dta <- read.table("C:/Users/user/Desktop/multilevel/1130/mathPlacement.asc.txt", h=T)
names(dta) <- c("ID", paste("Item", 1:35, sep = ""))
str(dta)
## 'data.frame': 199 obs. of 36 variables:
## $ ID : int 2 3 4 5 6 7 8 9 10 11 ...
## $ Item1 : int 1 1 1 1 1 0 0 1 0 1 ...
## $ Item2 : int 1 1 1 1 1 1 0 0 0 1 ...
## $ Item3 : int 1 1 1 1 1 0 0 1 1 1 ...
## $ Item4 : int 1 1 0 1 1 0 0 0 1 1 ...
## $ Item5 : int 1 1 1 1 1 1 0 1 0 1 ...
## $ Item6 : int 1 1 1 1 1 1 0 1 1 1 ...
## $ Item7 : int 1 1 1 1 1 1 0 1 1 1 ...
## $ Item8 : int 1 1 1 1 1 1 0 0 1 0 ...
## $ Item9 : int 1 1 1 1 1 0 0 1 1 0 ...
## $ Item10: int 1 1 1 1 0 1 0 0 1 1 ...
## $ Item11: int 1 1 1 1 1 1 0 1 0 1 ...
## $ Item12: int 1 1 1 0 1 0 0 1 1 0 ...
## $ Item13: int 0 1 1 1 1 1 0 1 0 1 ...
## $ Item14: int 1 1 1 1 1 0 1 0 1 1 ...
## $ Item15: int 1 1 0 0 1 1 0 0 1 0 ...
## $ Item16: int 0 1 0 0 1 0 0 0 1 0 ...
## $ Item17: int 1 1 0 1 1 1 0 1 0 0 ...
## $ Item18: int 1 1 1 1 1 1 0 1 0 1 ...
## $ Item19: int 1 1 0 0 1 1 0 0 0 0 ...
## $ Item20: int 1 1 1 1 1 1 0 0 1 1 ...
## $ Item21: int 1 0 0 0 0 0 0 0 0 0 ...
## $ Item22: int 0 1 1 0 0 0 0 1 1 1 ...
## $ Item23: int 1 1 1 1 1 1 0 0 0 1 ...
## $ Item24: int 1 1 0 1 0 1 0 0 0 1 ...
## $ Item25: int 1 1 1 0 1 1 1 0 0 1 ...
## $ Item26: int 1 1 1 0 1 0 1 0 1 1 ...
## $ Item27: int 1 1 0 0 1 1 0 1 1 1 ...
## $ Item28: int 1 1 0 0 1 1 0 0 0 1 ...
## $ Item29: int 0 1 1 1 1 0 0 0 0 0 ...
## $ Item30: int 1 1 1 0 1 1 0 1 1 1 ...
## $ Item31: int 1 1 1 1 1 0 0 0 0 1 ...
## $ Item32: int 0 1 1 0 1 1 0 0 0 1 ...
## $ Item33: int 0 1 1 0 0 1 0 0 0 0 ...
## $ Item34: int 1 0 0 1 0 1 0 0 1 0 ...
## $ Item35: int 1 1 1 1 1 1 0 0 0 1 ...
## ID Item1 Item2 Item3 Item4 Item5 Item6 Item7 Item8 Item9 Item10 Item11 Item12
## 1 2 1 1 1 1 1 1 1 1 1 1 1 1
## 2 3 1 1 1 1 1 1 1 1 1 1 1 1
## 3 4 1 1 1 0 1 1 1 1 1 1 1 1
## 4 5 1 1 1 1 1 1 1 1 1 1 1 0
## 5 6 1 1 1 1 1 1 1 1 1 0 1 1
## 6 7 0 1 0 0 1 1 1 1 0 1 1 0
## Item13 Item14 Item15 Item16 Item17 Item18 Item19 Item20 Item21 Item22 Item23
## 1 0 1 1 0 1 1 1 1 1 0 1
## 2 1 1 1 1 1 1 1 1 0 1 1
## 3 1 1 0 0 0 1 0 1 0 1 1
## 4 1 1 0 0 1 1 0 1 0 0 1
## 5 1 1 1 1 1 1 1 1 0 0 1
## 6 1 0 1 0 1 1 1 1 0 0 1
## Item24 Item25 Item26 Item27 Item28 Item29 Item30 Item31 Item32 Item33 Item34
## 1 1 1 1 1 1 0 1 1 0 0 1
## 2 1 1 1 1 1 1 1 1 1 1 0
## 3 0 1 1 0 0 1 1 1 1 1 0
## 4 1 0 0 0 0 1 0 1 0 0 1
## 5 0 1 1 1 1 1 1 1 1 0 0
## 6 1 1 0 1 1 0 1 0 1 1 1
## Item35
## 1 1
## 2 1
## 3 1
## 4 1
## 5 1
## 6 1
## Loading required package: MASS
## Loading required package: msm
## Loading required package: polycor
0 | 1 | logit | |
---|---|---|---|
Item1 | 0.4773869 | 0.5226131 | 0.0905140 |
Item2 | 0.4422111 | 0.5577889 | 0.2321934 |
Item3 | 0.2261307 | 0.7738693 | 1.2302901 |
Item4 | 0.4170854 | 0.5829146 | 0.3347496 |
Item5 | 0.1859296 | 0.8140704 | 1.4766784 |
