Dissertation Analyses

load(file="/Users/meganwilliams/Desktop/Dissertation/StroopMixed.rdata")
load(file="/Users/meganwilliams/Desktop/Dissertation/Allvars.rdata")
library(effects)
library(interactions)

Digit Span Forward - Psychological Aggression

Model 1

DSFlog1 <- glm(PsychAggress ~ DigitSpanFwd, data=Allvars,family = "binomial")
summary(DSFlog1)
## 
## Call:
## glm(formula = PsychAggress ~ DigitSpanFwd, family = "binomial", 
##     data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.2372   0.4749   0.5205   0.5697   0.6799  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)   
## (Intercept)   1.15245    0.39763   2.898  0.00375 **
## DigitSpanFwd  0.09729    0.05325   1.827  0.06768 . 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 505.40  on 640  degrees of freedom
## Residual deviance: 501.93  on 639  degrees of freedom
## AIC: 505.93
## 
## Number of Fisher Scoring iterations: 4
confint(DSFlog1)
##                     2.5 %    97.5 %
## (Intercept)   0.374377408 1.9358469
## DigitSpanFwd -0.004952948 0.2041858
exp(cbind(OR = coef(DSFlog1), confint(DSFlog1)))
##                    OR     2.5 %   97.5 %
## (Intercept)  3.165935 1.4540858 6.929910
## DigitSpanFwd 1.102177 0.9950593 1.226526
########Compare to null model 
#Difference in Deviance
with(DSFlog1,null.deviance - deviance)
## [1] 3.471681
#Degrees of freedom for the difference between two models
with(DSFlog1,df.null - df.residual)
## [1] 1
#p-value
with(DSFlog1,pchisq(null.deviance-deviance,df.null-df.residual,lower.tail=FALSE))
## [1] 0.06242784

Model 2

DSFlog2 <- glm(PsychAggress ~ DigitSpanFwd + Age + Sex + PovStat + WRATtotal, data = Allvars, family = "binomial")
summary(DSFlog2)
## 
## Call:
## glm(formula = PsychAggress ~ DigitSpanFwd + Age + Sex + PovStat + 
##     WRATtotal, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.3744   0.4082   0.4997   0.5858   0.8451  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)  
## (Intercept)   1.78187    0.95032   1.875   0.0608 .
## DigitSpanFwd  0.07980    0.06021   1.325   0.1850  
## Age          -0.02014    0.01315  -1.531   0.1257  
## SexMen       -0.44464    0.23712  -1.875   0.0608 .
## PovStatBelow  0.31763    0.27196   1.168   0.2428  
## WRATtotal     0.01382    0.01643   0.841   0.4003  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 505.40  on 640  degrees of freedom
## Residual deviance: 492.71  on 635  degrees of freedom
## AIC: 504.71
## 
## Number of Fisher Scoring iterations: 5
confint(DSFlog2)
##                    2.5 %      97.5 %
## (Intercept)  -0.05975028 3.672887543
## DigitSpanFwd -0.03597106 0.200534414
## Age          -0.04613507 0.005539276
## SexMen       -0.91505007 0.017156078
## PovStatBelow -0.20190212 0.868656506
## WRATtotal    -0.01900186 0.045600639
exp(cbind(OR = coef(DSFlog2), confint(DSFlog2)))
##                     OR     2.5 %    97.5 %
## (Intercept)  5.9409367 0.9419997 39.365411
## DigitSpanFwd 1.0830707 0.9646682  1.222056
## Age          0.9800581 0.9549130  1.005555
## SexMen       0.6410525 0.4004966  1.017304
## PovStatBelow 1.3738701 0.8171749  2.383706
## WRATtotal    1.0139186 0.9811775  1.046656
########Compare to null model 
#Difference in Deviance
with(DSFlog2,null.deviance - deviance)
## [1] 12.68671
#Degrees of freedom for the difference between two models
with(DSFlog2,df.null - df.residual)
## [1] 5
#p-value
with(DSFlog2,pchisq(null.deviance-deviance,df.null-df.residual,lower.tail=FALSE))
## [1] 0.02649835

