PA ~ RE Pre-COVID

## Cumulative Link Mixed Model fitted with the Laplace approximation
## 
## formula: PA_avg ~ roaming_entropy + time_of_day + precipi + mean_temp +  
##     distance + dow + (1 | subject)
## data:    prelockdown_df
## 
##  link  threshold nobs logLik   AIC      niter     max.grad cond.H 
##  logit flexible  4896 -9693.48 19428.96 981(5880) 2.50e+02 1.1e+08
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  subject (Intercept) 1        1       
## Number of groups:  subject 235 
## 
## Coefficients:
##                   Estimate Std. Error z value Pr(>|z|)    
## roaming_entropy  0.0533277  0.0289560   1.842 0.065522 .  
## time_of_day      0.0036326  0.0014318   2.537 0.011176 *  
## precipi          0.0811652  0.1648570   0.492 0.622481    
## mean_temp       -0.0115569  0.0028183  -4.101 4.12e-05 ***
## distance         0.0001952  0.0000723   2.700 0.006925 ** 
## dowMonday       -0.3204935  0.0986049  -3.250 0.001153 ** 
## dowSaturday      0.4217028  0.1014866   4.155 3.25e-05 ***
## dowSunday       -0.0845852  0.0990210  -0.854 0.392986    
## dowThursday     -0.3567832  0.0941865  -3.788 0.000152 ***
## dowTuesday      -0.7135849  0.0903189  -7.901 2.77e-15 ***
## dowWednesday    -0.3914562  0.0951614  -4.114 3.90e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##                  Estimate Std. Error z value
## [0,10]|(10,20]    -4.4590     0.2545 -17.517
## (10,20]|(20,30]   -3.6490     0.2468 -14.788
## (20,30]|(30,40]   -2.8533     0.2430 -11.740
## (30,40]|(40,50]   -2.0631     0.2414  -8.546
## (40,50]|(50,60]   -1.2779     0.2406  -5.311
## (50,60]|(60,70]   -0.2707     0.2401  -1.128
## (60,70]|(70,80]    0.4940     0.2401   2.057
## (70,80]|(80,90]    1.3951     0.2413   5.780
## (80,90]|(90,100]   2.5567     0.2478  10.319
## (6736 observations deleted due to missingness)
## Cumulative Link Mixed Model fitted with the Laplace approximation
## 
## formula: PA_avg ~ roaming_entropy + dow + (1 | subject)
## data:    prelockdown_df
## 
##  link  threshold nobs logLik   AIC      niter       max.grad cond.H 
##  logit flexible  4920 -9653.49 19340.98 3461(23768) 2.40e-03 4.9e+02
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  subject (Intercept) 1.294    1.138   
## Number of groups:  subject 235 
## 
## Coefficients:
##                  Estimate Std. Error z value   Pr(>|z|)    
## roaming_entropy  0.088980   0.029267   3.040    0.00236 ** 
## dowMonday       -0.305629   0.097396  -3.138    0.00170 ** 
## dowSaturday      0.456858   0.104447   4.374 0.00001219 ***
## dowSunday       -0.005552   0.099876  -0.056    0.95567    
## dowThursday     -0.459605   0.095914  -4.792 0.00000165 ***
## dowTuesday      -0.803082   0.091958  -8.733    < 2e-16 ***
## dowWednesday    -0.452643   0.096776  -4.677 0.00000291 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##                  Estimate Std. Error z value
## [0,10]|(10,20]    -4.3073     0.1569 -27.454
## (10,20]|(20,30]   -3.4313     0.1417 -24.212
## (20,30]|(30,40]   -2.5421     0.1338 -18.996
## (30,40]|(40,50]   -1.6324     0.1300 -12.554
## (40,50]|(50,60]   -0.6893     0.1283  -5.371
## (50,60]|(60,70]    0.5515     0.1282   4.302
## (60,70]|(70,80]    1.5102     0.1300  11.614
## (70,80]|(80,90]    2.6089     0.1352  19.299
## (80,90]|(90,100]   3.9434     0.1514  26.040
## (6712 observations deleted due to missingness)
##               df      BIC
## complex_PA_RE 21 19565.38
## simple_PA_RE  17 19451.50

PA ~ NL Pre_COVID

## Cumulative Link Mixed Model fitted with the Laplace approximation
## 
## formula: PA_avg ~ novel_locations + time_of_day + precipi + mean_temp +  
##     distance + dow + (1 | subject)
## data:    prelockdown_df
## 
##  link  threshold nobs logLik   AIC      niter     max.grad cond.H 
##  logit flexible  4675 -9227.12 18496.24 957(5736) 6.25e+02 1.1e+08
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  subject (Intercept) 1        1       
## Number of groups:  subject 235 
## 
## Coefficients:
##                    Estimate  Std. Error z value Pr(>|z|)    
## novel_locations  0.00229325  0.00046346   4.948 7.49e-07 ***
## time_of_day      0.00450666  0.00146721   3.072 0.002129 ** 
## precipi          0.04844154  0.16669391   0.291 0.771356    
## mean_temp       -0.00993841  0.00289406  -3.434 0.000595 ***
## distance         0.00008982  0.00007387   1.216 0.224029    
## dowMonday       -0.26673788  0.10344675  -2.579 0.009923 ** 
## dowSaturday      0.37136407  0.10345756   3.590 0.000331 ***
## dowSunday       -0.10604836  0.10061928  -1.054 0.291903    
## dowThursday     -0.36140257  0.09773341  -3.698 0.000217 ***
## dowTuesday      -0.68966331  0.09429613  -7.314 2.60e-13 ***
## dowWednesday    -0.37079472  0.09999160  -3.708 0.000209 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##                  Estimate Std. Error z value
## [0,10]|(10,20]    -4.3727     0.2582 -16.938
## (10,20]|(20,30]   -3.5648     0.2499 -14.267
## (20,30]|(30,40]   -2.7535     0.2459 -11.199
## (30,40]|(40,50]   -1.9488     0.2442  -7.981
## (40,50]|(50,60]   -1.1570     0.2434  -4.753
## (50,60]|(60,70]   -0.1398     0.2430  -0.575
## (60,70]|(70,80]    0.6366     0.2431   2.619
## (70,80]|(80,90]    1.5304     0.2444   6.261
## (80,90]|(90,100]   2.6903     0.2511  10.714
## (6957 observations deleted due to missingness)
## Cumulative Link Mixed Model fitted with the Laplace approximation
## 
## formula: PA_avg ~ novel_locations + dow + (1 | subject)
## data:    prelockdown_df
## 
##  link  threshold nobs logLik   AIC      niter       max.grad cond.H 
##  logit flexible  4695 -9179.39 18392.78 1954(12805) 4.16e-01 7.0e+05
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  subject (Intercept) 1.292    1.137   
## Number of groups:  subject 235 
## 
## Coefficients:
##                   Estimate Std. Error z value Pr(>|z|)    
## novel_locations  0.0033874  0.0004597   7.370 1.71e-13 ***
## dowMonday       -0.2418695  0.1016064  -2.380 0.017291 *  
## dowSaturday      0.3902997  0.1062384   3.674 0.000239 ***
## dowSunday       -0.0505485  0.1011152  -0.500 0.617139    
## dowThursday     -0.4494803  0.0992815  -4.527 5.97e-06 ***
## dowTuesday      -0.7602142  0.0956293  -7.950 1.87e-15 ***
## dowWednesday    -0.4030035  0.1011786  -3.983 6.80e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##                  Estimate Std. Error z value
## [0,10]|(10,20]    -4.3671     0.1460 -29.917
## (10,20]|(20,30]   -3.4941     0.1281 -27.283
## (20,30]|(30,40]   -2.5918     0.1185 -21.877
## (30,40]|(40,50]   -1.6670     0.1137 -14.661
## (40,50]|(50,60]   -0.7192     0.1115  -6.448
## (50,60]|(60,70]    0.5331     0.1113   4.788
## (60,70]|(70,80]    1.5085     0.1136  13.283
## (70,80]|(80,90]    2.6008     0.1196  21.741
## (80,90]|(90,100]   3.9384     0.1384  28.467
## (6937 observations deleted due to missingness)
##               df      BIC
## complex_PA_NL 21 18631.69
## simple_PA_NL  17 18502.51