Item6 | 0.2713568 | 0.7286432 | 0.9877497 |
Item7 | 0.1457286 | 0.8542714 | 1.7685026 |
Item8 | 0.3869347 | 0.6130653 | 0.4602156 |
Item9 | 0.4874372 | 0.5125628 | 0.0502618 |
Item10 | 0.2914573 | 0.7085427 | 0.8883169 |
Item11 | 0.1859296 | 0.8140704 | 1.4766784 |
Item12 | 0.5376884 | 0.4623116 | -0.1510403 |
Item13 | 0.4924623 | 0.5075377 | 0.0301530 |
Item14 | 0.4572864 | 0.5427136 | 0.1712717 |
Item15 | 0.7085427 | 0.2914573 | -0.8883169 |
Item16 | 0.6482412 | 0.3517588 | -0.6113172 |
Item17 | 0.6582915 | 0.3417085 | -0.6556896 |
Item18 | 0.5879397 | 0.4120603 | -0.3554547 |
Item19 | 0.4773869 | 0.5226131 | 0.0905140 |
Item20 | 0.3467337 | 0.6532663 | 0.6334279 |
Item21 | 0.7989950 | 0.2010050 | -1.3800247 |
Item22 | 0.6180905 | 0.3819095 | -0.4814510 |
Item23 | 0.5979899 | 0.4020101 | -0.3970969 |
Item24 | 0.6432161 | 0.3567839 | -0.5893504 |
Item25 | 0.4020101 | 0.5979899 | 0.3970969 |
Item26 | 0.6633166 | 0.3366834 | -0.6781093 |
Item27 | 0.6130653 | 0.3869347 | -0.4602156 |
Item28 | 0.6281407 | 0.3718593 | -0.5242486 |
Item29 | 0.7587940 | 0.2412060 | -1.1460788 |
Item30 | 0.4120603 | 0.5879397 | 0.3554547 |
Item31 | 0.6884422 | 0.3115578 | -0.7928465 |
Item32 | 0.6733668 | 0.3266332 | -0.7234525 |
Item33 | 0.6733668 | 0.3266332 | -0.7234525 |
Item34 | 0.8090452 | 0.1909548 | -1.4438182 |
Item35 | 0.6231156 | 0.3768844 | -0.5027935 |
##
## Attaching package: 'dplyr'
## The following object is masked from 'package:MASS':
##
## select
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
dtaL <- gather(data=dta, key=Item, value=Response, Item1:Item35, factor_key=TRUE)
kable(head(arrange(dtaL, ID), 10))
ID | Item | Response |
---|---|---|
2 | Item1 | 1 |
2 | Item2 | 1 |
2 | Item3 | 1 |
2 | Item4 | 1 |
2 | Item5 | 1 |
2 | Item6 | 1 |
2 | Item7 | 1 |
2 | Item8 | 1 |
2 | Item9 | 1 |
2 | Item10 | 1 |
## Item1 Item2 Item3 Item4 Item5 Item6
## -0.10407477 -0.26488466 -1.38968560 -0.38189823 -1.66212902 -1.11915346
## Item7 Item8 Item9 Item10 Item11 Item12
## -1.98189471 -0.52451655 -0.05803978 -1.00871959 -1.66126440 0.17107171
## Item13 Item14 Item15 Item16 Item17 Item18
## -0.03504463 -0.19579527 1.00792757 0.69473347 0.74503972 0.40428625
## Item19 Item20 Item21 Item22 Item23 Item24
## -0.10368156 -0.72044376 1.55820985 0.54790724 0.45172470 0.67020506
## Item25 Item26 Item27 Item28 Item29 Item30
## -0.45275060 0.77060216 0.52367622 0.59636615 1.29655707 -0.40544436
## Item31 Item32 Item33 Item34 Item35
## 0.90053616 0.82209517 0.82208312 1.62900136 0.57199802
dtaLp <- prop.table(with(dtaL, ftable(Item,Response)), 1)
# set the data frame
dtaLp <- as.data.frame(dtaLp)
dtaLp2 <- subset(dtaLp, Response=="1")
#
library(ggplot2)
ggplot(dtaLp2, aes(Item, Freq, color=Response)) +
geom_point(size = rel(.8), pch = 20)+
geom_path(aes(group = Response)) +
labs(x = "Item", y = "Proprtion of correct")