1 Observations

The network analysis ware conducted using VosViewer, in this sense we can not share through this link;
Not all analysis conducted here ware used in the paper, but we we choose to make them available for the purpose of completeness;

2 Loading the packages

library(bibliometrix)
library(tidyverse)
library(readxl)
library(knitr)
library(kableExtra)
library(htmltools)
library(rsconnect)

3 Loading the final version of the databe

library(readxl)
Database <- read_excel("C:/Users/user/Desktop/Vida acadêmica/Disciplinas/Economia da Inovação/Bibliometria/Base de dados/Bibliometrix_DE_corrigido22.xlsx")
M <- Database
M <- convert2df(file = M, format = "excel")
## 
## Converting your wos collection into a bibliographic dataframe
## 
## Done!
## 
## 
## Generating affiliation field tag AU_UN from C1:  Done!

4 Descriptive statistics

results <- biblioAnalysis(M, sep = ";")
options(width=100)
S <- summary(object = results, k = 10, pause = F) # top 10
## 
## 
## MAIN INFORMATION ABOUT DATA
## 
##  Timespan                              2004 : 2019 
##  Sources (Journals, Books, etc)        264 
##  Documents                             475 
##  Average years from publication        3.54 
##  Average citations per documents       18.34 
##  Average citations per year per doc    3.168 
##  References                            25080 
##  
## DOCUMENT TYPES                     
##  article      475 
##  
## DOCUMENT CONTENTS
##  Keywords Plus (ID)                    1567 
##  Author's Keywords (DE)                1509 
##  
## AUTHORS
##  Authors                               1135 
##  Author Appearances                    1320 
##  Authors of single-authored documents  85 
##  Authors of multi-authored documents   1050 
##  
## AUTHORS COLLABORATION
##  Single-authored documents             90 
##  Documents per Author                  0.419 
##  Authors per Document                  2.39 
##  Co-Authors per Documents              2.78 
##  Collaboration Index                   2.73 
##  
## 
## Annual Scientific Production
## 
##  Year    Articles
##     2004        1
##     2006        2
##     2007        1
##     2008        4
##     2009        2
##     2010        8
##     2011       14
##     2012       11
##     2013       26
##     2014       23
##     2015       32
##     2016       63
##     2017       69
##     2018      104
##     2019      115
## 
## Annual Percentage Growth Rate 37.20813 
## 
## 
## Most Productive Authors
## 
##    Authors        Articles Authors        Articles Fractionalized
## 1    CARAYANNIS E        9 CARAYANNIS E                      4.03
## 2    CHEN J              9 ADNER R                           3.50
## 3    ADNER R             5 CHEN J                            3.33
## 4    BIFULCO F           5 SAGUY I                           2.17
## 5    CAMPBELL D          5 CHIDAMBARAM R                     2.00
## 6    WU J                5 ETZKOWITZ H                       2.00
## 7    KOMNINOS N          4 GAMIDULLAEVA L                    2.00
## 8    LIU Z               4 KOMNINOS N                        2.00
## 9    RITALA P            4 LUO J                             2.00
## 10   SAGUY I             4 CAMPBELL D                        1.87
## 
## 
## Top manuscripts per citations
## 
##                              Paper                                       DOI  TC TCperYear
## 1  ADNER R, 2010, STRATEGIC MANAGE J        10.1002/smj.821                  783      71.2
## 2  SCHAFFERS H, 2011, LECT NOTES COMPUT SCI 10.1007/978-3-642-20898-0_31     563      56.3
## 3  ADNER R, 2006, HARV BUS REV              NA                               413      27.5
## 4  GAWER A, 2014, RES POLICY                10.1016/j.respol.2014.03.006     363      51.9
## 5  CARAYANNIS E, 2009, INT J TECHNOL MANAGE 10.1504/IJTM.2009.023374         322      26.8
## 6  ZYGIARIS S, 2013, J KNOWL ECON           10.1007/s13132-012-0089-4        211      26.4
## 7  ROHRBECK R, 2009, R D MANAGE             10.1111/j.1467-9310.2009.00568.x 188      15.7
## 8  ADNER R, 2017, J MANAG                   10.1177/0149206316678451         175      43.8
## 9  NAMBISAN S, 2013, ENTREP THEORY PRACT    10.1111/j.1540-6520.2012.00519.x 169      21.1
## 10 KOMNINOS N, 2013, J KNOWL ECON           10.1007/s13132-012-0083-x        154      19.2
## 
## 
## Corresponding Author's Countries
## 
##           Country Articles   Freq SCP MCP MCP_Ratio
## 1  USA                  56 0.2146  48   8    0.1429
## 2  CHINA                19 0.0728  13   6    0.3158
## 3  FINLAND              18 0.0690  16   2    0.1111
## 4  UNITED KINGDOM       15 0.0575  13   2    0.1333
## 5  GERMANY              14 0.0536  14   0    0.0000
## 6  SPAIN                14 0.0536  13   1    0.0714
## 7  CANADA               11 0.0421   9   2    0.1818
## 8  NETHERLANDS          11 0.0421   7   4    0.3636
## 9  BRAZIL               10 0.0383   9   1    0.1000
## 10 FRANCE               10 0.0383   7   3    0.3000
## 
## 
## SCP: Single Country Publications
## 
## MCP: Multiple Country Publications
## 
## 
## Total Citations per Country
## 
##      Country      Total Citations Average Article Citations
## 1  USA                       2255                    40.268
## 2  UNITED KINGDOM             744                    49.600
## 3  FRANCE                     493                    49.300
## 4  GREECE                     487                    97.400
## 5  GERMANY                    278                    19.857
## 6  FINLAND                    245                    13.611
## 7  CHINA                      228                    12.000
## 8  NETHERLANDS                210                    19.091
## 9  SPAIN                      209                    14.929
## 10 CANADA                     205                    18.636
## 
## 
## Most Relevant Sources
## 
##                                                   Sources        Articles
## 1  TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE                         30
## 2  TECHNOLOGY INNOVATION MANAGEMENT REVIEW                             18
## 3  SUSTAINABILITY (SWITZERLAND)                                        16
## 4  JOURNAL OF THE KNOWLEDGE ECONOMY                                    14
## 5  INTERNATIONAL JOURNAL OF TECHNOLOGY MANAGEMENT                      11
## 6  INTERNATIONAL JOURNAL OF INNOVATION AND TECHNOLOGY MANAGEMENT        9
## 7  JOURNAL OF TECHNOLOGY TRANSFER                                       9
## 8  EUROPEAN JOURNAL OF INNOVATION MANAGEMENT                            7
## 9  JOURNAL OF OPEN INNOVATION: TECHNOLOGY MARKET AND COMPLEXITY         7
## 10 OMICS A JOURNAL OF INTEGRATIVE BIOLOGY                               7
## 
## 
## Most Relevant Keywords
## 
##    Author Keywords (DE)      Articles Keywords-Plus (ID)     Articles
## 1       INNOVATION ECOSYSTEM      168  INNOVATION                 101
## 2       INNOVATION                 90  ECOSYSTEMS                  86
## 3       ECOSYSTEM                  51  ECOLOGY                     32
## 4       ENTREPRENEURSHIP           33  INNOVATION ECOSYSTEMS       26
## 5       OPEN INNOVATION            31  HUMAN                       24
## 6       SMART CITY                 20  ARTICLE                     22
## 7       BUSINESS ECOSYSTEM         16  KNOWLEDGE                   21
## 8       COLLABORATION              12  TECHNOLOGY                  21
## 9       SUSTAINABILITY             12  VALUE CREATION              21
## 10      LIVING LAB                 11  STRATEGY                    19
plot(x = results, k = 10, pause = FALSE)