RE ~ Lockdown

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: roaming_entropy ~ lockdown + dow + (1 | subject)
##    Data: df
## 
## REML criterion at convergence: 55937.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.7406 -0.6404  0.0227  0.6237  8.2917 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept) 0.1134   0.3367  
##  Residual             0.7193   0.8481  
## Number of obs: 22027, groups:  subject, 235
## 
## Fixed effects:
##                 Estimate  Std. Error          df  t value Pr(>|t|)    
## (Intercept)      2.47159     0.02717   480.25315   90.952  < 2e-16 ***
## lockdown        -1.26661     0.01168 21902.52360 -108.458  < 2e-16 ***
## dowMonday       -0.17046     0.02142 21790.48911   -7.957 1.85e-15 ***
## dowSaturday     -0.13650     0.02168 21790.87535   -6.296 3.11e-10 ***
## dowSunday       -0.36715     0.02157 21791.48481  -17.023  < 2e-16 ***
## dowThursday     -0.04761     0.02111 21790.37035   -2.255   0.0241 *  
## dowTuesday      -0.13436     0.02119 21790.87149   -6.340 2.34e-10 ***
## dowWednesday    -0.10450     0.02121 21790.49844   -4.927 8.41e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) lckdwn dwMndy dwStrd dwSndy dwThrs dwTsdy
## lockdown    -0.195                                          
## dowMonday   -0.388 -0.007                                   
## dowSaturday -0.381 -0.022  0.488                            
## dowSunday   -0.389  0.010  0.491  0.485                     
## dowThursday -0.393 -0.011  0.502  0.496  0.498              
## dowTuesday  -0.394  0.001  0.500  0.494  0.496  0.507       
## dowWednesdy -0.394  0.003  0.499  0.493  0.496  0.507  0.505

NL ~ Lockdown

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: novel_locations ~ lockdown + dow + (1 | subject)
##    Data: df
## 
## REML criterion at convergence: 222451.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.0659 -0.5091 -0.2039  0.2148 17.5607 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept)  293     17.12   
##  Residual             3079     55.49   
## Number of obs: 20419, groups:  subject, 235
## 
## Fixed effects:
##                Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     65.9677     1.5654   711.9296  42.141  < 2e-16 ***
## lockdown       -30.8944     0.7927 20350.4395 -38.976  < 2e-16 ***
## dowMonday      -14.4943     1.4562 20186.2340  -9.954  < 2e-16 ***
## dowSaturday      4.5734     1.4746 20186.9843   3.101  0.00193 ** 
## dowSunday       -6.4301     1.4667 20188.1893  -4.384 1.17e-05 ***
## dowThursday     -5.8086     1.4333 20185.9949  -4.053 5.08e-05 ***
## dowTuesday     -12.4998     1.4394 20186.9697  -8.684  < 2e-16 ***
## dowWednesday   -11.2065     1.4404 20186.2405  -7.780 7.59e-15 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) lckdwn dwMndy dwStrd dwSndy dwThrs dwTsdy
## lockdown    -0.248                                          
## dowMonday   -0.457 -0.008                                   
## dowSaturday -0.447 -0.025  0.488                            
## dowSunday   -0.459  0.009  0.490  0.484                     
## dowThursday -0.464 -0.011  0.502  0.496  0.498              
## dowTuesday  -0.465  0.001  0.500  0.493  0.496  0.508       
## dowWednesdy -0.465  0.004  0.499  0.493  0.496  0.507  0.505

PA ~ Lockdown

## Cumulative Link Mixed Model fitted with the Laplace approximation
## 
## formula: PA_avg ~ lockdown + dow + (1 | subject)
## data:    df
## 
##  link  threshold nobs logLik    AIC      niter       max.grad cond.H 
##  logit flexible  8231 -16032.80 32099.60 3546(21613) 4.29e-02 4.7e+02
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  subject (Intercept) 1.412    1.188   
## Number of groups:  subject 235 
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)    
## lockdown     -0.65164    0.04126 -15.794  < 2e-16 ***
## dowMonday    -0.27013    0.07368  -3.666 0.000246 ***
## dowSaturday   0.34966    0.07753   4.510 6.49e-06 ***
## dowSunday     0.07621    0.07685   0.992 0.321299    
## dowThursday  -0.28293    0.07365  -3.841 0.000122 ***
## dowTuesday   -0.50637    0.07303  -6.934 4.09e-12 ***
## dowWednesday -0.26162    0.07544  -3.468 0.000525 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##                  Estimate Std. Error z value
## [0,10]|(10,20]   -4.36752    0.11572 -37.743
## (10,20]|(20,30]  -3.47624    0.10621 -32.731
## (20,30]|(30,40]  -2.64126    0.10161 -25.993
## (30,40]|(40,50]  -1.75496    0.09907 -17.713
## (40,50]|(50,60]  -0.78322    0.09772  -8.015
## (50,60]|(60,70]   0.46937    0.09756   4.811
## (60,70]|(70,80]   1.45309    0.09911  14.661
## (70,80]|(80,90]   2.54788    0.10374  24.559
## (80,90]|(90,100]  3.88885    0.11912  32.646
## (20055 observations deleted due to missingness)

