Dissertation Analyses

load(file="/Users/meganwilliams/Desktop/Dissertation/StroopMixed.rdata")
load(file="/Users/meganwilliams/Desktop/Dissertation/Allvars.rdata")
library(effects)
library(interactions)

Trail Making Test Part A - Psychological Aggression

Model 1

TMTAlog1 <- glm(PsychAggress ~ TrailsA, data=Allvars,family = "binomial")
summary(TMTAlog1)
## 
## Call:
## glm(formula = PsychAggress ~ TrailsA, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.0612   0.5078   0.5190   0.5338   1.1300  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  2.117145   0.158671  13.343   <2e-16 ***
## TrailsA     -0.006682   0.002709  -2.466   0.0136 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 505.40  on 640  degrees of freedom
## Residual deviance: 500.02  on 639  degrees of freedom
## AIC: 504.02
## 
## Number of Fisher Scoring iterations: 4
confint(TMTAlog1)
##                   2.5 %      97.5 %
## (Intercept)  1.81004605  2.43478018
## TrailsA     -0.01211072 -0.00112323
exp(cbind(OR = coef(TMTAlog1), confint(TMTAlog1)))
##                    OR     2.5 %     97.5 %
## (Intercept) 8.3073870 6.1107288 11.4133096
## TrailsA     0.9933406 0.9879623  0.9988774
plot(predictorEffect("TrailsA",TMTAlog1))

########Compare to null model 
#Difference in Deviance
with(TMTAlog1,null.deviance - deviance)
## [1] 5.381549
#Degrees of freedom for the difference between two models
with(TMTAlog1,df.null - df.residual)
## [1] 1
#p-value
with(TMTAlog1,pchisq(null.deviance-deviance,df.null-df.residual,lower.tail=FALSE))
## [1] 0.0203508

Model 2

TMTAlog2 <- glm(PsychAggress ~ TrailsA + Age0 + Sex + PovStat + WRATtotal, data = Allvars, family = "binomial")
summary(TMTAlog2)
## 
## Call:
## glm(formula = PsychAggress ~ TrailsA + Age0 + Sex + PovStat + 
##     WRATtotal, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.3328   0.4179   0.4977   0.5692   1.0358  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)  
## (Intercept)   1.351564   0.685237   1.972   0.0486 *
## TrailsA      -0.005442   0.002800  -1.944   0.0519 .
## Age0         -0.019052   0.013150  -1.449   0.1474  
## SexMen       -0.414508   0.237194  -1.748   0.0805 .
## PovStatBelow  0.287057   0.272031   1.055   0.2913  
## WRATtotal     0.020193   0.014685   1.375   0.1691  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 505.40  on 640  degrees of freedom
## Residual deviance: 491.19  on 635  degrees of freedom
## AIC: 503.19
## 
## Number of Fisher Scoring iterations: 4
confint(TMTAlog2)
##                    2.5 %       97.5 %
## (Intercept)   0.03581675 2.7310660748
## TrailsA      -0.01092206 0.0004472425
## Age0         -0.04502990 0.0066403168
## SexMen       -0.88490865 0.0476851129
## PovStatBelow -0.23280077 0.8382117419
## WRATtotal    -0.00913341 0.0486223838
exp(cbind(OR = coef(TMTAlog2), confint(TMTAlog2)))
##                     OR     2.5 %    97.5 %
## (Intercept)  3.8634619 1.0364659 15.349242
## TrailsA      0.9945728 0.9891374  1.000447
## Age0         0.9811286 0.9559689  1.006662
## SexMen       0.6606650 0.4127519  1.048840
## PovStatBelow 1.3324997 0.7923114  2.312228
## WRATtotal    1.0203987 0.9909082  1.049824
plot(predictorEffect("TrailsA",TMTAlog2))
## Warning in Analyze.model(focal.predictors, mod, xlevels, default.levels, : the
## predictor Age0 is a one-column matrix that was converted to a vector

########Compare to null model 
#Difference in Deviance
with(TMTAlog2,null.deviance - deviance)
## [1] 14.20926
#Degrees of freedom for the difference between two models
with(TMTAlog2,df.null - df.residual)
## [1] 5
#p-value
with(TMTAlog2,pchisq(null.deviance-deviance,df.null-df.residual,lower.tail=FALSE))
## [1] 0.01433339