5 ThreeFieldsPlot

threeFieldsPlot(M, fields = c("AU", "DE", "ID"), n = c(20, 20, 20),
                width = 800, height = 400)

6 Scientific production

6.1 Annual Scientific Production

anos <- results$Years
anos <- as.data.frame(anos)
anos %>% count(anos)
##    anos   n
## 1  2004   1
## 2  2006   2
## 3  2007   1
## 4  2008   4
## 5  2009   2
## 6  2010   8
## 7  2011  14
## 8  2012  11
## 9  2013  26
## 10 2014  23
## 11 2015  32
## 12 2016  63
## 13 2017  69
## 14 2018 104
## 15 2019 115
anos2 <-as.data.frame(list(2004:2019))
colnames(anos2) <- "Ano"
anos2$Freq <- list(1,0,2,1,4,2,8,14,11,26,23,32,63,69,105,115)
anos2$Freq <- as.numeric(anos2$Freq)

g1 <- anos2 %>% ggplot(aes(y = Freq, x = Ano)) +
  geom_line(col = "Lightblue") +
  geom_area(fill ="Lightblue") +
  scale_x_continuous(breaks = c(2004,2006,2008,2010,2012,2014,2016,2018)) +
  theme_bw(base_size = 10) +
  theme(text=element_text(family= "Times New Roman", face="bold"), plot.title = element_text(hjust = 0.5)) +
  labs(title = "2a") + xlab("Years") + ylab("Number of articles")

g1

6.2 Average Article Citations per Year

AACY <- cbind(results$TCperYear, results$Years)
colnames(AACY) <- c("TCperYear", "Years")
AACY <- as.data.frame(AACY)
AACY <- tapply(AACY$TCperYear, AACY$Years, mean)
AACY <- as.data.frame(AACY)
colnames(AACY) <- "AvgCitations"
AACY$Years <- list(2004,2006,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016,2017,2018,2019)
AACY$Years <- as.numeric(AACY$Years)

g2 <- AACY %>% ggplot(aes(x = Years, y = AvgCitations)) +
  geom_line(col = "Lightblue") +
  geom_area(fill ="Lightblue") +
  scale_x_continuous(breaks = c(2004,2006,2008,2010,2012,2014,2016,2018)) +
  theme_bw(base_size = 10) +
  theme(text=element_text(family= "Times New Roman", face="bold"), plot.title = element_text(hjust = 0.5)) +
  labs(title = "2b") + xlab("Years") + ylab("Citation")

g2

library(gridExtra)
grid.arrange(g1,g2, ncol = 2)

6.3 Average Total Citation

ATC <- cbind(results$TotalCitation, results$Years)
colnames(ATC) <- c("TCperYear", "Years")
ATC <- as.data.frame(ATC)
ATC <- tapply(ATC$TCperYear, ATC$Years, mean)
ATC <- as.data.frame(ATC)
ATC$Years <- list(2004,2006,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016,2017,2018,2019)
ATC$Years <- as.numeric(ATC$Years)

ATC %>% ggplot(aes(x = Years, y = ATC)) +
  geom_line(col = "Lightblue") +
  geom_area(fill ="Lightblue") +
  scale_x_continuous(breaks = c(2004,2006,2008,2010,2012,2014,2016,2018)) +
  theme_bw(base_size = 10) +
  theme(text=element_text(family= "Times New Roman", face="bold"), plot.title = element_text(hjust = 0.5)) +
  labs(title = "Average Total Citation") + xlab("Years") + ylab("Citation")

