find \(f_x\), \(f_y\), \(f_{xx}\), \(f_{yy}\), \(f_{xy}\) and \(f_{yx}\)
for the equation: \(f(x,y) = y^3 + 3xy^2 + 3x^2y + x^3\)
\(f_x = 3y^2 + 6xy + 3x^2\)
\(f_y = 3y^2 + 6xy + 3x^2\)
\(f_{xx} = 6y + 6x\)
\(f_{yy} = 6y + 6x\)
\(f_{xy} = 6y + 6x\)
\(f_{yx} = 6y + 6x\)
funny how this one works out