Dissertation Analyses

load(file="/Users/meganwilliams/Desktop/Dissertation/StroopMixed.rdata")
load(file="/Users/meganwilliams/Desktop/Dissertation/Allvars.rdata")
library(effects)
library(interactions)

Animal Naming Test - Psychological Aggression

Model 1

ANlog1 <- glm(PsychAggress ~ FluencyWord, data=Allvars,family = "binomial")
summary(ANlog1)
## 
## Call:
## glm(formula = PsychAggress ~ FluencyWord, family = "binomial", 
##     data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.1217   0.4953   0.5325   0.5587   0.6215  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)   
## (Intercept)  1.36584    0.42838   3.188  0.00143 **
## FluencyWord  0.02579    0.02163   1.192  0.23321   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 505.40  on 640  degrees of freedom
## Residual deviance: 503.95  on 639  degrees of freedom
## AIC: 507.95
## 
## Number of Fisher Scoring iterations: 4
confint(ANlog1)
##                  2.5 %     97.5 %
## (Intercept)  0.5308810 2.21242735
## FluencyWord -0.0159852 0.06893414
exp(cbind(OR = coef(ANlog1), confint(ANlog1)))
##                   OR     2.5 %   97.5 %
## (Intercept) 3.919008 1.7004297 9.137870
## FluencyWord 1.026123 0.9841419 1.071366
########Compare to null model 
#Difference in Deviance
with(ANlog1,null.deviance - deviance)
## [1] 1.448277
#Degrees of freedom for the difference between two models
with(ANlog1,df.null - df.residual)
## [1] 1
#p-value
with(ANlog1,pchisq(null.deviance-deviance,df.null-df.residual,lower.tail=FALSE))
## [1] 0.2288045

Model 2

ANlog2 <- glm(PsychAggress ~ FluencyWord + Age + Sex + PovStat + WRATtotal, data = Allvars, family = "binomial")
summary(ANlog2)
## 
## Call:
## glm(formula = PsychAggress ~ FluencyWord + Age + Sex + PovStat + 
##     WRATtotal, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.3876   0.4129   0.4958   0.5797   0.8605  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)  
## (Intercept)   1.76445    0.96978   1.819   0.0688 .
## FluencyWord   0.02273    0.02416   0.941   0.3468  
## Age          -0.02055    0.01318  -1.559   0.1189  
## SexMen       -0.46955    0.24092  -1.949   0.0513 .
## PovStatBelow  0.30851    0.27181   1.135   0.2564  
## WRATtotal     0.01839    0.01566   1.175   0.2400  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 505.40  on 640  degrees of freedom
## Residual deviance: 493.62  on 635  degrees of freedom
## AIC: 505.62
## 
## Number of Fisher Scoring iterations: 5
confint(ANlog2)
##                    2.5 %        97.5 %
## (Intercept)  -0.11687212  3.6921775664
## FluencyWord  -0.02410873  0.0707277787
## Age          -0.04657233  0.0051886613
## SexMen       -0.94753111 -0.0005008865
## PovStatBelow -0.21071033  0.8592819822
## WRATtotal    -0.01283072  0.0487244784
exp(cbind(OR = coef(ANlog2), confint(ANlog2)))
##                     OR     2.5 %     97.5 %
## (Intercept)  5.8383698 0.8896990 40.1321423
## FluencyWord  1.0229911 0.9761796  1.0732890
## Age          0.9796646 0.9544955  1.0052021
## SexMen       0.6252811 0.3876970  0.9994992
## PovStatBelow 1.3613906 0.8100087  2.3614645
## WRATtotal    1.0185651 0.9872512  1.0499310
########Compare to null model 
#Difference in Deviance
with(ANlog2,null.deviance - deviance)
## [1] 11.77697
#Degrees of freedom for the difference between two models
with(ANlog2,df.null - df.residual)
## [1] 5
#p-value
with(ANlog2,pchisq(null.deviance-deviance,df.null-df.residual,lower.tail=FALSE))
## [1] 0.03797502