7 Scientific production of journals

7.2 Most Cited Sources

MCS <- read.csv("C:/Users/user/Desktop/Vida acadêmica/Disciplinas/Economia da Inovação/Bibliometria/Tabelas 3/4 Most_Cited_Sources.csv")
str(MCS)
## 'data.frame':    50 obs. of  2 variables:
##  $ Sources : chr  "STRATEGIC MANAGE J" "RES POLICY" "ORGAN SCI" "ACAD MANAGE REV" ...
##  $ Articles: int  300 189 128 120 105 105 91 81 81 76 ...
MCS <- transform(MCS, Sources = reorder(Sources, Articles))
MCS <- MCS %>% head(18)
MCS <- MCS[-c(5,7,9,10,11,13,15,16),]

g4 <- MCS %>% ggplot(aes(y = Sources, weight = Articles, fill = Articles)) +
  geom_bar(show.legend = F) + 
  scale_fill_continuous(low = "Lightblue", high = "Darkblue") +
  scale_x_continuous(breaks = c(0,50,100,150,200,250,300,350)) +
  theme_bw(base_size = 10) +
  theme(text=element_text(family= "Times New Roman", face="bold"), plot.title = element_text(hjust = 0.5)) +
  labs(title = "5b") + xlab("Number of citations") + ylab("Source")
g4

7.3 Bradford Law

BR <- bradford(M)
BR$graph

7.4 Source Impact

SI <- read.csv("C:/Users/user/Desktop/Vida acadêmica/Disciplinas/Economia da Inovação/Bibliometria/Tabelas 3/6 Source_Impact.csv")

str(SI)
## 'data.frame':    25 obs. of  7 variables:
##  $ Source  : chr  "TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE" "TECHNOLOGY INNOVATION MANAGEMENT REVIEW" "SUSTAINABILITY (SWITZERLAND)" "JOURNAL OF THE KNOWLEDGE ECONOMY" ...
##  $ h_index : int  12 7 5 6 6 4 7 4 4 4 ...
##  $ g_index : int  19 11 9 14 11 5 9 7 7 7 ...
##  $ m_index : num  1.714 1.167 1.25 0.545 0.5 ...
##  $ TC      : int  423 147 89 546 467 35 208 73 56 75 ...
##  $ NP      : int  30 18 16 14 11 9 9 7 7 7 ...
##  $ PY_start: int  2014 2015 2017 2010 2009 2015 2010 2015 2016 2017 ...
SI <- transform(SI, Source = reorder(Source , h_index))
SI <- SI %>% head(10)

SI <- transform(SI, Source = reorder(Source , h_index))

g6 <- SI %>% ggplot(aes(y = Source, weight = h_index, fill = h_index)) +
  geom_bar(show.legend = F) + 
  scale_fill_continuous(low = "Lightblue", high = "Darkblue") +
  scale_x_continuous(breaks = c(0,1,2,3,4,5,6,7,8,9,10,11,12,13)) +
  theme_bw(base_size = 10) +
  theme(text=element_text(family= "Times New Roman", face="bold"), plot.title = element_text(hjust = 0.5)) +
  labs(title = "5c") + xlab("H Index") + ylab("Source")

g6

7.5 Source Dynamics

SD <- read.csv("C:/Users/user/Desktop/Vida acadêmica/Disciplinas/Economia da Inovação/Bibliometria/Tabelas 3/7 Source_Dynamics.csv")
str(SD)
## 'data.frame':    16 obs. of  6 variables:
##  $ Year                                          : int  2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 ...
##  $ SUSTAINABILITY..SWITZERLAND.                  : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ TECHNOLOGICAL.FORECASTING.AND.SOCIAL.CHANGE   : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ INTERNATIONAL.JOURNAL.OF.TECHNOLOGY.MANAGEMENT: int  0 0 0 0 0 1 0 0 0 1 ...
##  $ JOURNAL.OF.THE.KNOWLEDGE.ECONOMY              : int  0 0 0 0 0 0 1 1 0 3 ...
##  $ TECHNOLOGY.INNOVATION.MANAGEMENT.REVIEW       : int  0 0 0 0 0 0 0 0 0 0 ...
library(reshape2)
library(directlabels)
library(ggrepel)
library(grid)

SD <- melt(SD, id.vars = c("Year"))
str(SD)
## 'data.frame':    80 obs. of  3 variables:
##  $ Year    : int  2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 ...
##  $ variable: Factor w/ 5 levels "SUSTAINABILITY..SWITZERLAND.",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ value   : int  0 0 0 0 0 0 0 0 0 0 ...
SD$value <- as.numeric(SD$value)
SD$Year <- as.numeric(SD$Year)

library(stringi)
SD$variable2 <- stri_replace_all(SD[,2], " ", fixed=".")

g7 <- SD %>% ggplot(aes(y = value, x = Year, color = variable2)) +
  geom_line() +
  geom_point() +
  scale_x_continuous(breaks = c(2004,2008,2012,2016,2019)) +
  labs(title = "5d") + xlab("Year") + ylab("Anual Occurrences") +
  guides(color = guide_legend(title = "Journal")) +
  theme_bw(base_size = 10) +
  theme(text=element_text(family= "Times New Roman", face="bold"), plot.title = element_text(hjust = 0.5), 
        legend.title = element_text(color = "black", size = 10),
        legend.text = element_text(color = "black", size = 6))
g7

gridExtra::grid.arrange(g3, g4, g6, g7, ncol = 2, nrow = 2)