Model 3

DSFlog3 <- glm(PsychAggress ~ (DigitSpanFwd + Sex + PovStat)^3 + Age + WRATtotal, data = Allvars, family = "binomial")
summary(DSFlog3)
## 
## Call:
## glm(formula = PsychAggress ~ (DigitSpanFwd + Sex + PovStat)^3 + 
##     Age + WRATtotal, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.2630   0.4174   0.4864   0.5671   0.8936  
## 
## Coefficients:
##                                  Estimate Std. Error z value Pr(>|z|)  
## (Intercept)                       2.05209    1.11257   1.844   0.0651 .
## DigitSpanFwd                      0.04840    0.09789   0.494   0.6210  
## SexMen                           -0.95692    0.94536  -1.012   0.3114  
## PovStatBelow                      0.19631    1.31460   0.149   0.8813  
## Age                              -0.02016    0.01320  -1.527   0.1267  
## WRATtotal                         0.01412    0.01657   0.852   0.3939  
## DigitSpanFwd:SexMen               0.05684    0.12434   0.457   0.6476  
## DigitSpanFwd:PovStatBelow        -0.01234    0.17920  -0.069   0.9451  
## SexMen:PovStatBelow               0.20818    1.84272   0.113   0.9100  
## DigitSpanFwd:SexMen:PovStatBelow  0.02781    0.25559   0.109   0.9134  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 505.40  on 640  degrees of freedom
## Residual deviance: 491.88  on 631  degrees of freedom
## AIC: 511.88
## 
## Number of Fisher Scoring iterations: 5
confint(DSFlog3)
##                                        2.5 %      97.5 %
## (Intercept)                      -0.09264104 4.279188872
## DigitSpanFwd                     -0.13709894 0.248989556
## SexMen                           -2.82517597 0.891305947
## PovStatBelow                     -2.37156876 2.815163307
## Age                              -0.04624726 0.005614341
## WRATtotal                        -0.01894722 0.046169635
## DigitSpanFwd:SexMen              -0.18968591 0.299953467
## DigitSpanFwd:PovStatBelow        -0.35703285 0.351928834
## SexMen:PovStatBelow              -3.43757513 3.815705044
## DigitSpanFwd:SexMen:PovStatBelow -0.47184254 0.537277577
exp(cbind(OR = coef(DSFlog3), confint(DSFlog3)))
##                                         OR      2.5 %    97.5 %
## (Intercept)                      7.7841672 0.91152064 72.181868
## DigitSpanFwd                     1.0495926 0.87188396  1.282729
## SexMen                           0.3840725 0.05929822  2.438312
## PovStatBelow                     1.2169073 0.09333419 16.695902
## Age                              0.9800401 0.95480585  1.005630
## WRATtotal                        1.0142231 0.98123115  1.047252
## DigitSpanFwd:SexMen              1.0584906 0.82721892  1.349796
## DigitSpanFwd:PovStatBelow        0.9877360 0.69974951  1.421807
## SexMen:PovStatBelow              1.2314393 0.03214253 45.408760
## DigitSpanFwd:SexMen:PovStatBelow 1.0281966 0.62385173  1.711342
########Compare to null model 
#Difference in Deviance
with(DSFlog3,null.deviance - deviance)
## [1] 13.52276
#Degrees of freedom for the difference between two models
with(DSFlog3,df.null - df.residual)
## [1] 9
#p-value
with(DSFlog3,pchisq(null.deviance-deviance,df.null-df.residual,lower.tail=FALSE))
## [1] 0.1403431

Compare Models 1,2, & 3

anova(DSFlog1,DSFlog2,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PsychAggress ~ DigitSpanFwd
## Model 2: PsychAggress ~ DigitSpanFwd + Age + Sex + PovStat + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)  
## 1       639     501.93                       
## 2       635     492.71  4    9.215  0.05594 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(DSFlog2,DSFlog3,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PsychAggress ~ DigitSpanFwd + Age + Sex + PovStat + WRATtotal
## Model 2: PsychAggress ~ (DigitSpanFwd + Sex + PovStat)^3 + Age + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1       635     492.71                     
## 2       631     491.88  4  0.83605   0.9336
anova(DSFlog1,DSFlog3,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PsychAggress ~ DigitSpanFwd
## Model 2: PsychAggress ~ (DigitSpanFwd + Sex + PovStat)^3 + Age + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1       639     501.93                     
## 2       631     491.88  8   10.051   0.2615

Suggested Model by Predictors

anova(DSFlog3, test="Chisq")
## Analysis of Deviance Table
## 
## Model: binomial, link: logit
## 
## Response: PsychAggress
## 
## Terms added sequentially (first to last)
## 
## 
##                          Df Deviance Resid. Df Resid. Dev Pr(>Chi)  
## NULL                                       640     505.40           
## DigitSpanFwd              1   3.4717       639     501.93  0.06243 .
## Sex                       1   4.2385       638     497.69  0.03952 *
## PovStat                   1   1.9145       637     495.78  0.16647  
## Age                       1   2.3652       636     493.41  0.12407  
## WRATtotal                 1   0.6969       635     492.71  0.40381  
## DigitSpanFwd:Sex          1   0.2701       634     492.44  0.60330  
## DigitSpanFwd:PovStat      1   0.0003       633     492.44  0.98737  
## Sex:PovStat               1   0.5539       632     491.89  0.45673  
## DigitSpanFwd:Sex:PovStat  1   0.0118       631     491.88  0.91332  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
DSFlog4 <- glm(PsychAggress ~ DigitSpanFwd + Sex, data = Allvars, family = "binomial")
summary(DSFlog4)
## 
## Call:
## glm(formula = PsychAggress ~ DigitSpanFwd + Sex, family = "binomial", 
##     data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.3541   0.4389   0.5084   0.5776   0.7632  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)   
## (Intercept)   1.35916    0.41403   3.283  0.00103 **
## DigitSpanFwd  0.10361    0.05357   1.934  0.05310 . 
## SexMen       -0.48183    0.23569  -2.044  0.04092 * 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 505.40  on 640  degrees of freedom
## Residual deviance: 497.69  on 638  degrees of freedom
## AIC: 503.69
## 
## Number of Fisher Scoring iterations: 4