NA ~ Lockdown

## Cumulative Link Mixed Model fitted with the Laplace approximation
## 
## formula: NA_avg ~ lockdown + dow + (1 | subject)
## data:    df
## 
##  link  threshold nobs logLik    AIC      niter       max.grad cond.H 
##  logit flexible  8231 -15838.35 31710.70 3036(25931) 7.50e-03 6.7e+02
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  subject (Intercept) 2.397    1.548   
## Number of groups:  subject 235 
## 
## Coefficients:
##              Estimate Std. Error z value      Pr(>|z|)    
## lockdown      0.40637    0.04099   9.914       < 2e-16 ***
## dowMonday     0.14081    0.07383   1.907      0.056488 .  
## dowSaturday  -0.27281    0.07787  -3.504      0.000459 ***
## dowSunday    -0.10904    0.07692  -1.418      0.156303    
## dowThursday   0.20639    0.07420   2.781      0.005412 ** 
## dowTuesday    0.42234    0.07315   5.774 0.00000000776 ***
## dowWednesday  0.13815    0.07526   1.836      0.066412 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##                   Estimate Std. Error z value
## [0,10]|(10,20]   -3.000349   0.123774 -24.241
## (10,20]|(20,30]  -1.805628   0.119368 -15.127
## (20,30]|(30,40]  -0.858370   0.117820  -7.285
## (30,40]|(40,50]   0.008829   0.117357   0.075
## (40,50]|(50,60]   0.962569   0.117727   8.176
## (50,60]|(60,70]   2.180046   0.119643  18.221
## (60,70]|(70,80]   3.029033   0.122449  24.737
## (70,80]|(80,90]   4.121382   0.129753  31.763
## (80,90]|(90,100]  5.131846   0.143924  35.657
## (20055 observations deleted due to missingness)

PA ~ RE * Lockdown

## Cumulative Link Mixed Model fitted with the Laplace approximation
## 
## formula: PA_avg ~ roaming_entropy * lockdown + dow + (1 | subject)
## data:    df
## 
##  link  threshold nobs logLik    AIC      niter       max.grad cond.H 
##  logit flexible  8231 -16021.32 32080.63 4131(25123) 1.95e-02 6.9e+02
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  subject (Intercept) 1.411    1.188   
## Number of groups:  subject 235 
## 
## Coefficients:
##                          Estimate Std. Error z value Pr(>|z|)    
## roaming_entropy           0.07297    0.02828   2.581 0.009866 ** 
## lockdown                 -0.65081    0.08631  -7.540 4.68e-14 ***
## dowMonday                -0.25340    0.07381  -3.433 0.000597 ***
## dowSaturday               0.34052    0.07792   4.370 1.24e-05 ***
## dowSunday                 0.10835    0.07779   1.393 0.163675    
## dowThursday              -0.28054    0.07367  -3.808 0.000140 ***
## dowTuesday               -0.50183    0.07310  -6.865 6.67e-12 ***
## dowWednesday             -0.24990    0.07553  -3.309 0.000937 ***
## roaming_entropy:lockdown  0.11408    0.05225   2.183 0.029012 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##                  Estimate Std. Error z value
## [0,10]|(10,20]    -4.1928     0.1347 -31.118
## (10,20]|(20,30]   -3.3017     0.1266 -26.070
## (20,30]|(30,40]   -2.4660     0.1228 -20.079
## (30,40]|(40,50]   -1.5783     0.1208 -13.065
## (40,50]|(50,60]   -0.6049     0.1198  -5.050
## (50,60]|(60,70]    0.6494     0.1199   5.418
## (60,70]|(70,80]    1.6349     0.1213  13.473
## (70,80]|(80,90]    2.7315     0.1254  21.790
## (80,90]|(90,100]   4.0738     0.1386  29.399
## (20055 observations deleted due to missingness)

PA ~ NL * Lockdown

## Cumulative Link Mixed Model fitted with the Laplace approximation
## 
## formula: PA_avg ~ novel_locations * lockdown + dow + (1 | subject)
## data:    df
## 
##  link  threshold nobs logLik    AIC      niter       max.grad cond.H 
##  logit flexible  8006 -15544.19 31126.38 2426(14585) 1.35e+00 7.1e+05
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  subject (Intercept) 1.418    1.191   
## Number of groups:  subject 235 
## 
## Coefficients:
##                            Estimate Std. Error z value Pr(>|z|)    
## novel_locations           0.0035491  0.0004557   7.788 6.79e-15 ***
## lockdown                 -0.5305750  0.0522748 -10.150  < 2e-16 ***
## dowMonday                -0.2134620  0.0756411  -2.822 0.004772 ** 
## dowSaturday               0.3212951  0.0788589   4.074 4.62e-05 ***
## dowSunday                 0.0999013  0.0783710   1.275 0.202407    
## dowThursday              -0.2635634  0.0752709  -3.502 0.000463 ***
## dowTuesday               -0.4554640  0.0748769  -6.083 1.18e-09 ***
## dowWednesday             -0.2064516  0.0776107  -2.660 0.007812 ** 
## novel_locations:lockdown -0.0004839  0.0010617  -0.456 0.648548    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##                  Estimate Std. Error z value
## [0,10]|(10,20]    -4.1815     0.1206 -34.670
## (10,20]|(20,30]   -3.2913     0.1112 -29.604
## (20,30]|(30,40]   -2.4522     0.1067 -22.992
## (30,40]|(40,50]   -1.5578     0.1042 -14.947
## (40,50]|(50,60]   -0.5810     0.1030  -5.640
## (50,60]|(60,70]    0.6821     0.1032   6.612
## (60,70]|(70,80]    1.6814     0.1050  16.012
## (70,80]|(80,90]    2.7758     0.1098  25.278
## (80,90]|(90,100]   4.1229     0.1251  32.946
## (20280 observations deleted due to missingness)

PA ~ RE * Pre_COVID_RE Post-Lockdown

## Cumulative Link Mixed Model fitted with the Laplace approximation
## 
## formula: PA_avg ~ roaming_entropy * pre_covid_re + dow + (1 | subject)
## data:    lockdown_df
## 
##  link  threshold nobs logLik   AIC      niter       max.grad cond.H 
##  logit flexible  3311 -6311.33 12660.66 2041(18239) 1.18e+01 7.8e+03
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  subject (Intercept) 2.431    1.559   
## Number of groups:  subject 232 
## 
## Coefficients:
##                               Estimate Std. Error z value Pr(>|z|)    
## roaming_entropy               0.171177   0.002111   81.10   <2e-16 ***
## pre_covid_re                  0.227534   0.002111  107.80   <2e-16 ***
## dowMonday                    -0.139214   0.002338  -59.54   <2e-16 ***
## dowSaturday                   0.273661   0.002293  119.34   <2e-16 ***
## dowSunday                     0.315130   0.002112  149.18   <2e-16 ***
## dowThursday                  -0.032174   0.002293  -14.03   <2e-16 ***
## dowTuesday                    0.072930   0.002241   32.54   <2e-16 ***
## dowWednesday                  0.063474   0.002112   30.05   <2e-16 ***
## roaming_entropy:pre_covid_re  0.043871   0.002098   20.91   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##                   Estimate Std. Error  z value
## [0,10]|(10,20]   -3.043776   0.106135  -28.678
## (10,20]|(20,30]  -2.045742   0.081284  -25.168
## (20,30]|(30,40]  -1.176632   0.067102  -17.535
## (30,40]|(40,50]  -0.224113   0.055990   -4.003
## (40,50]|(50,60]   0.885428   0.044533   19.883
## (50,60]|(60,70]   2.279171   0.002111 1079.671
## (60,70]|(70,80]   3.403890   0.002110 1612.912
## (70,80]|(80,90]   4.575535   0.002112 2166.705
## (80,90]|(90,100]  6.016282   0.002242 2683.932
## (7084 observations deleted due to missingness)