8 Authors’ analysis

8.1 Authors with more publications

AMP <- read.csv("C:/Users/user/Desktop/Vida acadêmica/Disciplinas/Economia da Inovação/Bibliometria/Tabelas 3/8 Most_Productive_Authors.csv")
str(AMP)
## 'data.frame':    20 obs. of  4 variables:
##  $ Authors                : chr  "CARAYANNIS E" "CHEN J" "ADNER R" "BIFULCO F" ...
##  $ Articles               : int  9 9 5 5 5 5 4 4 4 4 ...
##  $ Authors.Frac           : chr  "CARAYANNIS E" "ADNER R" "CHEN J" "SAGUY I" ...
##  $ Articles.Fractionalized: num  4.03 3.5 3.33 2.17 2 ...
AMP$Articles <- as.numeric(AMP$Articles)
AMP <- transform(AMP, Authors = reorder(Authors , Articles))
AMP <- AMP %>% head(10)

g8 <- AMP %>% ggplot(aes(y = Authors, weight = Articles, fill = Articles)) +
  geom_bar(show.legend = F) + 
  scale_fill_continuous(low = "Lightblue", high = "Darkblue") +
  scale_x_continuous(breaks = c(0,1,2,3,4,5,6,7,8,9,10)) +
  theme_bw(base_size = 10) +
  theme(text=element_text(family= "Times New Roman", face="bold"), plot.title = element_text(hjust = 0.5)) +
  labs(title = "3b") + xlab("Publications") + ylab("Author")

g8

8.2 Most cited authors locally

# Most_Local_Cited_Authors #

MLCA <- read.csv("C:/Users/user/Desktop/Vida acadêmica/Disciplinas/Economia da Inovação/Bibliometria/Tabelas 3/9 Most_Local_Cited_Authors.csv", sep = ";")
str(MLCA)
## 'data.frame':    24 obs. of  2 variables:
##  $ Authors  : chr  "ADNER" "CHESBROUGH" "CARAYANNIS" "ETZKOWITZ" ...
##  $ Citations: int  315 192 183 145 131 99 98 90 89 84 ...
MLCA$Citations <- as.numeric(MLCA$Citations)
MLCA <- transform(MLCA, Authors = reorder(Authors , Citations))

MLCA <- MLCA %>% head(10)

g9 <- MLCA %>% ggplot(aes(y = Authors, weight = Citations, fill = Citations)) +
  geom_bar(show.legend = F) + 
  scale_fill_continuous(low = "Lightblue", high = "Darkblue") +
  scale_x_continuous(breaks = c(0,50,100,150,200,250, 300)) +
  theme_bw(base_size = 10) +
  theme(text=element_text(family= "Times New Roman", face="bold"), plot.title = element_text(hjust = 0.5)) +
  labs(title = "3a") + xlab("Citations") + ylab("Author")

g9

8.3 Productivity over time

topAU <- authorProdOverTime(M, k = 10, graph = TRUE)

# Tabela de produtividade
head(topAU$dfAU)
##      Author year freq  TC     TCpY
## 1   ADNER R 2006    1 413 27.53333
## 2   ADNER R 2010    1 783 71.18182
## 3   ADNER R 2016    1 103 20.60000
## 4   ADNER R 2017    1 175 43.75000
## 5   ADNER R 2019    1   0  0.00000
## 6 BIFULCO F 2016    2   2  0.40000
# Plotando k = 10#
M$TC = as.numeric(M$TC)
M$PY = as.numeric(M$PY)
AU = names(tableTag(M, "AU"))
k = min(10, length(AU))
AU = AU[1:k]
df = data.frame(Author = "NA", year = NA, TI = "NA", SO = "NA", 
                DOI = "NA", TC = NA, TCpY = NA, stringsAsFactors = FALSE)
Y = as.numeric(substr(Sys.time(), 1, 4))
if (!("DI" %in% names(M))) {
  M$DI = "NA"
}
for (i in 1:length(AU)) {
  ind = which(regexpr(AU[i], M$AU) > -1)
  TCpY = M$TC[ind]/(Y - M$PY[ind] + 1)
  dfAU = data.frame(Author = rep(AU[i], length(ind)), 
                    year = M$PY[ind], TI = M$TI[ind], SO = M$SO[ind], 
                    DOI = M$DI[ind], TC = M$TC[ind], TCpY = TCpY, stringsAsFactors = TRUE)
  df = rbind(df, dfAU)
}
df = df[-1, ]
df2 <- dplyr::group_by(df, .data$Author, .data$year) %>% 
  dplyr::summarise(freq = length(.data$year), TC = sum(.data$TC), 
                   TCpY = sum(.data$TCpY))
df2 = as.data.frame(df2)
df2$Author = factor(df2$Author, levels = AU[1:k])

g10 <- ggplot(df2, aes(x = .data$Author, y = .data$year, text = paste("Author: ", 
                                                                    df2$Author, "\nYear: ", df2$year, "\nN. of Articles: ", 
                                                                    df2$freq, "\nTotal Citations per Year: ", round(TCpY, 
                                                                                                                    2)))) + geom_point(aes(alpha = df2$TCpY, size = df2$freq), 
                                                                                                                                       color = "dodgerblue4") + scale_size(range = c(2, 6)) + 
  scale_alpha(range = c(0.3, 1)) + scale_y_continuous(breaks = seq(min(df2$year), 
                                                                   max(df2$year), by = 2)) + guides(size = guide_legend(order = 1, 
                                                                                                                        "N.Articles"), alpha = guide_legend(order = 2, "TC per Year")) +
  theme_bw(base_size = 10) +
  theme(legend.position = "right", text = element_text(color = "#444444", family= "Times New Roman", face="bold"),
        plot.title = element_text(hjust = 0.5),
        panel.background = element_rect(fill = "white"), 
        panel.grid.minor = element_line(color = "gray"), 
        panel.grid.major = element_line(color = "gray"), 
        axis.title = element_text(size = 10, color = "black", face = "bold"),
        axis.title.y = element_text(vjust = 0.5, angle = 90, face = "bold"),
        axis.title.x = element_text(hjust = 0.5, face = "bold", colour = "black"), 
        axis.text.x = element_text(face = "bold"), 
        axis.text.y = element_text(face = "bold")) + 
  labs(title = "3d", x = "Author", y = "Year") + 
  geom_line(aes(x = df2$Author, y = df2$year, group = df2$Author), size = 1, color = "firebrick", alpha = 0.3) + 
  scale_x_discrete(limits = rev(levels(df2$Author))) + coord_flip()

plot(g10)

8.4 Lotka Law

L <- lotka(results)

