#Import the data set labeled as cocowater-1 (note that your data set has headers). Assign to the vector= df1
df2<-read.table("INITIAL SETTLING TIME.txt", header=TRUE)
## Warning in read.table("INITIAL SETTLING TIME.txt", header = TRUE): incomplete
## final line found by readTableHeader on 'INITIAL SETTLING TIME.txt'
#The data needs to be converted into a single vector.  Use the as.matrix function on the vector, then transpose by using the “t” function as you concatenate and assign to r
r<-c(t(as.matrix(df2)))

# Assign to f the treatment levels to f
f<-c("T1", "T2", "T3", "T4", "T5")

#Assign to k the number of treatment levels
k<- 5

#Assign to n the number of observations per treatments
n<-3

#Generate levels using the gl function on the basis of:
#Number of treatment levels
#Number of primary factors
#n*k
#factors as the treatment levels
tm<-gl(k, 1, n*k, factor(f))

#Subject to anova using the aov function the data set you have established (r) to the treatment factors (tm)
av2<- aov(r~tm)

summary(av2)
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## tm           4  33988    8497    2125 1.34e-14 ***
## Residuals   10     40       4                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(av2)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = r ~ tm)
## 
## $tm
##            diff       lwr       upr p adj
## T2-T1  40.19333  34.81986  45.56681 0e+00
## T3-T1  71.15333  65.77986  76.52681 0e+00
## T4-T1 105.99667 100.62319 111.37014 0e+00
## T5-T1 135.15333 129.77986 140.52681 0e+00
## T3-T2  30.96000  25.58653  36.33347 0e+00
## T4-T2  65.80333  60.42986  71.17681 0e+00
## T5-T2  94.96000  89.58653 100.33347 0e+00
## T4-T3  34.84333  29.46986  40.21681 0e+00
## T5-T3  64.00000  58.62653  69.37347 0e+00
## T5-T4  29.15667  23.78319  34.53014 1e-07