PA ~ NL * Pre_COVID_RE Post-Lockdown

## Cumulative Link Mixed Model fitted with the Laplace approximation
## 
## formula: PA_avg ~ novel_locations * pre_covid_re + dow + (1 | subject)
## data:    lockdown_df
## 
##  link  threshold nobs logLik   AIC      niter       max.grad cond.H 
##  logit flexible  3311 -6316.73 12671.46 2440(22242) 2.23e-01 3.7e+07
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  subject (Intercept) 2.436    1.561   
## Number of groups:  subject 232 
## 
## Coefficients:
##                               Estimate Std. Error z value Pr(>|z|)  
## novel_locations               0.009409   0.009159   1.027   0.3043  
## pre_covid_re                  0.362810   0.286004   1.269   0.2046  
## dowMonday                    -0.147762   0.116029  -1.273   0.2028  
## dowSaturday                   0.288887   0.120600   2.395   0.0166 *
## dowSunday                     0.321930   0.126030   2.554   0.0106 *
## dowThursday                  -0.028999   0.117949  -0.246   0.8058  
## dowTuesday                    0.083665   0.123591   0.677   0.4984  
## dowWednesday                  0.055610   0.123277   0.451   0.6519  
## novel_locations:pre_covid_re -0.001782   0.003453  -0.516   0.6058  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##                  Estimate Std. Error z value
## [0,10]|(10,20]   -2.85698    0.73727  -3.875
## (10,20]|(20,30]  -1.85788    0.73482  -2.528
## (20,30]|(30,40]  -0.98877    0.73392  -1.347
## (30,40]|(40,50]  -0.03636    0.73369  -0.050
## (40,50]|(50,60]   1.07216    0.73398   1.461
## (50,60]|(60,70]   2.46575    0.73479   3.356
## (60,70]|(70,80]   3.59341    0.73617   4.881
## (70,80]|(80,90]   4.76774    0.73928   6.449
## (80,90]|(90,100]  6.21346    0.74937   8.292
## (7084 observations deleted due to missingness)

