library(ggplot2)
data(diamonds)
summary(diamonds)
## carat cut color clarity depth
## Min. :0.2000 Fair : 1610 D: 6775 SI1 :13065 Min. :43.00
## 1st Qu.:0.4000 Good : 4906 E: 9797 VS2 :12258 1st Qu.:61.00
## Median :0.7000 Very Good:12082 F: 9542 SI2 : 9194 Median :61.80
## Mean :0.7979 Premium :13791 G:11292 VS1 : 8171 Mean :61.75
## 3rd Qu.:1.0400 Ideal :21551 H: 8304 VVS2 : 5066 3rd Qu.:62.50
## Max. :5.0100 I: 5422 VVS1 : 3655 Max. :79.00
## J: 2808 (Other): 2531
## table price x y
## Min. :43.00 Min. : 326 Min. : 0.000 Min. : 0.000
## 1st Qu.:56.00 1st Qu.: 950 1st Qu.: 4.710 1st Qu.: 4.720
## Median :57.00 Median : 2401 Median : 5.700 Median : 5.710
## Mean :57.46 Mean : 3933 Mean : 5.731 Mean : 5.735
## 3rd Qu.:59.00 3rd Qu.: 5324 3rd Qu.: 6.540 3rd Qu.: 6.540
## Max. :95.00 Max. :18823 Max. :10.740 Max. :58.900
##
## z
## Min. : 0.000
## 1st Qu.: 2.910
## Median : 3.530
## Mean : 3.539
## 3rd Qu.: 4.040
## Max. :31.800
##
ggplot(data=diamonds) + geom_histogram(binwidth=500, aes(x=diamonds$price)) + ggtitle("Diamond Price Distribution") + xlab("Diamond Price U$") + ylab("Frequency") + theme_minimal()
## Warning: Use of `diamonds$price` is discouraged. Use `price` instead.

ggplot(data=diamonds) + geom_histogram(binwidth=500, aes(x=diamonds$price)) + ggtitle("Diamond Price Distribution") + xlab("Diamond Price U$ - Binwidth 500") + ylab("Frequency") + theme_minimal() + xlim(0,2500)
## Warning: Use of `diamonds$price` is discouraged. Use `price` instead.
## Warning: Removed 26398 rows containing non-finite values (stat_bin).
## Warning: Removed 2 rows containing missing values (geom_bar).

ggplot(diamonds, aes(factor(cut), price, fill=cut)) + geom_boxplot() + ggtitle("Diamond Price according Cut") + xlab("Type of Cut") + ylab("Diamond Price U$") + coord_cartesian(ylim=c(0,7500))

ggplot(data=diamonds, aes(x=carat)) + geom_freqpoly() + ggtitle("Diamond Frequency by Carat") + xlab("Carat Size") + ylab("Count")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
