Our regressions regress each of the outcome variables on covariates, gr4, targetcohort, and the interaction of gr4 by targetcohort covariates are hisp black tworaces otherrace boy ell frlp sped tag teacher nesting variable is teacher teacherXyear nesting variable (class) is teachyear student variable is student (or stmath_user_id for a string) outcome variables are minutes levelcount progress levelave springpostave expect enjoy util import cost
After main effects, we’ve done three-way interactions between gr4Xtargetcohort and frlp and ell in separate models
Each student has 1-2 years of data
# library(googlesheets4)
library(tidyverse)
library(lme4)
# d <- googlesheets4::read_sheet("https://docs.google.com/spreadsheets/d/1AM5IcpHEPQg6L2pxjlwku-0jTiEa7PU0--fRngzBhzo/edit#gid=1404402625")
# write_csv(d, "teya-cc.csv")
d <- read_csv("teya-cc.csv")
Plots
hist(d$minutes)

hist(d$levelcount)

hist(d$progress)

hist(d$levelave)

hist(d$springpostave)

hist(d$expect)

hist(d$enjoy)

hist(d$util)

hist(d$import)

hist(d$cost)

Minutes
Null
m <- lmer(minutes ~ 1 + (1|teacher) + (1|student), data = d)
sjPlot::tab_model(m)
|
minutes
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
2633.11
|
2575.16 – 2691.06
|
<0.001
|
Random Effects
|
σ2
|
430892.53
|
τ00 student
|
117786.49
|
τ00 teacher
|
469222.26
|
ICC
|
0.58
|
N teacher
|
642
|
N student
|
5453
|
Observations
|
10906
|
Marginal R2 / Conditional R2
|
0.000 / 0.577
|
performance::icc(m, by_group = TRUE)
## # ICC by Group
##
## Group | ICC
## ---------------
## student | 0.116
## teacher | 0.461
Full
m1 <- lmer(minutes ~ 1 + gr4 + targetcohort + gr4:targetcohort +
hisp + black + tworaces + otherrace + boy + ell + frlp + sped + tag +
(1|teacher) + (1|student), data = d)
sjPlot::tab_model(m1)
|
minutes
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
3061.28
|
2981.81 – 3140.76
|
<0.001
|
gr4
|
-319.05
|
-410.45 – -227.66
|
<0.001
|
targetcohort
|
-161.85
|
-208.72 – -114.99
|
<0.001
|
hisp
|
-32.18
|
-77.38 – 13.02
|
0.163
|
black
|
31.09
|
-12.34 – 74.51
|
0.161
|
tworaces
|
-23.34
|
-84.82 – 38.14
|
0.457
|
otherrace
|
13.46
|
-61.92 – 88.84
|
0.726
|
boy
|
-118.54
|
-148.61 – -88.48
|
<0.001
|
ell
|
-27.11
|
-86.14 – 31.92
|
0.368
|
frlp
|
-42.69
|
-76.81 – -8.56
|
0.014
|
sped
|
-185.87
|
-234.59 – -137.16
|
<0.001
|
tag
|
-137.72
|
-207.83 – -67.62
|
<0.001
|
gr4 * targetcohort
|
-396.46
|
-460.53 – -332.39
|
<0.001
|
Random Effects
|
σ2
|
416323.12
|
τ00 student
|
97862.25
|
τ00 teacher
|
366466.75
|
ICC
|
0.53
|
N teacher
|
642
|
N student
|
5451
|
Observations
|
10902
|
Marginal R2 / Conditional R2
|
0.120 / 0.584
|
performance::icc(m1, by_group = TRUE)
## # ICC by Group
##
## Group | ICC
## ---------------
## student | 0.111
## teacher | 0.416
Level count
Null
m <- lmer(levelcount ~ 1 + (1|teacher) + (1|student), data = d)
sjPlot::tab_model(m)
|
levelcount
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
181.55
|
174.94 – 188.17
|
<0.001
|
Random Effects
|
σ2
|
10981.34
|
τ00 student
|
1546.50
|
τ00 teacher