Model 3

ANlog3 <- glm(PsychAggress ~ (FluencyWord + Sex + PovStat)^3 + Age + WRATtotal, data = Allvars, family = "binomial")
summary(ANlog3)
## 
## Call:
## glm(formula = PsychAggress ~ (FluencyWord + Sex + PovStat)^3 + 
##     Age + WRATtotal, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.3284   0.4143   0.4835   0.5639   1.0062  
## 
## Coefficients:
##                                  Estimate Std. Error z value Pr(>|z|)  
## (Intercept)                      2.008377   1.153266   1.741   0.0816 .
## FluencyWord                      0.011820   0.038971   0.303   0.7617  
## SexMen                          -1.424781   1.027353  -1.387   0.1655  
## PovStatBelow                    -0.019326   1.426951  -0.014   0.9892  
## Age                             -0.020953   0.013261  -1.580   0.1141  
## WRATtotal                        0.019146   0.015830   1.209   0.2265  
## FluencyWord:SexMen               0.043940   0.052092   0.844   0.3989  
## FluencyWord:PovStatBelow         0.007169   0.077334   0.093   0.9261  
## SexMen:PovStatBelow              2.731876   2.084764   1.310   0.1901  
## FluencyWord:SexMen:PovStatBelow -0.119742   0.105978  -1.130   0.2585  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 505.40  on 640  degrees of freedom
## Residual deviance: 490.61  on 631  degrees of freedom
## AIC: 510.61
## 
## Number of Fisher Scoring iterations: 5
confint(ANlog3)
##                                       2.5 %     97.5 %
## (Intercept)                     -0.23228008 4.29821884
## FluencyWord                     -0.06215661 0.09117398
## SexMen                          -3.44849510 0.58663361
## PovStatBelow                    -2.81316385 2.80853892
## Age                             -0.04715221 0.00494707
## WRATtotal                       -0.01238725 0.04984477
## FluencyWord:SexMen              -0.05919918 0.14563277
## FluencyWord:PovStatBelow        -0.14070102 0.16460308
## SexMen:PovStatBelow             -1.31542020 6.89273664
## FluencyWord:SexMen:PovStatBelow -0.33129450 0.08587307
exp(cbind(OR = coef(ANlog3), confint(ANlog3)))
##                                         OR      2.5 %     97.5 %
## (Intercept)                      7.4512169 0.79272407  73.568640
## FluencyWord                      1.0118901 0.93973570   1.095460
## SexMen                           0.2405612 0.03179345   1.797926
## PovStatBelow                     0.9808595 0.06001481  16.585667
## Age                              0.9792650 0.95394219   1.004959
## WRATtotal                        1.0193306 0.98768916   1.051108
## FluencyWord:SexMen               1.0449201 0.94251902   1.156771
## FluencyWord:PovStatBelow         1.0071944 0.86874901   1.178925
## SexMen:PovStatBelow             15.3616755 0.26836153 985.093576
## FluencyWord:SexMen:PovStatBelow  0.8871492 0.71799369   1.089668
########Compare to null model 
#Difference in Deviance
with(ANlog3,null.deviance - deviance)
## [1] 14.78833
#Degrees of freedom for the difference between two models
with(ANlog3,df.null - df.residual)
## [1] 9
#p-value
with(ANlog3,pchisq(null.deviance-deviance,df.null-df.residual,lower.tail=FALSE))
## [1] 0.09691678

Compare Models 1,2, & 3

anova(ANlog1,ANlog2,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PsychAggress ~ FluencyWord
## Model 2: PsychAggress ~ FluencyWord + Age + Sex + PovStat + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)  
## 1       639     503.95                       
## 2       635     493.62  4   10.329  0.03524 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(ANlog2,ANlog3,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PsychAggress ~ FluencyWord + Age + Sex + PovStat + WRATtotal
## Model 2: PsychAggress ~ (FluencyWord + Sex + PovStat)^3 + Age + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1       635     493.62                     
## 2       631     490.61  4   3.0114   0.5559
anova(ANlog1,ANlog3,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PsychAggress ~ FluencyWord
## Model 2: PsychAggress ~ (FluencyWord + Sex + PovStat)^3 + Age + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1       639     503.95                     
## 2       631     490.61  8    13.34   0.1007