Digit Span Forward - Physical Assault

Model 1

DSFlog1 <- glm(PhysAssault ~ DigitSpanFwd, data=Allvars,family = "binomial")
summary(DSFlog1)
## 
## Call:
## glm(formula = PhysAssault ~ DigitSpanFwd, family = "binomial", 
##     data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.5494  -0.5236  -0.5136  -0.5038   2.0889  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  -2.10336    0.40909  -5.141 2.73e-07 ***
## DigitSpanFwd  0.02063    0.05157   0.400    0.689    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 482.53  on 640  degrees of freedom
## Residual deviance: 482.37  on 639  degrees of freedom
## AIC: 486.37
## 
## Number of Fisher Scoring iterations: 4
confint(DSFlog1)
##                    2.5 %     97.5 %
## (Intercept)  -2.91625120 -1.3096827
## DigitSpanFwd -0.08208486  0.1205407
exp(cbind(OR = coef(DSFlog1), confint(DSFlog1)))
##                     OR      2.5 %    97.5 %
## (Intercept)  0.1220461 0.05413625 0.2699057
## DigitSpanFwd 1.0208459 0.92119379 1.1281067
########Compare to null model 
#Difference in Deviance
with(DSFlog1,null.deviance - deviance)
## [1] 0.1590922
#Degrees of freedom for the difference between two models
with(DSFlog1,df.null - df.residual)
## [1] 1
#p-value
with(DSFlog1,pchisq(null.deviance-deviance,df.null-df.residual,lower.tail=FALSE))
## [1] 0.6899937

Model 2

DSFlog2 <- glm(PhysAssault ~ DigitSpanFwd + Age + Sex + PovStat + WRATtotal, data = Allvars, family = "binomial")
summary(DSFlog2)
## 
## Call:
## glm(formula = PhysAssault ~ DigitSpanFwd + Age + Sex + PovStat + 
##     WRATtotal, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.8265  -0.5482  -0.4738  -0.3940   2.3908  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)  
## (Intercept)  -1.298525   1.038992  -1.250   0.2114  
## DigitSpanFwd -0.003763   0.059056  -0.064   0.9492  
## Age          -0.033411   0.013806  -2.420   0.0155 *
## SexMen       -0.154818   0.244320  -0.634   0.5263  
## PovStatBelow  0.486848   0.253372   1.921   0.0547 .
## WRATtotal     0.018102   0.018832   0.961   0.3364  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 482.53  on 640  degrees of freedom
## Residual deviance: 469.42  on 635  degrees of freedom
## AIC: 481.42
## 
## Number of Fisher Scoring iterations: 5
confint(DSFlog2)
##                    2.5 %      97.5 %
## (Intercept)  -3.37067738  0.71074063
## DigitSpanFwd -0.12148521  0.11053782
## Age          -0.06090493 -0.00666178
## SexMen       -0.63831369  0.32239763
## PovStatBelow -0.01492452  0.98116664
## WRATtotal    -0.01785196  0.05611976
exp(cbind(OR = coef(DSFlog2), confint(DSFlog2)))
##                     OR      2.5 %    97.5 %
## (Intercept)  0.2729341 0.03436635 2.0354983
## DigitSpanFwd 0.9962436 0.88560415 1.1168786
## Age          0.9671408 0.94091269 0.9933604
## SexMen       0.8565711 0.52818235 1.3804336
## PovStatBelow 1.6271794 0.98518630 2.6675665
## WRATtotal    1.0182669 0.98230645 1.0577243
########Compare to null model 
#Difference in Deviance
with(DSFlog2,null.deviance - deviance)
## [1] 13.11099
#Degrees of freedom for the difference between two models
with(DSFlog2,df.null - df.residual)
## [1] 5
#p-value
with(DSFlog2,pchisq(null.deviance-deviance,df.null-df.residual,lower.tail=FALSE))
## [1] 0.02236057