Notch Analysis

## Cumulative Link Mixed Model fitted with the Laplace approximation
## 
## formula: PA_avg ~ bs(novel_locations, knots = c(1, 26), degree = 1) +  
##     dow + (1 | subject)
## data:    prelockdown_df
## 
##  link  threshold nobs logLik   AIC      niter       max.grad cond.H 
##  logit flexible  4695 -9178.38 18394.75 3716(24889) 8.52e-03 1.0e+03
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  subject (Intercept) 1.291    1.136   
## Number of groups:  subject 235 
## 
## Coefficients:
##                                                    Estimate Std. Error z value
## bs(novel_locations, knots = c(1, 26), degree = 1)1 -0.18399    0.16781  -1.096
## bs(novel_locations, knots = c(1, 26), degree = 1)2  0.04065    0.14939   0.272
## bs(novel_locations, knots = c(1, 26), degree = 1)3  3.07764    0.49224   6.252
## dowMonday                                          -0.24188    0.10168  -2.379
## dowSaturday                                         0.39648    0.10640   3.726
## dowSunday                                          -0.03902    0.10187  -0.383
## dowThursday                                        -0.44922    0.09932  -4.523
## dowTuesday                                         -0.75570    0.09578  -7.890
## dowWednesday                                       -0.40374    0.10124  -3.988
##                                                    Pr(>|z|)    
## bs(novel_locations, knots = c(1, 26), degree = 1)1 0.272895    
## bs(novel_locations, knots = c(1, 26), degree = 1)2 0.785549    
## bs(novel_locations, knots = c(1, 26), degree = 1)3 4.04e-10 ***
## dowMonday                                          0.017367 *  
## dowSaturday                                        0.000194 ***
## dowSunday                                          0.701729    
## dowThursday                                        6.10e-06 ***
## dowTuesday                                         3.03e-15 ***
## dowWednesday                                       6.67e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##                  Estimate Std. Error z value
## [0,10]|(10,20]    -4.4389     0.2017 -22.011
## (10,20]|(20,30]   -3.5657     0.1889 -18.875
## (20,30]|(30,40]   -2.6634     0.1824 -14.604
## (30,40]|(40,50]   -1.7389     0.1793  -9.697
## (40,50]|(50,60]   -0.7910     0.1780  -4.444
## (50,60]|(60,70]    0.4615     0.1777   2.598
## (60,70]|(70,80]    1.4372     0.1788   8.036
## (70,80]|(80,90]    2.5300     0.1826  13.854
## (80,90]|(90,100]   3.8677     0.1954  19.791
## (6937 observations deleted due to missingness)
## Cumulative Link Mixed Model fitted with the Laplace approximation
## 
## formula: PA_avg ~ bs(novel_locations, knots = c(1, 26), degree = 1) +  
##     dow + (1 | subject)
## data:    lockdown_df
## 
##  link  threshold nobs logLik   AIC      niter       max.grad cond.H 
##  logit flexible  3311 -6308.54 12655.09 3437(31389) 1.05e-02 3.2e+03
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  subject (Intercept) 2.469    1.571   
## Number of groups:  subject 232 
## 
## Coefficients:
##                                                    Estimate Std. Error z value
## bs(novel_locations, knots = c(1, 26), degree = 1)1  0.24028    0.09750   2.464
## bs(novel_locations, knots = c(1, 26), degree = 1)2  0.49877    0.09779   5.101
## bs(novel_locations, knots = c(1, 26), degree = 1)3  2.32605    1.36002   1.710
## dowMonday                                          -0.12062    0.11617  -1.038
## dowSaturday                                         0.29394    0.12059   2.437
## dowSunday                                           0.33637    0.12604   2.669
## dowThursday                                        -0.01406    0.11776  -0.119
## dowTuesday                                          0.08857    0.12362   0.716
## dowWednesday                                        0.06599    0.12339   0.535
##                                                       Pr(>|z|)    
## bs(novel_locations, knots = c(1, 26), degree = 1)1     0.01372 *  
## bs(novel_locations, knots = c(1, 26), degree = 1)2 0.000000339 ***
## bs(novel_locations, knots = c(1, 26), degree = 1)3     0.08721 .  
## dowMonday                                              0.29915    
## dowSaturday                                            0.01479 *  
## dowSunday                                              0.00761 ** 
## dowThursday                                            0.90495    
## dowTuesday                                             0.47370    
## dowWednesday                                           0.59277    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##                  Estimate Std. Error z value
## [0,10]|(10,20]    -3.5877     0.1716 -20.903
## (10,20]|(20,30]   -2.5889     0.1581 -16.377
## (20,30]|(30,40]   -1.7173     0.1524 -11.265
## (30,40]|(40,50]   -0.7610     0.1498  -5.079
## (40,50]|(50,60]    0.3526     0.1495   2.358
## (50,60]|(60,70]    1.7524     0.1528  11.465
## (60,70]|(70,80]    2.8829     0.1595  18.077
## (70,80]|(80,90]    4.0593     0.1730  23.461
## (80,90]|(90,100]   5.5092     0.2121  25.979
## (7084 observations deleted due to missingness)
## Cumulative Link Mixed Model fitted with the Laplace approximation
## 
## formula: PA_avg ~ bs(novel_locations, knots = c(1, 26), degree = 1) *  
##     lockdown + dow + (1 | subject)
## data:    df
## 
##  link  threshold nobs logLik    AIC      niter       max.grad cond.H 
##  logit flexible  8006 -15536.35 31118.71 5453(32865) 5.29e-03 9.4e+03
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  subject (Intercept) 1.42     1.192   
## Number of groups:  subject 235 
## 
## Coefficients:
##                                                             Estimate Std. Error
## bs(novel_locations, knots = c(1, 26), degree = 1)1          -0.23872    0.16255
## bs(novel_locations, knots = c(1, 26), degree = 1)2          -0.05626    0.14372
## bs(novel_locations, knots = c(1, 26), degree = 1)3           3.38200    0.50409
## lockdown                                                    -0.82537    0.14538
## dowMonday                                                   -0.20452    0.07570
## dowSaturday                                                  0.32641    0.07891
## dowSunday                                                    0.10670    0.07873
## dowThursday                                                 -0.25721    0.07526
## dowTuesday                                                  -0.45049    0.07495
## dowWednesday                                                -0.20447    0.07765
## bs(novel_locations, knots = c(1, 26), degree = 1)1:lockdown  0.42831    0.18398
## bs(novel_locations, knots = c(1, 26), degree = 1)2:lockdown  0.41519    0.16374
## bs(novel_locations, knots = c(1, 26), degree = 1)3:lockdown -2.49836    1.37358
##                                                             z value Pr(>|z|)
## bs(novel_locations, knots = c(1, 26), degree = 1)1           -1.469 0.141932
## bs(novel_locations, knots = c(1, 26), degree = 1)2           -0.391 0.695478
## bs(novel_locations, knots = c(1, 26), degree = 1)3            6.709 1.96e-11
## lockdown                                                     -5.677 1.37e-08
## dowMonday                                                    -2.702 0.006898
## dowSaturday                                                   4.137 3.52e-05
## dowSunday                                                     1.355 0.175307
## dowThursday                                                  -3.417 0.000632
## dowTuesday                                                   -6.011 1.85e-09
## dowWednesday                                                 -2.633 0.008457
## bs(novel_locations, knots = c(1, 26), degree = 1)1:lockdown   2.328 0.019912
## bs(novel_locations, knots = c(1, 26), degree = 1)2:lockdown   2.536 0.011220
## bs(novel_locations, knots = c(1, 26), degree = 1)3:lockdown  -1.819 0.068931
##                                                                
## bs(novel_locations, knots = c(1, 26), degree = 1)1             
## bs(novel_locations, knots = c(1, 26), degree = 1)2             
## bs(novel_locations, knots = c(1, 26), degree = 1)3          ***
## lockdown                                                    ***
## dowMonday                                                   ** 
## dowSaturday                                                 ***
## dowSunday                                                      
## dowThursday                                                 ***
## dowTuesday                                                  ***
## dowWednesday                                                ** 
## bs(novel_locations, knots = c(1, 26), degree = 1)1:lockdown *  
## bs(novel_locations, knots = c(1, 26), degree = 1)2:lockdown *  
## bs(novel_locations, knots = c(1, 26), degree = 1)3:lockdown .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##                  Estimate Std. Error z value
## [0,10]|(10,20]    -4.3408     0.1799 -24.133
## (10,20]|(20,30]   -3.4497     0.1734 -19.895
## (20,30]|(30,40]   -2.6094     0.1704 -15.315
## (30,40]|(40,50]   -1.7136     0.1688 -10.150
## (40,50]|(50,60]   -0.7351     0.1681  -4.374
## (50,60]|(60,70]    0.5296     0.1680   3.152
## (60,70]|(70,80]    1.5297     0.1690   9.051
## (70,80]|(80,90]    2.6248     0.1720  15.265
## (80,90]|(90,100]   3.9724     0.1822  21.807
## (20280 observations deleted due to missingness)

