.4072476641 -0.004497010
## c10 -0.0141864212 -0.0276812702 -0.004073452
## c11 -0.0140829972 -0.0274794641 -0.004043755
## c12  0.1187140907  0.2183851548 -0.004275947
## c13  0.0952972142  0.0232153029 -0.002697901
## c14  0.0600275014  0.1371883115 -0.005480490
## c15  0.0686119417  0.0151288288 -0.004275947
## c16  0.0489181524  0.4297872785 -0.004442695
## c17 -0.0150875074 -0.0294395156 -0.004332187
## c18 -0.0176196131 -0.0343802898 -0.005059250
## c19  0.1993086779  0.1101892247 -0.004332187
## c20  0.2735097458 -0.0077958126 -0.002989557
## c21  1.0000000000 -0.0005542952 -0.003364070
## c22 -0.0005542952  1.0000000000 -0.006564145
## c23 -0.0033640699 -0.0065641452  1.000000000