# Distribuição de autoria
L$AuthorProd
##   N.Articles N.Authors        Freq
## 1          1      1002 0.882819383
## 2          2       107 0.094273128
## 3          3        14 0.012334802
## 4          4         6 0.005286344
## 5          5         4 0.003524229
## 6          9         2 0.001762115
# Coeficiente Beta
L$Beta
## [1] 2.999011
# Constante
L$C
## [1] 0.5899561
# Ajuste de bondade
L$R2
## [1] 0.9438491
# Valor de P para o teste K-S
L$p.value
## [1] 0.4413066
# Distribuição observada
Observed=L$AuthorProd[,3]

# Distribuição teórica para um Beta = 2 (3.008399) | Ajustar o Beta para o valor correto no artigo

Theoretical=10^(log10(L$C)-3.008399*log10(L$AuthorProd[,1]))

plot(L$AuthorProd[,1],Theoretical,type="l",col="red",ylim=c(0, 1), xlab="Articles",ylab="Freq. of Authors",main="Scientific Productivity")
lines(L$AuthorProd[,1],Observed,col="blue")
legend(x="topright",c("Theoretical (B=3.008)","Observed"),col=c("red","blue"),lty = c(1,1,1),cex=0.6,bty="n")

L$artigos <- L$AuthorProd[,1]
L <- as.data.frame(L)

L %>% ggplot(aes(x = artigos)) +
  geom_line(aes(y = Observed, colour = "Observed"), size = 1L) +
  geom_line(aes(y = Theoretical, colour = "Theoretical(beta = 3.008"), size = 1L) +
  theme_bw(base_size = 10) +
  theme(text=element_text(family= "Times New Roman", face="bold"), plot.title = element_text(hjust = 0.5)) +
  guides(colour = guide_legend(title="Legend")) +
  scale_y_continuous(labels = scales::percent_format()) +
  labs(title = "The frequency distribution of the scientific production") + xlab("Articles") + ylab("% of authors")

8.5 Author Impact

# Índice-H - Em elementos, colocar o nome do autor

indices <- Hindex(M, field = "author", elements="ADNER R", sep = ";", years = 10)

# Índice
indices$H
##    Author h_index g_index   m_index   TC NP PY_start
## 1 ADNER R       3       4 0.2727273 1061  4     2010
# Citações do autor
indices$CitationList
## [[1]]
##            Authors                      Journal Year TotalCitation
## 1 ADNER R;FEILER D         ORGANIZATION SCIENCE 2019             0
## 2 ADNER R;KAPOOR R STRATEGIC MANAGEMENT JOURNAL 2016           103
## 4          ADNER R        JOURNAL OF MANAGEMENT 2017           175
## 3 ADNER R;KAPOOR R STRATEGIC MANAGEMENT JOURNAL 2010           783
# Índice H para os top 10 autores

authors <- gsub(","," ",names(results$Authors)[1:10])

indices <- Hindex(M, field = "author", elements=authors, sep = ";", years = 50)

indicesH <- as.data.frame(indices$H)

indicesH <- transform(indicesH, Author = reorder(Author , h_index))

g12 <- indicesH %>% ggplot(aes(y = Author, weight = h_index, fill = h_index)) +
  geom_bar(show.legend = F) + 
  scale_fill_continuous(low = "Lightblue", high = "Darkblue") +
  scale_x_continuous(breaks = c(1,2,3,4,5,6)) +
  theme_bw(base_size = 10) +
  theme(text=element_text(family= "Times New Roman", face="bold"), plot.title = element_text(hjust = 0.5)) +
  labs(title = "3c") + xlab("H Index") + ylab("Author")

g12

gridExtra::grid.arrange(g9 ,g8, g12, g10, ncol = 2, nrow = 2)

9 Most Relevant Affiliations

# 13 Most_Relevant_Affiliations #

Affiliations <- as.data.frame(results$Affiliations[1:22])

Affiliations <- Affiliations[-c(10,19),]
Affiliations <- transform(Affiliations, AFF = reorder(AFF , Freq))

Affiliations <- Affiliations %>% head(12)

Affiliations %>% ggplot(aes(y = AFF, weight = Freq, fill = Freq)) +
  geom_bar(show.legend = F) + 
  scale_fill_continuous(low = "Lightblue", high = "Darkblue") +
  scale_x_continuous(breaks = c(0,2,4,6,8,10,12,14,16,18)) +
  theme_minimal() +
  labs(title = "Most Relevant Affiliations") + xlab("Number of articles") + ylab("Affiliations")

10 Países

10.1 Most Productive Countries

MPC <- cbind(results$Countries, results$CountryCollaboration)
MPC <- transform(MPC, Tab = reorder(Tab, Freq))
MPC <- filter(MPC, Freq >= 10)
MPC %>% ggplot(aes(y = Tab, weight = Freq, fill = Freq)) +
  geom_bar(show.legend = F) + 
  scale_fill_continuous(low = "Lightblue", high = "Darkblue") +
  scale_x_continuous(breaks = c(0,10,20,30,40,50,60,70,80,90,100)) +
  theme_bw(base_size = 10) +
  theme(text=element_text(family= "Times New Roman", face="bold"), plot.title = element_text(hjust = 0.5)) +
  labs(title = "Most Productive Countries") + xlab("Number of articles") + ylab("Country")

10.2 Most Cited Countries

MCC <- read.csv("C:/Users/user/Desktop/Vida acadêmica/Disciplinas/Economia da Inovação/Bibliometria/Tabelas 3/16 Most_Cited_Countries.csv")
MCC <- transform(MCC, Country = reorder(Country , Total.Citations))

MCC <- MCC %>% head(15)

MCC %>% ggplot(aes(y = Country, weight = Total.Citations, fill = Total.Citations)) +
  geom_bar(show.legend = F) + 
  scale_fill_continuous(low = "Lightblue", high = "Darkblue") +
  scale_x_continuous(breaks = c(0,300,600,900,1200,1500,1800,2100,2400)) +
  theme_bw(base_size = 10) +
  theme(text=element_text(family= "Times New Roman", face="bold"), plot.title = element_text(hjust = 0.5)) +
  labs(title = "Most Cited Countries") + xlab("Number of citations") + ylab("Countries")