Model 3

DSFlog3 <- glm(PhysAssault ~ (DigitSpanFwd + Sex + PovStat)^3 + Age + WRATtotal, data = Allvars, family = "binomial")
summary(DSFlog3)
## 
## Call:
## glm(formula = PhysAssault ~ (DigitSpanFwd + Sex + PovStat)^3 + 
##     Age + WRATtotal, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.8189  -0.5530  -0.4756  -0.3929   2.4095  
## 
## Coefficients:
##                                  Estimate Std. Error z value Pr(>|z|)  
## (Intercept)                      -1.19141    1.18123  -1.009   0.3132  
## DigitSpanFwd                     -0.01788    0.09490  -0.188   0.8505  
## SexMen                           -0.47145    1.09257  -0.432   0.6661  
## PovStatBelow                      0.30840    1.14433   0.270   0.7875  
## Age                              -0.03343    0.01381  -2.421   0.0155 *
## WRATtotal                         0.01844    0.01896   0.973   0.3306  
## DigitSpanFwd:SexMen               0.03636    0.13301   0.273   0.7846  
## DigitSpanFwd:PovStatBelow         0.01956    0.14872   0.131   0.8954  
## SexMen:PovStatBelow               0.55778    1.74829   0.319   0.7497  
## DigitSpanFwd:SexMen:PovStatBelow -0.06336    0.22405  -0.283   0.7773  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 482.53  on 640  degrees of freedom
## Residual deviance: 469.30  on 631  degrees of freedom
## AIC: 489.3
## 
## Number of Fisher Scoring iterations: 5
confint(DSFlog3)
##                                        2.5 %       97.5 %
## (Intercept)                      -3.55771445  1.082542539
## DigitSpanFwd                     -0.21071775  0.163745918
## SexMen                           -2.63659095  1.663594559
## PovStatBelow                     -1.95436295  2.551997385
## Age                              -0.06093180 -0.006678362
## WRATtotal                        -0.01776098  0.056701218
## DigitSpanFwd:SexMen              -0.22512922  0.298520850
## DigitSpanFwd:PovStatBelow        -0.27523533  0.311318253
## SexMen:PovStatBelow              -2.87426110  3.999016174
## DigitSpanFwd:SexMen:PovStatBelow -0.50694634  0.374844062
########Compare to null model 
#Difference in Deviance
with(DSFlog3,null.deviance - deviance)
## [1] 13.23718
#Degrees of freedom for the difference between two models
with(DSFlog3,df.null - df.residual)
## [1] 9
#p-value
with(DSFlog3,pchisq(null.deviance-deviance,df.null-df.residual,lower.tail=FALSE))
## [1] 0.1521644

Compare Models 1,2, & 3

anova(DSFlog1,DSFlog2,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PhysAssault ~ DigitSpanFwd
## Model 2: PhysAssault ~ DigitSpanFwd + Age + Sex + PovStat + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)  
## 1       639     482.37                       
## 2       635     469.42  4   12.952  0.01151 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(DSFlog2,DSFlog3,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PhysAssault ~ DigitSpanFwd + Age + Sex + PovStat + WRATtotal
## Model 2: PhysAssault ~ (DigitSpanFwd + Sex + PovStat)^3 + Age + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1       635     469.42                     
## 2       631     469.30  4  0.12619   0.9981
anova(DSFlog1,DSFlog3,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PhysAssault ~ DigitSpanFwd
## Model 2: PhysAssault ~ (DigitSpanFwd + Sex + PovStat)^3 + Age + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1       639     482.37                     
## 2       631     469.30  8   13.078   0.1092

Suggested Model by predictors

anova(DSFlog3, test="Chisq")
## Analysis of Deviance Table
## 
## Model: binomial, link: logit
## 
## Response: PhysAssault
## 
## Terms added sequentially (first to last)
## 
## 
##                          Df Deviance Resid. Df Resid. Dev Pr(>Chi)  
## NULL                                       640     482.53           
## DigitSpanFwd              1   0.1591       639     482.37  0.68999  
## Sex                       1   0.8210       638     481.55  0.36490  
## PovStat                   1   5.1322       637     476.42  0.02349 *
## Age                       1   6.0493       636     470.37  0.01391 *
## WRATtotal                 1   0.9494       635     469.42  0.32988  
## DigitSpanFwd:Sex          1   0.0134       634     469.41  0.90769  
## DigitSpanFwd:PovStat      1   0.0047       633     469.40  0.94509  
## Sex:PovStat               1   0.0279       632     469.38  0.86732  
## DigitSpanFwd:Sex:PovStat  1   0.0801       631     469.30  0.77717  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
DSFlog4 <- glm(PhysAssault ~Sex + Age, data = Allvars, family = "binomial")
summary(DSFlog4)
## 
## Call:
## glm(formula = PhysAssault ~ Sex + Age, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.6976  -0.5635  -0.4814  -0.4062   2.3320  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)   
## (Intercept) -0.14711    0.61516  -0.239  0.81100   
## SexMen      -0.16634    0.24267  -0.685  0.49306   
## Age         -0.03795    0.01357  -2.797  0.00516 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 482.53  on 640  degrees of freedom
## Residual deviance: 473.65  on 638  degrees of freedom
## AIC: 479.65
## 
## Number of Fisher Scoring iterations: 5

Digit Span Backward - Psychological Aggression

Model 1

DSBlog1 <- glm(PsychAggress ~ DigitSpanBck, data=Allvars,family = "binomial")
summary(DSBlog1)
## 
## Call:
## glm(formula = PsychAggress ~ DigitSpanBck, family = "binomial", 
##     data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.1240   0.5008   0.5328   0.5666   0.6395  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)    
## (Intercept)   1.48331    0.32547   4.557 5.18e-06 ***
## DigitSpanBck  0.06618    0.05387   1.228    0.219    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 505.40  on 640  degrees of freedom
## Residual deviance: 503.85  on 639  degrees of freedom
## AIC: 507.85
## 
## Number of Fisher Scoring iterations: 4
confint(DSBlog1)
##                    2.5 %    97.5 %
## (Intercept)   0.84949262 2.1271670
## DigitSpanBck -0.03708871 0.1744529
exp(cbind(OR = coef(DSBlog1), confint(DSBlog1)))
##                    OR     2.5 %   97.5 %
## (Intercept)  4.407523 2.3384601 8.391061
## DigitSpanBck 1.068418 0.9635906 1.190595
########Compare to null model 
#Difference in Deviance
with(DSBlog1,null.deviance - deviance)
## [1] 1.553456
#Degrees of freedom for the difference between two models
with(DSBlog1,df.null - df.residual)
## [1] 1
#p-value
with(DSBlog1,pchisq(null.deviance-deviance,df.null-df.residual,lower.tail=FALSE))
## [1] 0.2126259