## Cumulative Link Mixed Model fitted with the Laplace approximation
## 
## formula: PA_avg ~ bs(novel_locations, knots = c(1, 26), degree = 1) *  
##     lockdown + dow + (1 | subject)
## data:    distance_less_than_100_km
## 
##  link  threshold nobs logLik    AIC      niter       max.grad cond.H 
##  logit flexible  7585 -14647.34 29340.68 5078(30841) 4.62e-03 2.2e+03
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  subject (Intercept) 1.491    1.221   
## Number of groups:  subject 235 
## 
## Coefficients:
##                                                             Estimate Std. Error
## bs(novel_locations, knots = c(1, 26), degree = 1)1          -0.18421    0.16374
## bs(novel_locations, knots = c(1, 26), degree = 1)2          -0.19997    0.14630
## bs(novel_locations, knots = c(1, 26), degree = 1)3           1.98800    0.28678
## lockdown                                                    -0.83718    0.14606
## dowMonday                                                   -0.21377    0.07778
## dowSaturday                                                  0.32932    0.08217
## dowSunday                                                    0.13104    0.08192
## dowThursday                                                 -0.22357    0.07731
## dowTuesday                                                  -0.39797    0.07707
## dowWednesday                                                -0.23862    0.07993
## bs(novel_locations, knots = c(1, 26), degree = 1)1:lockdown  0.36743    0.18531
## bs(novel_locations, knots = c(1, 26), degree = 1)2:lockdown  0.60868    0.16860
## bs(novel_locations, knots = c(1, 26), degree = 1)3:lockdown -1.89126    0.64499
##                                                             z value Pr(>|z|)
## bs(novel_locations, knots = c(1, 26), degree = 1)1           -1.125 0.260567
## bs(novel_locations, knots = c(1, 26), degree = 1)2           -1.367 0.171666
## bs(novel_locations, knots = c(1, 26), degree = 1)3            6.932 4.14e-12
## lockdown                                                     -5.732 9.94e-09
## dowMonday                                                    -2.748 0.005991
## dowSaturday                                                   4.008 6.12e-05
## dowSunday                                                     1.600 0.109676
## dowThursday                                                  -2.892 0.003832
## dowTuesday                                                   -5.164 2.42e-07
## dowWednesday                                                 -2.985 0.002833
## bs(novel_locations, knots = c(1, 26), degree = 1)1:lockdown   1.983 0.047396
## bs(novel_locations, knots = c(1, 26), degree = 1)2:lockdown   3.610 0.000306
## bs(novel_locations, knots = c(1, 26), degree = 1)3:lockdown  -2.932 0.003365
##                                                                
## bs(novel_locations, knots = c(1, 26), degree = 1)1             
## bs(novel_locations, knots = c(1, 26), degree = 1)2             
## bs(novel_locations, knots = c(1, 26), degree = 1)3          ***
## lockdown                                                    ***
## dowMonday                                                   ** 
## dowSaturday                                                 ***
## dowSunday                                                      
## dowThursday                                                 ** 
## dowTuesday                                                  ***
## dowWednesday                                                ** 
## bs(novel_locations, knots = c(1, 26), degree = 1)1:lockdown *  
## bs(novel_locations, knots = c(1, 26), degree = 1)2:lockdown ***
## bs(novel_locations, knots = c(1, 26), degree = 1)3:lockdown ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##                  Estimate Std. Error z value
## [0,10]|(10,20]    -4.3896     0.1826 -24.038
## (10,20]|(20,30]   -3.4753     0.1758 -19.773
## (20,30]|(30,40]   -2.6231     0.1726 -15.194
## (30,40]|(40,50]   -1.7174     0.1710 -10.041
## (40,50]|(50,60]   -0.7319     0.1703  -4.299
## (50,60]|(60,70]    0.5579     0.1702   3.278
## (60,70]|(70,80]    1.5831     0.1713   9.240
## (70,80]|(80,90]    2.6929     0.1747  15.416
## (80,90]|(90,100]   4.0761     0.1865  21.853
## (20701 observations deleted due to missingness)

##                                      df      BIC
## PA_NL_PreLD_notch                    19 18517.38
## PA_NL_PostLD_notch                   19 12771.08
## PA_NL_LD_notch                       23 31279.43
## PA_NL_LD_notch_controldistance_100KM 23 29500.16

Z Notch Analysis

## Cumulative Link Mixed Model fitted with the Laplace approximation
## 
## formula: 
## PA_avg ~ bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1) *  
##     lockdown + dow + (1 | subject)
## data:    distance_less_than_100_km
## 
##  link  threshold nobs logLik    AIC      niter       max.grad cond.H 
##  logit flexible  7585 -14653.29 29352.58 6278(36892) 1.54e-02 8.0e+03
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  subject (Intercept) 1.488    1.22    
## Number of groups:  subject 235 
## 
## Coefficients:
##                                                                         Estimate
## bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1)1           0.51598
## bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1)2           0.41689
## bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1)3           3.08621
## lockdown                                                                -0.38810
## dowMonday                                                               -0.21796
## dowSaturday                                                              0.32374
## dowSunday                                                                0.13333
## dowThursday                                                             -0.23204
## dowTuesday                                                              -0.40469
## dowWednesday                                                            -0.24584
## bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1)1:lockdown -0.18900
## bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1)2:lockdown  0.07961
## bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1)3:lockdown -2.14684
##                                                                         Std. Error
## bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1)1             0.34528
## bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1)2             0.30257
## bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1)3             0.45529
## lockdown                                                                   0.36220
## dowMonday                                                                  0.07778
## dowSaturday                                                                0.08223
## dowSunday                                                                  0.08192
## dowThursday                                                                0.07735
## dowTuesday                                                                 0.07702
## dowWednesday                                                               0.07986
## bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1)1:lockdown    0.42124
## bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1)2:lockdown    0.36584
## bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1)3:lockdown    0.96759
##                                                                         z value
## bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1)1            1.494
## bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1)2            1.378
## bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1)3            6.778
## lockdown                                                                 -1.072
## dowMonday                                                                -2.802
## dowSaturday                                                               3.937
## dowSunday                                                                 1.628
## dowThursday                                                              -3.000
## dowTuesday                                                               -5.254
## dowWednesday                                                             -3.079
## bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1)1:lockdown  -0.449
## bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1)2:lockdown   0.218
## bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1)3:lockdown  -2.219
##                                                                         Pr(>|z|)
## bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1)1           0.13508
## bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1)2           0.16826
## bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1)3          1.21e-11
## lockdown                                                                 0.28394
## dowMonday                                                                0.00507
## dowSaturday                                                             8.25e-05
## dowSunday                                                                0.10361
## dowThursday                                                              0.00270
## dowTuesday                                                              1.49e-07
## dowWednesday                                                             0.00208
## bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1)1:lockdown  0.65366
## bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1)2:lockdown  0.82772
## bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1)3:lockdown  0.02650
##                                                                            
## bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1)1             
## bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1)2             
## bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1)3          ***
## lockdown                                                                   
## dowMonday                                                               ** 
## dowSaturday                                                             ***
## dowSunday                                                                  
## dowThursday                                                             ** 
## dowTuesday                                                              ***
## dowWednesday                                                            ** 
## bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1)1:lockdown    
## bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1)2:lockdown    
## bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1)3:lockdown *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##                  Estimate Std. Error z value
## [0,10]|(10,20]    -3.7704     0.3241 -11.632
## (10,20]|(20,30]   -2.8581     0.3206  -8.916
## (20,30]|(30,40]   -2.0072     0.3190  -6.291
## (30,40]|(40,50]   -1.1025     0.3184  -3.463
## (40,50]|(50,60]   -0.1180     0.3183  -0.371
## (50,60]|(60,70]    1.1707     0.3185   3.676
## (60,70]|(70,80]    2.1954     0.3192   6.878
## (70,80]|(80,90]    3.3047     0.3212  10.288
## (80,90]|(90,100]   4.6872     0.3280  14.290
## (20701 observations deleted due to missingness)