Suggested Model by Predictors

anova(ANlog3, test="Chisq")
## Analysis of Deviance Table
## 
## Model: binomial, link: logit
## 
## Response: PsychAggress
## 
## Terms added sequentially (first to last)
## 
## 
##                         Df Deviance Resid. Df Resid. Dev Pr(>Chi)  
## NULL                                      640     505.40           
## FluencyWord              1   1.4483       639     503.95  0.22880  
## Sex                      1   4.7909       638     499.16  0.02861 *
## PovStat                  1   1.7025       637     497.46  0.19196  
## Age                      1   2.4815       636     494.98  0.11519  
## WRATtotal                1   1.3539       635     493.62  0.24461  
## FluencyWord:Sex          1   0.0965       634     493.53  0.75604  
## FluencyWord:PovStat      1   0.9028       633     492.63  0.34204  
## Sex:PovStat              1   0.7176       632     491.91  0.39692  
## FluencyWord:Sex:PovStat  1   1.2944       631     490.61  0.25523  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
ANlog4 <- glm(PsychAggress ~ Sex, data = Allvars, family = "binomial")
summary(ANlog4)
## 
## Call:
## glm(formula = PsychAggress ~ Sex, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.1065   0.4799   0.4799   0.5931   0.5931  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)   2.1035     0.1765  11.915   <2e-16 ***
## SexMen       -0.4548     0.2345  -1.939   0.0525 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 505.40  on 640  degrees of freedom
## Residual deviance: 501.59  on 639  degrees of freedom
## AIC: 505.59
## 
## Number of Fisher Scoring iterations: 4

Animal Naming Test - Physical Assault

Model 1

ANlog1 <- glm(PhysAssault ~ FluencyWord, data=Allvars,family = "binomial")
summary(ANlog1)
## 
## Call:
## glm(formula = PhysAssault ~ FluencyWord, family = "binomial", 
##     data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.5534  -0.5265  -0.5149  -0.4979   2.1386  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -1.71589    0.44187  -3.883 0.000103 ***
## FluencyWord -0.01189    0.02198  -0.541 0.588385    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 482.53  on 640  degrees of freedom
## Residual deviance: 482.24  on 639  degrees of freedom
## AIC: 486.24
## 
## Number of Fisher Scoring iterations: 4
confint(ANlog1)
##                   2.5 %      97.5 %
## (Intercept) -2.59122387 -0.85664979
## FluencyWord -0.05568067  0.03060649
exp(cbind(OR = coef(ANlog1), confint(ANlog1)))
##                    OR      2.5 %    97.5 %
## (Intercept) 0.1798035 0.07492828 0.4245821
## FluencyWord 0.9881767 0.94584113 1.0310797
########Compare to null model 
#Difference in Deviance
with(ANlog1,null.deviance - deviance)
## [1] 0.2952494
#Degrees of freedom for the difference between two models
with(ANlog1,df.null - df.residual)
## [1] 1
#p-value
with(ANlog1,pchisq(null.deviance-deviance,df.null-df.residual,lower.tail=FALSE))
## [1] 0.586876

