library(ggplot2)

data(diamonds)

summary(diamonds)
##      carat               cut        color        clarity          depth      
##  Min.   :0.2000   Fair     : 1610   D: 6775   SI1    :13065   Min.   :43.00  
##  1st Qu.:0.4000   Good     : 4906   E: 9797   VS2    :12258   1st Qu.:61.00  
##  Median :0.7000   Very Good:12082   F: 9542   SI2    : 9194   Median :61.80  
##  Mean   :0.7979   Premium  :13791   G:11292   VS1    : 8171   Mean   :61.75  
##  3rd Qu.:1.0400   Ideal    :21551   H: 8304   VVS2   : 5066   3rd Qu.:62.50  
##  Max.   :5.0100                     I: 5422   VVS1   : 3655   Max.   :79.00  
##                                     J: 2808   (Other): 2531                  
##      table           price             x                y         
##  Min.   :43.00   Min.   :  326   Min.   : 0.000   Min.   : 0.000  
##  1st Qu.:56.00   1st Qu.:  950   1st Qu.: 4.710   1st Qu.: 4.720  
##  Median :57.00   Median : 2401   Median : 5.700   Median : 5.710  
##  Mean   :57.46   Mean   : 3933   Mean   : 5.731   Mean   : 5.735  
##  3rd Qu.:59.00   3rd Qu.: 5324   3rd Qu.: 6.540   3rd Qu.: 6.540  
##  Max.   :95.00   Max.   :18823   Max.   :10.740   Max.   :58.900  
##                                                                   
##        z         
##  Min.   : 0.000  
##  1st Qu.: 2.910  
##  Median : 3.530  
##  Mean   : 3.539  
##  3rd Qu.: 4.040  
##  Max.   :31.800  
## 
ggplot(data=diamonds) + geom_histogram(binwidth=500, aes(x=diamonds$price)) + ggtitle("Diamond Price Distribution") + xlab("Diamond Price U$") + ylab("Frequency") + theme_minimal()
## Warning: Use of `diamonds$price` is discouraged. Use `price` instead.

ggplot(data=diamonds) + geom_histogram(binwidth=500, aes(x=diamonds$price)) + ggtitle("Diamond Price Distribution") + xlab("Diamond Price U$ - Binwidth 500") + ylab("Frequency") + theme_minimal() + xlim(0,2500)
## Warning: Use of `diamonds$price` is discouraged. Use `price` instead.
## Warning: Removed 26398 rows containing non-finite values (stat_bin).
## Warning: Removed 2 rows containing missing values (geom_bar).

ggplot(diamonds, aes(factor(cut), price, fill=cut)) + geom_boxplot() + ggtitle("Diamond Price according Cut") + xlab("Type of Cut") + ylab("Diamond Price U$") + coord_cartesian(ylim=c(0,7500))

ggplot(data=diamonds, aes(x=carat)) + geom_freqpoly() + ggtitle("Diamond Frequency by Carat") + xlab("Carat Size") + ylab("Count")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.