|
5383.73
|
ICC
|
0.39
|
N teacher
|
636
|
N student
|
5422
|
Observations
|
9856
|
Marginal R2 / Conditional R2
|
0.000 / 0.387
|
performance::icc(m, by_group = TRUE)
## # ICC by Group
##
## Group | ICC
## ---------------
## student | 0.086
## teacher | 0.301
Full
m1 <- lmer(levelcount ~ 1 + gr4 + targetcohort + gr4:targetcohort +
hisp + black + tworaces + otherrace + boy + ell + frlp + sped + tag +
(1|teacher) + (1|student), data = d)
sjPlot::tab_model(m1)
|
levelcount
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
225.17
|
215.25 – 235.09
|
<0.001
|
gr4
|
-72.31
|
-83.35 – -61.27
|
<0.001
|
targetcohort
|
-37.47
|
-44.52 – -30.43
|
<0.001
|
hisp
|
4.30
|
-2.72 – 11.31
|
0.230
|
black
|
9.74
|
3.02 – 16.46
|
0.005
|
tworaces
|
-4.71
|
-14.22 – 4.81
|
0.332
|
otherrace
|
-8.30
|
-20.01 – 3.41
|
0.165
|
boy
|
-3.45
|
-8.12 – 1.22
|
0.148
|
ell
|
13.10
|
4.21 – 21.99
|
0.004
|
frlp
|
3.48
|
-1.77 – 8.74
|
0.194
|
sped
|
16.34
|
8.83 – 23.85
|
<0.001
|
tag
|
-40.88
|
-51.98 – -29.78
|
<0.001
|
gr4 * targetcohort
|
-12.78
|
-23.17 – -2.39
|
0.016
|
Random Effects
|
σ2
|
10845.04
|
τ00 student
|
1333.09
|
τ00 teacher
|
3157.26
|
ICC
|
0.29
|
N teacher
|
636
|
N student
|
5420
|
Observations
|
9854
|
Marginal R2 / Conditional R2
|
0.118 / 0.376
|
performance::icc(m1, by_group = TRUE)
## # ICC by Group
##
## Group | ICC
## ---------------
## student | 0.087
## teacher | 0.206
Progress
Null
m <- lmer(progress ~ 1 + (1|teacher) + (1|student), data = d)
sjPlot::tab_model(m)
|
progress
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
0.70
|
0.69 – 0.71
|
<0.001
|
Random Effects
|
σ2
|
0.03
|
τ00 student
|
0.04
|
τ00 teacher
|
0.02
|
ICC
|
0.66
|
N teacher
|
642
|
N student
|
5453
|
Observations
|
10906
|
Marginal R2 / Conditional R2
|
0.000 / 0.663
|
performance::icc(m, by_group = TRUE)
## # ICC by Group
##
## Group | ICC
## ---------------
## student | 0.422
## teacher | 0.241
Full
m1 <- lmer(progress ~ 1 + gr4 + targetcohort + gr4:targetcohort +
hisp + black + tworaces + otherrace + boy + ell + frlp + sped + tag +
(1|teacher) + (1|student), data = d)
sjPlot::tab_model(m1)
|
progress
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
0.77
|
0.75 – 0.79
|
<0.001
|
gr4
|
-0.03
|
-0.05 – -0.01
|
0.013
|
targetcohort
|
-0.02
|
-0.04 – -0.01
|
0.003
|
hisp
|
-0.03
|
-0.05 – -0.01
|
0.001
|
black
|
-0.04
|
-0.05 – -0.02
|
<0.001
|
tworaces
|
-0.02
|
-0.04 – 0.01
|
0.147
|
otherrace
|
0.03
|
0.00 – 0.06
|
0.036
|
boy
|
0.06
|
0.05 – 0.07
|
<0.001
|
ell
|
-0.01
|
-0.03 – 0.02
|
0.641
|
frlp
|
-0.03
|
-0.05 – -0.02
|
<0.001
|
sped
|
-0.15
|
-0.17 – -0.13
|
<0.001
|
tag
|
0.13
|
0.10 – 0.16
|
<0.001
|
gr4 * targetcohort
|
-0.08
|
-0.10 – -0.06
|
<0.001
|
Random Effects
|
σ2
|
0.03
|
τ00 student
|
0.03
|
τ00 teacher
|
0.02
|
ICC
|
0.64
|
N teacher
|
642
|
N student
|
5451
|
Observations
|
10902
|
Marginal R2 / Conditional R2
|
0.089 / 0.669
|
performance::icc(m1, by_group = TRUE)
## # ICC by Group
##
## Group | ICC
## ---------------
## student | 0.414
## teacher | 0.222