11 Article citations

11.1 Most global cited articles

# Top citações em artigos locais (dentro da base)
CR <- localCitations(M, sep = ";")
## 
## WOS DB:
## Searching local citations (LCS) by reference items (SR) and DOIs...
## 
## Analyzing 27052 reference items...
## 
## Found 23 documents with no empty Local Citations (LCS)
CR$Papers[1:10,]
##                                     Paper                              DOI Year LCS GCS
## 15      ADNER R, 2010, STRATEGIC MANAGE J                  10.1002/smj.821 2010  36 783
## 143     ADNER R, 2016, STRATEGIC MANAGE J                 10.1002/smj.2363 2016  19 103
## 69   RITALA P, 2013, INT J TECHNOL MANAGE         10.1504/IJTM.2013.056900 2013   9  65
## 49  NAMBISAN S, 2013, ENTREP THEORY PRACT 10.1111/j.1540-6520.2012.00519.x 2013   7 169
## 88              GAWER A, 2014, RES POLICY     10.1016/j.respol.2014.03.006 2014   6 363
## 51        LETEN B, 2013, CALIF MANAGE REV         10.1525/cmr.2013.55.4.51 2013   5  40
## 62         ALEXY O, 2013, ACAD MANAGE REV            10.5465/amr.2011.0193 2013   4 154
## 76    STILL K, 2014, INT J TECHNOL MANAGE         10.1504/IJTM.2014.064606 2014   3  29
## 344             JARVI K, 2018, RES POLICY     10.1016/j.respol.2018.05.007 2018   3  12
## 352         DATTEE B, 2018, ACAD MANAGE J            10.5465/amj.2015.0869 2018   3  35
CR$Papers[1:10,]$GCS
##  [1] 783 103  65 169 363  40 154  29  12  35
MGCD <- read.csv("C:/Users/user/Desktop/Vida acadêmica/Disciplinas/Economia da Inovação/Bibliometria/Tabelas 3/17 Most_Global_Cited_Documents.csv")
str(MGCD)
## 'data.frame':    20 obs. of  3 variables:
##  $ Paper          : chr  "ADNER R, 2010, STRATEGIC MANAGE J" "SCHAFFERS H, 2011, LECT NOTES COMPUT SCI" "ADNER R, 2006, HARV BUS REV" "GAWER A, 2014, RES POLICY" ...
##  $ Total.Citations: int  783 563 413 363 322 211 188 175 169 154 ...
##  $ TC.per.Year    : num  71.2 56.3 27.5 51.9 26.8 ...
MGCD <- transform(MGCD, Paper = reorder(Paper, Total.Citations))
MGCD <- MGCD %>% head(15)

MGCD %>% ggplot(aes(y = Paper, weight = Total.Citations, fill = Total.Citations)) +
  geom_bar(show.legend = F) + 
  scale_fill_continuous(low = "Lightblue", high = "Darkblue") +
  scale_x_continuous(breaks = c(0,100,200,300,400,500,600,700)) +
  theme_bw(base_size = 10) +
  theme(text=element_text(family= "Times New Roman", face="bold"), plot.title = element_text(hjust = 0.5)) +
  labs(title = "Most Cited Articles") + xlab("Number of citations") + ylab("Articles")

11.2 Most local cited documents

CR <- citations(M, field = "article", sep = ";")
cbind(CR$Cited[1:10]) # top 10 artigos mais citados localmente
##                                                                                                                                                                                                                                    [,1]
## ADNER R, 2010, STRATEGIC MANAGE J, V31, P306, DOI 10.1002/SMJ.821                                                                                                                                                                    36
## ADNER, R., KAPOOR, R., VALUE CREATION IN INNOVATION ECOSYSTEMS: HOW THE STRUCTURE OF TECHNOLOGICAL INTERDEPENDENCE AFFECTS FIRM PERFORMANCE IN NEW TECHNOLOGY GENERATIONS (2010) STRATEGIC MANAGEMENT JOURNAL, 31 (3), PP. 306-333   23
## MOORE JF, 1993, HARVARD BUS REV, V71, P75                                                                                                                                                                                            20
## ADNER R, 2016, STRATEGIC MANAGE J, V37, P625, DOI 10.1002/SMJ.2363                                                                                                                                                                   19
## ADNER, R., MATCH YOUR INNOVATION STRATEGY TO YOUR INNOVATION ECOSYSTEM (2006) HARVARD BUSINESS REVIEW, 84 (4), PP. 98-107                                                                                                            19
## EISENHARDT KM, 1989, ACAD MANAGE REV, V14, P532, DOI 10.2307/258557                                                                                                                                                                  18
## IANSITI M, 2004, HARVARD BUS REV, V82, P68                                                                                                                                                                                           17
## MOORE, J.F., PREDATORS AND PREY: A NEW ECOLOGY OF COMPETITION (1993) HARVARD BUSINESS REVIEW, 71 (3), PP. 75-86                                                                                                                      17
## ADNER R, 2006, HARVARD BUS REV, V84, P98                                                                                                                                                                                             16
## MOORE J. F., 1996, DEATH COMPETITION LE                                                                                                                                                                                              15
CR <- localCitations(M, sep = ";")
## 
## WOS DB:
## Searching local citations (LCS) by reference items (SR) and DOIs...
## 
## Analyzing 27052 reference items...
## 
## Found 23 documents with no empty Local Citations (LCS)
MLCD <- as.data.frame(CR$Papers[1:10,])
MLCD <- transform(MLCD, Paper = reorder(Paper, LCS))