## [1] "100km did not converge so the following model is all data"
## Cumulative Link Mixed Model fitted with the Laplace approximation
## 
## formula: PA_avg ~ bs(within_subjects_lockdown_z_NL, knots = c(-0.725,  
##     -0.3), degree = 1) * lockdown + dow + (1 | subject)
## data:    df
## 
##  link  threshold nobs logLik    AIC      niter       max.grad cond.H 
##  logit flexible  7994 -15510.73 31067.46 5138(31334) 2.33e-02 9.4e+03
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  subject (Intercept) 1.431    1.196   
## Number of groups:  subject 235 
## 
## Coefficients:
##                                                                                  Estimate
## bs(within_subjects_lockdown_z_NL, knots = c(-0.725, -0.3), degree = 1)1          -0.18099
## bs(within_subjects_lockdown_z_NL, knots = c(-0.725, -0.3), degree = 1)2          -0.04953
## bs(within_subjects_lockdown_z_NL, knots = c(-0.725, -0.3), degree = 1)3           1.89229
## lockdown                                                                         -1.56764
## dowMonday                                                                        -0.20429
## dowSaturday                                                                       0.31851
## dowSunday                                                                         0.10970
## dowThursday                                                                      -0.25295
## dowTuesday                                                                       -0.44841
## dowWednesday                                                                     -0.20062
## bs(within_subjects_lockdown_z_NL, knots = c(-0.725, -0.3), degree = 1)1:lockdown  1.03309
## bs(within_subjects_lockdown_z_NL, knots = c(-0.725, -0.3), degree = 1)2:lockdown  1.00228
## bs(within_subjects_lockdown_z_NL, knots = c(-0.725, -0.3), degree = 1)3:lockdown -0.09636
##                                                                                  Std. Error
## bs(within_subjects_lockdown_z_NL, knots = c(-0.725, -0.3), degree = 1)1             0.33825
## bs(within_subjects_lockdown_z_NL, knots = c(-0.725, -0.3), degree = 1)2             0.30467
## bs(within_subjects_lockdown_z_NL, knots = c(-0.725, -0.3), degree = 1)3             0.40427
## lockdown                                                                            0.54834
## dowMonday                                                                           0.07577
## dowSaturday                                                                         0.07897
## dowSunday                                                                           0.07892
## dowThursday                                                                         0.07530
## dowTuesday                                                                          0.07498
## dowWednesday                                                                        0.07773
## bs(within_subjects_lockdown_z_NL, knots = c(-0.725, -0.3), degree = 1)1:lockdown    0.59787
## bs(within_subjects_lockdown_z_NL, knots = c(-0.725, -0.3), degree = 1)2:lockdown    0.54545
## bs(within_subjects_lockdown_z_NL, knots = c(-0.725, -0.3), degree = 1)3:lockdown    0.72348
##                                                                                  z value
## bs(within_subjects_lockdown_z_NL, knots = c(-0.725, -0.3), degree = 1)1           -0.535
## bs(within_subjects_lockdown_z_NL, knots = c(-0.725, -0.3), degree = 1)2           -0.163
## bs(within_subjects_lockdown_z_NL, knots = c(-0.725, -0.3), degree = 1)3            4.681
## lockdown                                                                          -2.859
## dowMonday                                                                         -2.696
## dowSaturday                                                                        4.033
## dowSunday                                                                          1.390
## dowThursday                                                                       -3.359
## dowTuesday                                                                        -5.981
## dowWednesday                                                                      -2.581
## bs(within_subjects_lockdown_z_NL, knots = c(-0.725, -0.3), degree = 1)1:lockdown   1.728
## bs(within_subjects_lockdown_z_NL, knots = c(-0.725, -0.3), degree = 1)2:lockdown   1.838
## bs(within_subjects_lockdown_z_NL, knots = c(-0.725, -0.3), degree = 1)3:lockdown  -0.133
##                                                                                       Pr(>|z|)
## bs(within_subjects_lockdown_z_NL, knots = c(-0.725, -0.3), degree = 1)1               0.592589
## bs(within_subjects_lockdown_z_NL, knots = c(-0.725, -0.3), degree = 1)2               0.870861
## bs(within_subjects_lockdown_z_NL, knots = c(-0.725, -0.3), degree = 1)3          0.00000285766
## lockdown                                                                              0.004251
## dowMonday                                                                             0.007017
## dowSaturday                                                                      0.00005496046
## dowSunday                                                                             0.164499
## dowThursday                                                                           0.000782
## dowTuesday                                                                       0.00000000222
## dowWednesday                                                                          0.009850
## bs(within_subjects_lockdown_z_NL, knots = c(-0.725, -0.3), degree = 1)1:lockdown      0.083998
## bs(within_subjects_lockdown_z_NL, knots = c(-0.725, -0.3), degree = 1)2:lockdown      0.066134
## bs(within_subjects_lockdown_z_NL, knots = c(-0.725, -0.3), degree = 1)3:lockdown      0.894048
##                                                                                     
## bs(within_subjects_lockdown_z_NL, knots = c(-0.725, -0.3), degree = 1)1             
## bs(within_subjects_lockdown_z_NL, knots = c(-0.725, -0.3), degree = 1)2             
## bs(within_subjects_lockdown_z_NL, knots = c(-0.725, -0.3), degree = 1)3          ***
## lockdown                                                                         ** 
## dowMonday                                                                        ** 
## dowSaturday                                                                      ***
## dowSunday                                                                           
## dowThursday                                                                      ***
## dowTuesday                                                                       ***
## dowWednesday                                                                     ** 
## bs(within_subjects_lockdown_z_NL, knots = c(-0.725, -0.3), degree = 1)1:lockdown .  
## bs(within_subjects_lockdown_z_NL, knots = c(-0.725, -0.3), degree = 1)2:lockdown .  
## bs(within_subjects_lockdown_z_NL, knots = c(-0.725, -0.3), degree = 1)3:lockdown    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##                  Estimate Std. Error z value
## [0,10]|(10,20]    -4.3548     0.3263 -13.344
## (10,20]|(20,30]   -3.4615     0.3230 -10.717
## (20,30]|(30,40]   -2.6214     0.3214  -8.156
## (30,40]|(40,50]   -1.7245     0.3206  -5.379
## (40,50]|(50,60]   -0.7472     0.3203  -2.333
## (50,60]|(60,70]    0.5187     0.3203   1.619
## (60,70]|(70,80]    1.5187     0.3207   4.735
## (70,80]|(80,90]    2.6161     0.3222   8.120
## (80,90]|(90,100]   3.9616     0.3277  12.089
## (20292 observations deleted due to missingness)

Symptom Analysis

## Cumulative Link Mixed Model fitted with the Laplace approximation
## 
## formula: PA_avg ~ pre_covid_dep * lockdown + (1 | subject)
## data:    df
## 
##  link  threshold nobs logLik    AIC      niter       max.grad cond.H 
##  logit flexible  8195 -16023.31 32072.61 2274(18142) 1.48e-02 3.1e+03
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  subject (Intercept) 1.179    1.086   
## Number of groups:  subject 234 
## 
## Coefficients:
##                         Estimate Std. Error z value     Pr(>|z|)    
## pre_covid_dep          -0.089163   0.015847  -5.627 0.0000000184 ***
## lockdown               -0.529683   0.057707  -9.179      < 2e-16 ***
## pre_covid_dep:lockdown -0.016725   0.008623  -1.940       0.0524 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##                  Estimate Std. Error z value
## [0,10]|(10,20]    -4.6039     0.1269 -36.292
## (10,20]|(20,30]   -3.7203     0.1182 -31.487
## (20,30]|(30,40]   -2.8876     0.1138 -25.372
## (30,40]|(40,50]   -2.0034     0.1113 -18.008
## (40,50]|(50,60]   -1.0410     0.1098  -9.484
## (50,60]|(60,70]    0.1942     0.1093   1.776
## (60,70]|(70,80]    1.1616     0.1105  10.515
## (70,80]|(80,90]    2.2436     0.1144  19.607
## (80,90]|(90,100]   3.5700     0.1282  27.843
## (20091 observations deleted due to missingness)

