Homework Week 14

Bonnie Cooper


Homework Week 14

This week, we’ll work out some Taylor Series expansions of popular functions. For each function, only consider its valid ranges as indicated in the notes when you are computing the Taylor Series expansion.

  • \(f(x) = \frac{1}{(1-x)}\)
  • \(f(x) = e^x\)
  • \(f(x) = ln( 1+x )\)

The Taylor Series expansion is given by: \[f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!}(x-c)^n\]

Working out the first several terms: \[f(x) = f(c) + \frac{f'(c)}{1!}(x-c) + \frac{f''(c)}{2!}(x-c)^2 + \frac{f'''(c)}{3!}(x-c)^3 + \frac{f''''(c)}{4!}(x-c)^4 + \ldots\]

Applying the formula to \(\frac{1}{(1-x)}\):

\[\frac{1}{(1-x)} = 1 + \frac{\frac{d}{dx}(\frac{1}{(1-x)})(0)}{1!}x + \frac{\frac{d^2}{dx^2}(\frac{1}{(1-x)})(0)}{2!}x^2 + \frac{\frac{d+3}{dx^3}(\frac{1}{(1-x)})(0)}{3!}x^3 + \frac{\frac{d^4}{dx^4}(\frac{1}{(1-x)})(0)}{4!}x^4 + \ldots\] \[= 1 + \frac{\frac{1}{(1-0)^2}}{1!}x + \frac{\frac{2}{(1-0)^3}}{2!}x^2 + \frac{\frac{6}{(1-0)^4}}{3!}x^3 + \frac{\frac{24}{(1-0)^5}}{4!}x^4 + \ldots\]

\[= 1 + \frac{1}{1!}x + \frac{2}{2!}x^2 + \frac{6}{3!}x^3 + \frac{24}{4!}x^4 + \ldots\]

\[= 1 + \frac{1!}{1!}x + \frac{2!}{2!}x^2 + \frac{3!}{3!}x^3 + \frac{4!}{4!}x^4 + \ldots\]

\[= 1 + x + x^2 + x^3 + x^4 + \ldots\] Seeing the pattern in the expansion terms, we can write: \[\frac{1}{(1-x)} = \sum_{n=0}^{\infty}x^n\]

Applying the formula to \(f(x) = e^x\):

\[e^x= 1 + \frac{\frac{d}{dx}(e^x)(0)}{1!}x + \frac{\frac{d^2}{dx^2}(e^x)(0)}{2!}x^2 + \frac{\frac{d+3}{dx^3}(e^x)(0)}{3!}x^3 + \frac{\frac{d^4}{dx^4}(e^x)(0)}{4!}x^4 + \ldots\] \[= 1 + \frac{1}{1!}x +\frac{1}{2!}x^2 + \frac{1}{3!}x^3 + \frac{1}{4!}x^4 + \ldots\] Seeing the pattern in the expansion terms, we can write: \[e^x = \sum_{n=0}^{\infty}\frac{x^n}{n!}\]

Applying the formula to \(f(x) = ln( 1+x )\):

\[ln( 1+x )= 0 + \frac{\frac{d}{dx}(ln( 1+x ))(0)}{1!}x + \frac{\frac{d^2}{dx^2}(ln( 1+x ))(0)}{2!}x^2 + \frac{\frac{d+3}{dx^3}(ln( 1+x ))(0)}{3!}x^3 + \frac{\frac{d^4}{dx^4}(ln( 1+x ))(0)}{4!}x^4 + \ldots\]

\[= 0 + \frac{\frac{1}{(1+0)}}{1!}x + \frac{-\frac{1}{(1+0)^2}}{2!}x^2 + \frac{\frac{2}{(1+0)^3}}{3!}x^3 + \frac{\frac{6}{(1+0)^4}}{4!}x^4 + \ldots\]

\[= 0 + \frac{1}{1!}x + \frac{-1}{2!}x^2 + \frac{2}{3!}x^3 + \frac{6}{4!}x^4 + \ldots\]

\[= x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \frac{1}{4}x^4 + \ldots\] Seeing the pattern in the expansion terms, we can write: \[ln(1+x) = \sum_{n=0}^{\infty}\frac{x^n}{n}\cdot 1^{(-1)^n}\]