Model 2

DSBlog2 <- glm(PsychAggress ~ DigitSpanBck + Age + Sex + PovStat + WRATtotal, data = Allvars, family = "binomial")
summary(DSBlog2)
## 
## Call:
## glm(formula = PsychAggress ~ DigitSpanBck + Age + Sex + PovStat + 
##     WRATtotal, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.3545   0.4188   0.4988   0.5806   0.8067  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)  
## (Intercept)   2.00097    0.93371   2.143   0.0321 *
## DigitSpanBck  0.03633    0.06183   0.588   0.5569  
## Age          -0.02133    0.01313  -1.625   0.1042  
## SexMen       -0.43391    0.23663  -1.834   0.0667 .
## PovStatBelow  0.30340    0.27136   1.118   0.2635  
## WRATtotal     0.01871    0.01690   1.107   0.2681  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 505.40  on 640  degrees of freedom
## Residual deviance: 494.17  on 635  degrees of freedom
## AIC: 506.17
## 
## Number of Fisher Scoring iterations: 4
confint(DSBlog2)
##                    2.5 %      97.5 %
## (Intercept)   0.19390855 3.861708942
## DigitSpanBck -0.08303013 0.159844631
## Age          -0.04727809 0.004313792
## SexMen       -0.90331488 0.027038043
## PovStatBelow -0.21507588 0.853305067
## WRATtotal    -0.01488368 0.051545135
exp(cbind(OR = coef(DSBlog2), confint(DSBlog2)))
##                     OR     2.5 %    97.5 %
## (Intercept)  7.3961984 1.2139853 47.546536
## DigitSpanBck 1.0369930 0.9203234  1.173329
## Age          0.9788925 0.9538221  1.004323
## SexMen       0.6479681 0.4052242  1.027407
## PovStatBelow 1.3544571 0.8064802  2.347392
## WRATtotal    1.0188890 0.9852265  1.052897
########Compare to null model 
#Difference in Deviance
with(DSBlog2,null.deviance - deviance)
## [1] 11.23034
#Degrees of freedom for the difference between two models
with(DSBlog2,df.null - df.residual)
## [1] 5
#p-value
with(DSBlog2,pchisq(null.deviance-deviance,df.null-df.residual,lower.tail=FALSE))
## [1] 0.04699944

Model 3

DSBlog3 <- glm(PsychAggress ~ (DigitSpanBck + Sex + PovStat)^3 + Age + WRATtotal, data = Allvars, family = "binomial")
summary(DSBlog3)
## 
## Call:
## glm(formula = PsychAggress ~ (DigitSpanBck + Sex + PovStat)^3 + 
##     Age + WRATtotal, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.3576   0.3941   0.4862   0.5675   0.9101  
## 
## Coefficients:
##                                  Estimate Std. Error z value Pr(>|z|)  
## (Intercept)                       1.86140    1.04549   1.780   0.0750 .
## DigitSpanBck                      0.09323    0.11541   0.808   0.4192  
## SexMen                           -0.62912    0.78860  -0.798   0.4250  
## PovStatBelow                      1.65113    1.19085   1.387   0.1656  
## Age                              -0.02285    0.01323  -1.728   0.0841 .
## WRATtotal                         0.01775    0.01714   1.036   0.3003  
## DigitSpanBck:SexMen               0.01376    0.13382   0.103   0.9181  
## DigitSpanBck:PovStatBelow        -0.27451    0.19329  -1.420   0.1555  
## SexMen:PovStatBelow               0.18041    1.54837   0.117   0.9072  
## DigitSpanBck:SexMen:PovStatBelow  0.03102    0.24940   0.124   0.9010  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 505.40  on 640  degrees of freedom
## Residual deviance: 489.29  on 631  degrees of freedom
## AIC: 509.29
## 
## Number of Fisher Scoring iterations: 5
confint(DSBlog3)
##                                        2.5 %     97.5 %
## (Intercept)                      -0.15637002 3.95271949
## DigitSpanBck                     -0.12406374 0.32908387
## SexMen                           -2.18681354 0.91147349
## PovStatBelow                     -0.63382657 4.07184741
## Age                              -0.04900142 0.00297188
## WRATtotal                        -0.01629415 0.05105948
## DigitSpanBck:SexMen              -0.25325179 0.27307703
## DigitSpanBck:PovStatBelow        -0.65478254 0.10995568
## SexMen:PovStatBelow              -2.88490444 3.21551659
## DigitSpanBck:SexMen:PovStatBelow -0.45930083 0.52358557
exp(cbind(OR = coef(DSBlog3), confint(DSBlog3)))
##                                         OR      2.5 %    97.5 %
## (Intercept)                      6.4327376 0.85524267 52.076797
## DigitSpanBck                     1.0977113 0.88332354  1.389694
## SexMen                           0.5330596 0.11227394  2.487986
## PovStatBelow                     5.2128734 0.53055769 58.665242
## Age                              0.9774056 0.95217978  1.002976
## WRATtotal                        1.0179052 0.98383788  1.052385
## DigitSpanBck:SexMen              1.0138573 0.77627240  1.314001
## DigitSpanBck:PovStatBelow        0.7599464 0.51955503  1.116229
## SexMen:PovStatBelow              1.1977140 0.05586013 24.916160
## DigitSpanBck:SexMen:PovStatBelow 1.0315050 0.63172517  1.688070
########Compare to null model 
#Difference in Deviance
with(DSBlog3,null.deviance - deviance)
## [1] 16.11477
#Degrees of freedom for the difference between two models
with(DSBlog3,df.null - df.residual)
## [1] 9
#p-value
with(DSBlog3,pchisq(null.deviance-deviance,df.null-df.residual,lower.tail=FALSE))
## [1] 0.06452314