MLCD %>% ggplot(aes(y = Paper, weight = LCS, fill = LCS)) +
  geom_bar(show.legend = F) + 
  scale_fill_continuous(low = "Lightblue", high = "Darkblue") +
  scale_x_continuous(breaks = c(1,5,10,15,20,25,30,35,40)) +
  theme_bw(base_size = 10) +
  theme(text=element_text(family= "Times New Roman", face="bold"), plot.title = element_text(hjust = 0.5)) +
  labs(title = "Most Local Cited Documents") + xlab("Local citations") + ylab("Documents")

11.3 Rank of dominance (Kumar e Kumar, 2008)

DF <- dominance(results, k = 10)
DF$DomFac <- DF$`Dominance Factor`

DF <- transform(DF, Author = reorder(Author, DomFac))

DF %>% ggplot(aes(y = Author, weight = DomFac, fill = DomFac)) +
  geom_bar(show.legend = F) + 
  scale_fill_continuous(low = "Lightblue", high = "Darkblue") +
  scale_x_continuous(breaks = c(0,0.25,0.50,0.75,1)) +
  theme_bw(base_size = 10) +
  theme(text=element_text(family= "Times New Roman", face="bold"), plot.title = element_text(hjust = 0.5)) +
  labs(title = "Most Dominant Authors") + xlab("Dominance Factor") + ylab("Author")

11.4 List of documents of the most productive authors

topAU <- authorProdOverTime(M, k = 10, graph = F)
head(topAU$dfPapersAU)
##         Author year
## 2 CARAYANNIS E 2018
## 3 CARAYANNIS E 2018
## 4 CARAYANNIS E 2017
## 5 CARAYANNIS E 2017
## 6 CARAYANNIS E 2016
## 7 CARAYANNIS E 2014
##                                                                                                                                                                   TI
## 2                                     THE ROLE OF JOURNALISM IN DIALOGIC INNOVATION PROCESSESTHE CASE OF THE HELSINKI DEACONESS INSTITUTE MULTISTAKEHOLDER WORKSHOPS
## 3 MODE 3 UNIVERSITIES AND ACADEMIC FIRMS THINKING BEYOND THE BOX TRANSDISCIPLINARITY AND NONLINEAR INNOVATION DYNAMICS WITHIN COOPETITIVE ENTREPRENEURIAL ECOSYSTEMS
## 4                                                TARGETED INNOVATION POLICY AND PRACTICE INTELLIGENCE TIP2E CONCEPTS AND IMPLICATIONS FOR THEORY POLICY AND PRACTICE
## 5              THE BALANCED DEVELOPMENT OF THE SPATIAL INNOVATION AND ENTREPRENEURIAL ECOSYSTEM BASED ON PRINCIPLES OF THE SYSTEMS COMPROMISE A CONCEPTUAL FRAMEWORK
## 6                                                                                                      ENTREPRENEURSHIP ECOSYSTEMS AN AGENTBASED SIMULATION APPROACH
## 7                                              DEVELOPED DEMOCRACIES VERSUS EMERGING AUTOCRACIES ARTS DEMOCRACY AND INNOVATION IN QUADRUPLE HELIX INNOVATION SYSTEMS
##                                               SO                       DOI TC      TCpY
## 2               JOURNAL OF THE KNOWLEDGE ECONOMY 10.1007/s13132-016-0427-z  1 0.3333333
## 3 INTERNATIONAL JOURNAL OF TECHNOLOGY MANAGEMENT  10.1504/IJTM.2018.091714  5 1.6666667
## 4                 JOURNAL OF TECHNOLOGY TRANSFER 10.1007/s10961-015-9433-8 24 6.0000000
## 5               JOURNAL OF THE KNOWLEDGE ECONOMY 10.1007/s13132-016-0426-0 11 2.7500000
## 6                 JOURNAL OF TECHNOLOGY TRANSFER 10.1007/s10961-016-9466-7 22 4.4000000
## 7     JOURNAL OF INNOVATION AND ENTREPRENEURSHIP 10.1186/s13731-014-0012-2 30 4.2857143

12 Words

12.1 Most Frequent Words

MFW <- read.csv("C:/Users/user/Desktop/Vida acadêmica/Disciplinas/Economia da Inovação/Bibliometria/Tabelas 3/21 Most_Frequent_Words.csv")
str(MFW)
## 'data.frame':    50 obs. of  2 variables:
##  $ Words      : chr  "innovation ecosystem" "innovation" "ecosystem" "entrepreneurship" ...
##  $ Occurrences: int  168 90 51 33 31 20 16 12 12 11 ...
MFW$Words <- toupper(MFW$Words)
MFW <- transform(MFW, Words = reorder(Words, Occurrences))
MFW <- MFW %>% head(20)

g20 <- MFW %>% ggplot(aes(y = Words, weight = Occurrences, fill = Occurrences)) +
  geom_bar(show.legend = F) + 
  scale_fill_continuous(low = "Lightblue", high = "Darkblue") +
  scale_x_continuous(breaks = c(0,20,40,60,80,100,120,140,160,180)) +
  theme_bw(base_size = 10) +
  theme(text=element_text(family= "Times New Roman", face="bold"), plot.title = element_text(hjust = 0.5)) +
  labs(title = "6a") + xlab("Occurrences") + ylab("Author Keywords")

g20

12.2 Word Cloud

library(tidytext)
palavras <- read.csv("C:/Users/user/Desktop/Vida acadêmica/Disciplinas/Economia da Inovação/Bibliometria/Tabelas 3/21 Most_Frequent_Words.csv", sep = ",")

library(RColorBrewer)
library(wordcloud)
library(wordcloud2)

set.seed(123)
wordcloud2(palavras, color = "random-dark",
           backgroundColor = "white", minRotation = 0,
           maxRotation = 0, minSize = 5, rotateRatio = 1,
           shape = 'circle')
palavras <- transform(palavras, Words  = reorder(Words , Occurrences))

library(tidyverse)
library(ggsci)

ggplot(palavras, aes(y = Words,  weight = Occurrences, fill = Occurrences)) +
  geom_bar(show.legend = F) +
  scale_fill_continuous(low = "Lightblue", high = "Darkblue") +
  theme_bw(base_size = 10) +
  theme(text=element_text(family= "Times New Roman", face="bold"), plot.title = element_text(hjust = 0.5))