Model 2

ANlog2 <- glm(PhysAssault ~ FluencyWord + Age + Sex + PovStat + WRATtotal, data = Allvars, family = "binomial")
summary(ANlog2)
## 
## Call:
## glm(formula = PhysAssault ~ FluencyWord + Age + Sex + PovStat + 
##     WRATtotal, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.8546  -0.5507  -0.4755  -0.3870   2.4488  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)  
## (Intercept)  -1.04609    1.06198  -0.985   0.3246  
## FluencyWord  -0.02460    0.02437  -1.009   0.3129  
## Age          -0.03521    0.01391  -2.531   0.0114 *
## SexMen       -0.11481    0.24751  -0.464   0.6427  
## PovStatBelow  0.47095    0.25358   1.857   0.0633 .
## WRATtotal     0.02420    0.01833   1.320   0.1868  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 482.53  on 640  degrees of freedom
## Residual deviance: 468.39  on 635  degrees of freedom
## AIC: 480.39
## 
## Number of Fisher Scoring iterations: 5
confint(ANlog2)
##                    2.5 %       97.5 %
## (Intercept)  -3.16048185  1.011381105
## FluencyWord  -0.07308124  0.022627659
## Age          -0.06293818 -0.008280836
## SexMen       -0.60420415  0.368987112
## PovStatBelow -0.03137323  0.965505520
## WRATtotal    -0.01073217  0.061288899
exp(cbind(OR = coef(ANlog2), confint(ANlog2)))
##                     OR     2.5 %    97.5 %
## (Intercept)  0.3513075 0.0424053 2.7493956
## FluencyWord  0.9757021 0.9295253 1.0228856
## Age          0.9654027 0.9390015 0.9917534
## SexMen       0.8915333 0.5465092 1.4462690
## PovStatBelow 1.6015097 0.9691138 2.6261149
## WRATtotal    1.0244978 0.9893252 1.0632060
########Compare to null model 
#Difference in Deviance
with(ANlog2,null.deviance - deviance)
## [1] 14.13855
#Degrees of freedom for the difference between two models
with(ANlog2,df.null - df.residual)
## [1] 5
#p-value
with(ANlog2,pchisq(null.deviance-deviance,df.null-df.residual,lower.tail=FALSE))
## [1] 0.01475288

Model 3

ANlog3 <- glm(PhysAssault ~ (FluencyWord + Sex + PovStat)^3 + Age + WRATtotal, data = Allvars, family = "binomial")
summary(ANlog3)
## 
## Call:
## glm(formula = PhysAssault ~ (FluencyWord + Sex + PovStat)^3 + 
##     Age + WRATtotal, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.8525  -0.5493  -0.4681  -0.3801   2.5158  
## 
## Coefficients:
##                                  Estimate Std. Error z value Pr(>|z|)  
## (Intercept)                     -1.600446   1.212631  -1.320   0.1869  
## FluencyWord                      0.003624   0.036624   0.099   0.9212  
## SexMen                           0.975863   1.161915   0.840   0.4010  
## PovStatBelow                     1.495936   1.229964   1.216   0.2239  
## Age                             -0.034897   0.013937  -2.504   0.0123 *
## WRATtotal                        0.024426   0.018371   1.330   0.1837  
## FluencyWord:SexMen              -0.056565   0.056061  -1.009   0.3130  
## FluencyWord:PovStatBelow        -0.057081   0.064744  -0.882   0.3780  
## SexMen:PovStatBelow             -1.816965   1.938739  -0.937   0.3487  
## FluencyWord:SexMen:PovStatBelow  0.098700   0.097335   1.014   0.3106  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 482.53  on 640  degrees of freedom
## Residual deviance: 466.97  on 631  degrees of freedom
## AIC: 486.97
## 
## Number of Fisher Scoring iterations: 5
confint(ANlog3)
##                                       2.5 %       97.5 %
## (Intercept)                     -4.01506723  0.747960669
## FluencyWord                     -0.06998106  0.074381636
## SexMen                          -1.31267722  3.255391216
## PovStatBelow                    -0.90815521  3.931751771
## Age                             -0.06267745 -0.007917641
## WRATtotal                       -0.01061634  0.061555509
## FluencyWord:SexMen              -0.16772931  0.052793528
## FluencyWord:PovStatBelow        -0.18772678  0.067587070
## SexMen:PovStatBelow             -5.66030108  1.961694248
## FluencyWord:SexMen:PovStatBelow -0.09128825  0.291518237
exp(cbind(OR = coef(ANlog3), confint(ANlog3)))
##                                        OR       2.5 %     97.5 %
## (Intercept)                     0.2018065 0.018041742  2.1126872
## FluencyWord                     1.0036301 0.932411483  1.0772178
## SexMen                          2.6534555 0.269098655 25.9297567
## PovStatBelow                    4.4635102 0.403267482 50.9962332
## Age                             0.9657049 0.939246381  0.9921136
## WRATtotal                       1.0247266 0.989439812  1.0634895
## FluencyWord:SexMen              0.9450048 0.845582691  1.0542120
## FluencyWord:PovStatBelow        0.9445178 0.828841128  1.0699234
## SexMen:PovStatBelow             0.1625182 0.003481469  7.1113653
## FluencyWord:SexMen:PovStatBelow 1.1037354 0.912754575  1.3384580
########Compare to null model 
#Difference in Deviance
with(ANlog3,null.deviance - deviance)
## [1] 15.56602
#Degrees of freedom for the difference between two models
with(ANlog3,df.null - df.residual)
## [1] 9
#p-value
with(ANlog3,pchisq(null.deviance-deviance,df.null-df.residual,lower.tail=FALSE))
## [1] 0.07651624