Compare Models 1,2, & 3

anova(DSBlog1,DSBlog2,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PsychAggress ~ DigitSpanBck
## Model 2: PsychAggress ~ DigitSpanBck + Age + Sex + PovStat + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)  
## 1       639     503.85                       
## 2       635     494.17  4   9.6769  0.04624 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(DSBlog2,DSBlog3,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PsychAggress ~ DigitSpanBck + Age + Sex + PovStat + WRATtotal
## Model 2: PsychAggress ~ (DigitSpanBck + Sex + PovStat)^3 + Age + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1       635     494.17                     
## 2       631     489.29  4   4.8844   0.2994
anova(DSBlog1,DSBlog3,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PsychAggress ~ DigitSpanBck
## Model 2: PsychAggress ~ (DigitSpanBck + Sex + PovStat)^3 + Age + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)  
## 1       639     503.85                       
## 2       631     489.29  8   14.561  0.06826 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Suggested Model by Predictors

anova(DSBlog3, test="Chisq")
## Analysis of Deviance Table
## 
## Model: binomial, link: logit
## 
## Response: PsychAggress
## 
## Terms added sequentially (first to last)
## 
## 
##                          Df Deviance Resid. Df Resid. Dev Pr(>Chi)  
## NULL                                       640     505.40           
## DigitSpanBck              1   1.5535       639     503.85  0.21263  
## Sex                       1   4.0437       638     499.80  0.04434 *
## PovStat                   1   1.7275       637     498.08  0.18874  
## Age                       1   2.6974       636     495.38  0.10051  
## WRATtotal                 1   1.2083       635     494.17  0.27168  
## DigitSpanBck:Sex          1   0.1052       634     494.07  0.74568  
## DigitSpanBck:PovStat      1   4.3122       633     489.75  0.03784 *
## Sex:PovStat               1   0.4516       632     489.30  0.50158  
## DigitSpanBck:Sex:PovStat  1   0.0155       631     489.29  0.90101  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
DSBlog4 <- glm(PsychAggress ~ (DigitSpanBck + PovStat)^2 + Sex, data = Allvars, family = "binomial")
summary(DSBlog4)
## 
## Call:
## glm(formula = PsychAggress ~ (DigitSpanBck + PovStat)^2 + Sex, 
##     family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.3307   0.4135   0.4907   0.5743   0.7848  
## 
## Coefficients:
##                           Estimate Std. Error z value Pr(>|z|)   
## (Intercept)                1.21783    0.39486   3.084  0.00204 **
## DigitSpanBck               0.13974    0.06319   2.211  0.02701 * 
## PovStatBelow               1.77644    0.75525   2.352  0.01867 * 
## SexMen                    -0.47738    0.23636  -2.020  0.04342 * 
## DigitSpanBck:PovStatBelow -0.25530    0.12136  -2.104  0.03540 * 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 505.4  on 640  degrees of freedom
## Residual deviance: 493.8  on 636  degrees of freedom
## AIC: 503.8
## 
## Number of Fisher Scoring iterations: 4
sim_slopes(DSBlog4 , pred = DigitSpanBck, modx = PovStat, centered = "all",jnplot = TRUE)
## Warning: Johnson-Neyman intervals are not available for factor moderators.
## SIMPLE SLOPES ANALYSIS 
## 
## Slope of DigitSpanBck when PovStat = Below: 
## 
##    Est.   S.E.   z val.      p
## ------- ------ -------- ------
##   -0.12   0.10    -1.12   0.26
## 
## Slope of DigitSpanBck when PovStat = Above: 
## 
##   Est.   S.E.   z val.      p
## ------ ------ -------- ------
##   0.14   0.06     2.21   0.03
interact_plot(model = DSBlog4 , pred = DigitSpanBck, modx = PovStat)