## Cumulative Link Mixed Model fitted with the Laplace approximation
## 
## formula: PA_avg ~ novel_locations * pre_covid_dep * lockdown + (1 | subject)
## data:    df
## 
##  link  threshold nobs logLik    AIC      niter     max.grad cond.H 
##  logit flexible  7970 -15652.92 31339.85 663(3313) 9.00e+02 3.5e+07
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  subject (Intercept) 1        1       
## Number of groups:  subject 234 
## 
## Coefficients:
##                                           Estimate  Std. Error z value Pr(>|z|)
## novel_locations                         0.00283719  0.00061535   4.611 4.01e-06
## pre_covid_dep                          -0.08259068  0.01554370  -5.313 1.08e-07
## lockdown                               -0.43466023  0.07070884  -6.147 7.89e-10
## novel_locations:pre_covid_dep           0.00013677  0.00009134   1.497 0.134299
## novel_locations:lockdown                0.00391667  0.00141924   2.760 0.005786
## pre_covid_dep:lockdown                  0.00616564  0.01074320   0.574 0.566028
## novel_locations:pre_covid_dep:lockdown -0.00075856  0.00021204  -3.577 0.000347
##                                           
## novel_locations                        ***
## pre_covid_dep                          ***
## lockdown                               ***
## novel_locations:pre_covid_dep             
## novel_locations:lockdown               ** 
## pre_covid_dep:lockdown                    
## novel_locations:pre_covid_dep:lockdown ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##                  Estimate Std. Error z value
## [0,10]|(10,20]    -3.8775     0.1219 -31.810
## (10,20]|(20,30]   -3.0603     0.1139 -26.866
## (20,30]|(30,40]   -2.3028     0.1101 -20.915
## (30,40]|(40,50]   -1.5164     0.1080 -14.039
## (40,50]|(50,60]   -0.6885     0.1070  -6.437
## (50,60]|(60,70]    0.3423     0.1069   3.202
## (60,70]|(70,80]    1.1357     0.1079  10.524
## (70,80]|(80,90]    2.0296     0.1109  18.299
## (80,90]|(90,100]   3.1634     0.1214  26.049
## (20316 observations deleted due to missingness)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: PA_avg_num ~ novel_locations * anx_change + (1 | subject)
##    Data: lockdown_df
## 
## REML criterion at convergence: 25448.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5884 -0.5373  0.0396  0.5611  3.9181 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept) 147.6    12.15   
##  Residual             259.9    16.12   
## Number of obs: 2976, groups:  subject, 205
## 
## Fixed effects:
##                               Estimate  Std. Error          df t value
## (Intercept)                  47.356732    0.932804  222.882232  50.768
## novel_locations               0.054557    0.009954 2927.055084   5.481
## anx_change                   -0.278648    0.227938  227.667241  -1.222
## novel_locations:anx_change   -0.005260    0.002520 2906.862173  -2.087
##                                Pr(>|t|)    
## (Intercept)                     < 2e-16 ***
## novel_locations            0.0000000459 ***
## anx_change                        0.223    
## novel_locations:anx_change        0.037 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) nvl_lc anx_ch
## novel_lctns -0.224              
## anx_change  -0.059  0.031       
## nvl_lctns:_  0.027 -0.177 -0.252

## Cumulative Link Mixed Model fitted with the Laplace approximation
## 
## formula: PA_avg ~ awayFromHome * lockdown * anx_change + (1 | subject)
## data:    df
## 
##  link  threshold nobs logLik    AIC      niter       max.grad cond.H 
##  logit flexible  7362 -14406.07 28846.14 3674(21983) 1.50e-02 9.3e+02
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  subject (Intercept) 1.267    1.126   
## Number of groups:  subject 208 
## 
## Coefficients:
##                                    Estimate Std. Error z value Pr(>|z|)    
## awayFromHome1                      0.138277   0.058566   2.361   0.0182 *  
## lockdown                          -0.568412   0.059635  -9.532   <2e-16 ***
## anx_change                         0.011357   0.022044   0.515   0.6064    
## awayFromHome1:lockdown             0.031053   0.096104   0.323   0.7466    
## awayFromHome1:anx_change           0.004198   0.014688   0.286   0.7750    
## lockdown:anx_change               -0.029016   0.015543  -1.867   0.0619 .  
## awayFromHome1:lockdown:anx_change -0.052153   0.022773  -2.290   0.0220 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##                  Estimate Std. Error z value
## [0,10]|(10,20]   -4.08007    0.11209  -36.40
## (10,20]|(20,30]  -3.20710    0.10099  -31.76
## (20,30]|(30,40]  -2.37678    0.09553  -24.88
## (30,40]|(40,50]  -1.51052    0.09259  -16.31
## (40,50]|(50,60]  -0.55828    0.09123   -6.12
## (50,60]|(60,70]   0.69179    0.09150    7.56
## (60,70]|(70,80]   1.67521    0.09368   17.88
## (70,80]|(80,90]   2.74631    0.09941   27.63
## (80,90]|(90,100]  4.08753    0.11800   34.64
## (20924 observations deleted due to missingness)

## [1] "BIC: DEP_on_PA_by_lockdown, NL_on_PA_by_DEP_by_lockdown, NL_on_PA_by_anxiety_change"
##    df      BIC
## d1 13 32163.76
## d2 17 31458.57
## d3  6 25496.88

BIC Analysis

##                                      df       BIC
## complex_PA_RE                        21  19565.38
## simple_PA_RE                         17  19451.50
## complex_PA_NL                        21  18631.69
## simple_PA_NL                         17  18502.51
## RE_LD                                10  56037.54
## NL_LD                                10 222550.62
## PA_LD                                17  32218.87
## NA_LD                                17  31829.97
## PA_RE_LD                             19  32213.93
## PA_NL_LD                             19  31259.15
## PA_RE_PreLDRE_PostLD                 19  12776.65
## PA_RE_PreLDNL_PostLD                 19  12787.45
## PA_NL_PreLD_notch                    19  18517.38
## PA_NL_PostLD_notch                   19  12771.08
## PA_NL_LD_notch                       23  31279.43
## PA_NL_LD_notch_controldistance_100KM 23  29500.16
## Z_within_sub                         23  29512.06
## Z_within_sub_LD                      23  31228.15
## d1                                   13  32163.76
## d2                                   17  31458.57
## d3                                    6  25496.88