Compare Models 1,2, & 3

anova(ANlog1,ANlog2,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PhysAssault ~ FluencyWord
## Model 2: PhysAssault ~ FluencyWord + Age + Sex + PovStat + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)   
## 1       639     482.24                        
## 2       635     468.39  4   13.843 0.007812 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(ANlog2,ANlog3,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PhysAssault ~ FluencyWord + Age + Sex + PovStat + WRATtotal
## Model 2: PhysAssault ~ (FluencyWord + Sex + PovStat)^3 + Age + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1       635     468.39                     
## 2       631     466.97  4   1.4275   0.8394
anova(ANlog1,ANlog3,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PhysAssault ~ FluencyWord
## Model 2: PhysAssault ~ (FluencyWord + Sex + PovStat)^3 + Age + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)  
## 1       639     482.24                       
## 2       631     466.97  8   15.271  0.05409 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Suggested Model by Predictors

anova(ANlog3, test="Chisq")
## Analysis of Deviance Table
## 
## Model: binomial, link: logit
## 
## Response: PhysAssault
## 
## Terms added sequentially (first to last)
## 
## 
##                         Df Deviance Resid. Df Resid. Dev Pr(>Chi)  
## NULL                                      640     482.53           
## FluencyWord              1   0.2952       639     482.24  0.58688  
## Sex                      1   0.6488       638     481.59  0.42053  
## PovStat                  1   4.7487       637     476.84  0.02932 *
## Age                      1   6.6326       636     470.21  0.01001 *
## WRATtotal                1   1.8132       635     468.39  0.17812  
## FluencyWord:Sex          1   0.2920       634     468.10  0.58895  
## FluencyWord:PovStat      1   0.0765       633     468.03  0.78207  
## Sex:PovStat              1   0.0245       632     468.00  0.87570  
## FluencyWord:Sex:PovStat  1   1.0345       631     466.97  0.30910  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
ANlog4 <- glm(PsychAggress ~ PovStat + Age, data = Allvars, family = "binomial")
summary(ANlog4)
## 
## Call:
## glm(formula = PsychAggress ~ PovStat + Age, family = "binomial", 
##     data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.2470   0.4626   0.5111   0.5704   0.6795  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)    
## (Intercept)   2.93498    0.64793   4.530  5.9e-06 ***
## PovStatBelow  0.24765    0.26716   0.927   0.3539    
## Age          -0.02408    0.01292  -1.864   0.0623 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 505.4  on 640  degrees of freedom
## Residual deviance: 500.3  on 638  degrees of freedom
## AIC: 506.3
## 
## Number of Fisher Scoring iterations: 4