Digit Span Backward - Physical Assault

Model 1

DSBlog1 <- glm(PhysAssault ~ DigitSpanBck, data=Allvars,family = "binomial")
summary(DSBlog1)
## 
## Call:
## glm(formula = PhysAssault ~ DigitSpanBck, family = "binomial", 
##     data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.6461  -0.5332  -0.4995  -0.4834   2.2166  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  -2.36700    0.33815  -7.000 2.56e-12 ***
## DigitSpanBck  0.06971    0.05143   1.355    0.175    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 482.53  on 640  degrees of freedom
## Residual deviance: 480.73  on 639  degrees of freedom
## AIC: 484.73
## 
## Number of Fisher Scoring iterations: 4
confint(DSBlog1)
##                    2.5 %     97.5 %
## (Intercept)  -3.04161374 -1.7138403
## DigitSpanBck -0.03277605  0.1693352
exp(cbind(OR = coef(DSBlog1), confint(DSBlog1)))
##                      OR      2.5 %    97.5 %
## (Intercept)  0.09376143 0.04775776 0.1801725
## DigitSpanBck 1.07220115 0.96775526 1.1845171
########Compare to null model 
#Difference in Deviance
with(DSBlog1,null.deviance - deviance)
## [1] 1.797797
#Degrees of freedom for the difference between two models
with(DSBlog1,df.null - df.residual)
## [1] 1
#p-value
with(DSBlog1,pchisq(null.deviance-deviance,df.null-df.residual,lower.tail=FALSE))
## [1] 0.179979

Model 2

DSBlog2 <- glm(PhysAssault ~ DigitSpanBck + Age + Sex + PovStat + WRATtotal, data = Allvars, family = "binomial")
summary(DSBlog2)
## 
## Call:
## glm(formula = PhysAssault ~ DigitSpanBck + Age + Sex + PovStat + 
##     WRATtotal, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.8505  -0.5507  -0.4663  -0.3877   2.4000  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)  
## (Intercept)  -1.345694   1.024586  -1.313   0.1890  
## DigitSpanBck  0.059014   0.060632   0.973   0.3304  
## Age          -0.031851   0.013777  -2.312   0.0208 *
## SexMen       -0.170212   0.244791  -0.695   0.4868  
## PovStatBelow  0.502315   0.253971   1.978   0.0479 *
## WRATtotal     0.008856   0.019220   0.461   0.6450  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 482.53  on 640  degrees of freedom
## Residual deviance: 468.49  on 635  degrees of freedom
## AIC: 480.49
## 
## Number of Fisher Scoring iterations: 5
confint(DSBlog2)
##                     2.5 %       97.5 %
## (Intercept)  -3.391665037  0.633726337
## DigitSpanBck -0.061320692  0.176938898
## Age          -0.059299715 -0.005165805
## SexMen       -0.654805236  0.307756720
## PovStatBelow -0.000432283  0.998046083
## WRATtotal    -0.027993557  0.047521446
exp(cbind(OR = coef(DSBlog2), confint(DSBlog2)))
##                     OR     2.5 %    97.5 %
## (Intercept)  0.2603591 0.0336526 1.8846202
## DigitSpanBck 1.0607902 0.9405216 1.1935582
## Age          0.9686509 0.9424243 0.9948475
## SexMen       0.8434860 0.5195432 1.3603700
## PovStatBelow 1.6525430 0.9995678 2.7129757
## WRATtotal    1.0088955 0.9723946 1.0486687
########Compare to null model 
#Difference in Deviance
with(DSBlog2,null.deviance - deviance)
## [1] 14.04369
#Degrees of freedom for the difference between two models
with(DSBlog2,df.null - df.residual)
## [1] 5
#p-value
with(DSBlog2,pchisq(null.deviance-deviance,df.null-df.residual,lower.tail=FALSE))
## [1] 0.01533425