12.3 Word Dynamics

WD <- read.csv("C:/Users/user/Desktop/Vida acadêmica/Disciplinas/Economia da Inovação/Bibliometria/Tabelas 3/22 Word_Dynamics.csv")

library(reshape2)
library(directlabels)
library(ggrepel)

WD <- melt(WD, id.vars = c("Year"))
str(WD)
## 'data.frame':    160 obs. of  3 variables:
##  $ Year    : int  2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 ...
##  $ variable: Factor w/ 10 levels "INNOVATION.ECOSYSTEM",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ value   : int  0 0 0 0 0 0 1 3 2 7 ...
WD$value <- as.numeric(WD$value)
WD$Year <- as.numeric(WD$Year)

library(stringi)
WD$variable2 <- stri_replace_all(WD[,2], " ", fixed = ".")

g22 <- WD %>% ggplot(aes(y = value, x = Year, color = variable2)) +
  geom_line() +
  geom_point() +
  scale_x_continuous(breaks = c(2004,2008,2012,2016,2019)) +
  labs(title = "6b") + xlab("Year") + ylab("Anual Occurrences") +
  guides(color = guide_legend(title = "Keyword")) +
  theme_bw(base_size = 10) +
  theme(text=element_text(family= "Times New Roman", face="bold"), plot.title = element_text(hjust = 0.5),
        legend.title = element_text(color = "black", size = 12),
        legend.text = element_text(color = "black", size = 8))
g22

gridExtra::grid.arrange(g20, g22, ncol = 2)

13 Topics

13.1 Thematic map

theme_set(theme_bw(base_size = 10))
MT <- thematicMap(M, field = "DE", n = 250, minfreq = 5, stemming = F, size = 0.2,
                  n.labels = 2, repel = TRUE)

MT$map

13.2 Thematic evolution

ET <- thematicEvolution(M, field = "DE", years = 2014, n = 500, minFreq = 10, size = 10,
                        stemming = T, n.labels = 1, repel = TRUE)

plotThematicEvolution(ET$Nodes,ET$Edges)

13.3 MCA

CS <- conceptualStructure(M,field="DE", method="MCA",
                          minDegree = 9, clust = 3, 
                          stemming=T, 
                          labelsize = 8, 
                          documents=15, graph = T)

13.4 Histography

histResults <- histNetwork(M, sep = ";")
## 
## WOS DB:
## Searching local citations (LCS) by reference items (SR) and DOIs...
## 
## Analyzing 27052 reference items...
## 
## Found 23 documents with no empty Local Citations (LCS)
net <- histPlot(histResults, n = 20, size = 10, title_as_label = F)

## 
##  Legend
## 
##                                                                         Label                                DOI Year
## 1                       ADNER R, 2010, STRATEGIC MANAGE J DOI 10.1002/SMJ.821                    10.1002/smj.821 2010
## 2  NAMBISAN S, 2013, ENTREP THEORY PRACT DOI 10.1111/J.1540-6520.2012.00519.X   10.1111/j.1540-6520.2012.00519.x 2013
## 3                LETEN B, 2013, CALIF MANAGE REV DOI 10.1525/CMR.2013.55.4.51           10.1525/cmr.2013.55.4.51 2013
## 4                    ALEXY O, 2013, ACAD MANAGE REV DOI 10.5465/AMR.2011.0193              10.5465/amr.2011.0193 2013
## 5           RITALA P, 2013, INT J TECHNOL MANAGE DOI 10.1504/IJTM.2013.056900           10.1504/IJTM.2013.056900 2013
## 6            STILL K, 2014, INT J TECHNOL MANAGE DOI 10.1504/IJTM.2014.064606           10.1504/IJTM.2014.064606 2014
## 7                  GAWER A, 2014, RES POLICY DOI 10.1016/J.RESPOL.2014.03.006       10.1016/j.respol.2014.03.006 2014
## 8                RONG K, 2015, INT J PROD ECON DOI 10.1016/J.IJPE.2014.09.003         10.1016/j.ijpe.2014.09.003 2015
## 9                      ADNER R, 2016, STRATEGIC MANAGE J DOI 10.1002/SMJ.2363                   10.1002/smj.2363 2016
## 10             VISNJIC I, 2016, CALIF MANAGE REV DOI 10.1177/0008125616683955           10.1177/0008125616683955 2016
## 11                        AMIT R, 2017, STRATEG ENTREP J DOI 10.1002/SEJ.1256                   10.1002/sej.1256 2017
## 12        RITALA P, 2017, TECHNOVATION DOI 10.1016/J.TECHNOVATION.2017.01.004 10.1016/j.technovation.2017.01.004 2017
## 13                        OZALP H, 2018, J MANAGE STUD DOI 10.1111/JOMS.12351                 10.1111/joms.12351 2018
## 14                 JARVI K, 2018, RES POLICY DOI 10.1016/J.RESPOL.2018.05.007       10.1016/j.respol.2018.05.007 2018
## 15                    DATTEE B, 2018, ACAD MANAGE J DOI 10.5465/AMJ.2015.0869              10.5465/amj.2015.0869 2018
##    LCS GCS
## 1   36 783
## 2    7 169
## 3    5  40
## 4    4 154
## 5    9  65
## 6    3  29
## 7    6 363
## 8    2  61
## 9   19 103
## 10   1  19
## 11   1  29
## 12   2  32
## 13   1  14
## 14   3  12
## 15   3  35