Model 3

DSBlog3 <- glm(PhysAssault ~ (DigitSpanBck + Sex + PovStat)^3 + Age + WRATtotal, data = Allvars, family = "binomial")
summary(DSBlog3)
## 
## Call:
## glm(formula = PhysAssault ~ (DigitSpanBck + Sex + PovStat)^3 + 
##     Age + WRATtotal, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.8330  -0.5503  -0.4685  -0.3884   2.4253  
## 
## Coefficients:
##                                   Estimate Std. Error z value Pr(>|z|)  
## (Intercept)                      -1.255613   1.120611  -1.120   0.2625  
## DigitSpanBck                      0.044520   0.107315   0.415   0.6782  
## SexMen                           -0.455390   0.908308  -0.501   0.6161  
## PovStatBelow                      0.408942   1.027509   0.398   0.6906  
## Age                              -0.031862   0.013778  -2.313   0.0207 *
## WRATtotal                         0.009189   0.019285   0.476   0.6337  
## DigitSpanBck:SexMen               0.038519   0.133091   0.289   0.7723  
## DigitSpanBck:PovStatBelow         0.008996   0.165178   0.054   0.9566  
## SexMen:PovStatBelow               0.440727   1.437951   0.306   0.7592  
## DigitSpanBck:SexMen:PovStatBelow -0.056578   0.225189  -0.251   0.8016  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 482.53  on 640  degrees of freedom
## Residual deviance: 468.32  on 631  degrees of freedom
## AIC: 488.32
## 
## Number of Fisher Scoring iterations: 5
confint(DSBlog3)
##                                        2.5 %       97.5 %
## (Intercept)                      -3.50061722  0.901710583
## DigitSpanBck                     -0.17306222  0.249958353
## SexMen                           -2.25539642  1.319990640
## PovStatBelow                     -1.63003035  2.417495430
## Age                              -0.05931304 -0.005176632
## WRATtotal                        -0.02780734  0.047973668
## DigitSpanBck:SexMen              -0.22130482  0.302664130
## DigitSpanBck:PovStatBelow        -0.31741438  0.334113806
## SexMen:PovStatBelow              -2.38215259  3.271157548
## DigitSpanBck:SexMen:PovStatBelow -0.50186032  0.384406408
exp(cbind(OR = coef(DSBlog3), confint(DSBlog3)))
##                                         OR      2.5 %     97.5 %
## (Intercept)                      0.2849011 0.03017875  2.4638141
## DigitSpanBck                     1.0455263 0.84108528  1.2839719
## SexMen                           0.6342003 0.10483198  3.7433863
## PovStatBelow                     1.5052248 0.19592363 11.2177285
## Age                              0.9686402 0.94241171  0.9948367
## WRATtotal                        1.0092314 0.97257573  1.0491430
## DigitSpanBck:SexMen              1.0392708 0.80147234  1.3534598
## DigitSpanBck:PovStatBelow        1.0090362 0.72802901  1.3967021
## SexMen:PovStatBelow              1.5538360 0.09235157 26.3418136
## DigitSpanBck:SexMen:PovStatBelow 0.9449929 0.60540337  1.4687422
########Compare to null model 
#Difference in Deviance
with(DSBlog3,null.deviance - deviance)
## [1] 14.20855
#Degrees of freedom for the difference between two models
with(DSBlog3,df.null - df.residual)
## [1] 9
#p-value
with(DSBlog3,pchisq(null.deviance-deviance,df.null-df.residual,lower.tail=FALSE))
## [1] 0.1150977

Compare Models 1,2, & 3

anova(DSBlog1,DSBlog2,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PhysAssault ~ DigitSpanBck
## Model 2: PhysAssault ~ DigitSpanBck + Age + Sex + PovStat + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)  
## 1       639     480.73                       
## 2       635     468.49  4   12.246  0.01561 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(DSBlog2,DSBlog3,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PhysAssault ~ DigitSpanBck + Age + Sex + PovStat + WRATtotal
## Model 2: PhysAssault ~ (DigitSpanBck + Sex + PovStat)^3 + Age + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1       635     468.49                     
## 2       631     468.32  4  0.16486   0.9968
anova(DSBlog1,DSBlog3,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PhysAssault ~ DigitSpanBck
## Model 2: PhysAssault ~ (DigitSpanBck + Sex + PovStat)^3 + Age + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1       639     480.73                     
## 2       631     468.32  8   12.411   0.1338

Suggested Model by Predictors

anova(DSBlog3, test="Chisq")
## Analysis of Deviance Table
## 
## Model: binomial, link: logit
## 
## Response: PhysAssault
## 
## Terms added sequentially (first to last)
## 
## 
##                          Df Deviance Resid. Df Resid. Dev Pr(>Chi)  
## NULL                                       640     482.53           
## DigitSpanBck              1   1.7978       639     480.73  0.17998  
## Sex                       1   0.9489       638     479.79  0.33001  
## PovStat                   1   5.5965       637     474.19  0.01800 *
## Age                       1   5.4858       636     468.70  0.01917 *
## WRATtotal                 1   0.2147       635     468.49  0.64310  
## DigitSpanBck:Sex          1   0.0270       634     468.46  0.86958  
## DigitSpanBck:PovStat      1   0.0336       633     468.43  0.85458  
## Sex:PovStat               1   0.0411       632     468.39  0.83932  
## DigitSpanBck:Sex:PovStat  1   0.0632       631     468.32  0.80152  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
DSBlog4 <- glm(PhysAssault ~ PovStat + Age, data = Allvars, family = "binomial")
summary(DSBlog4)
## 
## Call:
## glm(formula = PhysAssault ~ PovStat + Age, family = "binomial", 
##     data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.7492  -0.5539  -0.4770  -0.3956   2.3402  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)  
## (Intercept)  -0.53355    0.64202  -0.831   0.4059  
## PovStatBelow  0.45113    0.24862   1.815   0.0696 .
## Age          -0.03471    0.01372  -2.530   0.0114 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 482.53  on 640  degrees of freedom
## Residual deviance: 470.90  on 638  degrees of freedom
## AIC: 476.9
## 
## Number of Fisher Scoring iterations: 5