Model 3

TMTAlog3 <- glm(PsychAggress ~ (TrailsA + Sex + PovStat)^3 + Age + WRATtotal, data = Allvars, family = "binomial")
summary(TMTAlog3)
## 
## Call:
## glm(formula = PsychAggress ~ (TrailsA + Sex + PovStat)^3 + Age + 
##     WRATtotal, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.3050   0.4145   0.4876   0.5662   0.9371  
## 
## Coefficients:
##                               Estimate Std. Error z value Pr(>|z|)  
## (Intercept)                  2.3232837  0.9521720   2.440   0.0147 *
## TrailsA                     -0.0046246  0.0044733  -1.034   0.3012  
## SexMen                      -0.5352512  0.3757272  -1.425   0.1543  
## PovStatBelow                -0.3211181  0.9165205  -0.350   0.7261  
## Age                         -0.0211628  0.0133563  -1.584   0.1131  
## WRATtotal                    0.0213502  0.0147965   1.443   0.1490  
## TrailsA:SexMen               0.0002853  0.0061339   0.047   0.9629  
## TrailsA:PovStatBelow         0.0121948  0.0262325   0.465   0.6420  
## SexMen:PovStatBelow          1.1973680  1.0734939   1.115   0.2647  
## TrailsA:SexMen:PovStatBelow -0.0212556  0.0279137  -0.761   0.4464  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 505.40  on 640  degrees of freedom
## Residual deviance: 489.18  on 631  degrees of freedom
## AIC: 509.18
## 
## Number of Fisher Scoring iterations: 5
confint(TMTAlog3)
##                                    2.5 %      97.5 %
## (Intercept)                  0.481332779 4.221863340
## TrailsA                     -0.013299827 0.005857359
## SexMen                      -1.282198611 0.200258901
## PovStatBelow                -2.259676235 1.362523862
## Age                         -0.047546389 0.004928338
## WRATtotal                   -0.008162031 0.050025754
## TrailsA:SexMen              -0.012576295 0.012711360
## TrailsA:PovStatBelow        -0.030481680 0.074099544
## SexMen:PovStatBelow         -0.795772727 3.446700474
## TrailsA:SexMen:PovStatBelow -0.085997696 0.025273803
exp(cbind(OR = coef(TMTAlog3), confint(TMTAlog3)))
##                                     OR     2.5 %    97.5 %
## (Intercept)                 10.2091427 1.6182297 68.160372
## TrailsA                      0.9953861 0.9867882  1.005875
## SexMen                       0.5855222 0.2774267  1.221719
## PovStatBelow                 0.7253376 0.1043843  3.906039
## Age                          0.9790596 0.9535662  1.004941
## WRATtotal                    1.0215797 0.9918712  1.051298
## TrailsA:SexMen               1.0002853 0.9875025  1.012792
## TrailsA:PovStatBelow         1.0122695 0.9699782  1.076914
## SexMen:PovStatBelow          3.3113900 0.4512324 31.396627
## TrailsA:SexMen:PovStatBelow  0.9789687 0.9175963  1.025596
########Compare to null model 
#Difference in Deviance
with(TMTAlog3,null.deviance - deviance)
## [1] 16.21973
#Degrees of freedom for the difference between two models
with(TMTAlog3,df.null - df.residual)
## [1] 9
#p-value
with(TMTAlog3,pchisq(null.deviance-deviance,df.null-df.residual,lower.tail=FALSE))
## [1] 0.06243246

Compare Models 1,2, & 3

anova(TMTAlog1,TMTAlog2,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PsychAggress ~ TrailsA
## Model 2: PsychAggress ~ TrailsA + Age0 + Sex + PovStat + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)  
## 1       639     500.02                       
## 2       635     491.19  4   8.8277  0.06555 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(TMTAlog2,TMTAlog3,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PsychAggress ~ TrailsA + Age0 + Sex + PovStat + WRATtotal
## Model 2: PsychAggress ~ (TrailsA + Sex + PovStat)^3 + Age + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1       635     491.19                     
## 2       631     489.18  4   2.0105   0.7338
anova(TMTAlog1,TMTAlog3,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PsychAggress ~ TrailsA
## Model 2: PsychAggress ~ (TrailsA + Sex + PovStat)^3 + Age + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1       639     500.02                     
## 2       631     489.18  8   10.838    0.211

Suggested Model by predictors

anova(TMTAlog3, test="Chisq")
## Analysis of Deviance Table
## 
## Model: binomial, link: logit
## 
## Response: PsychAggress
## 
## Terms added sequentially (first to last)
## 
## 
##                     Df Deviance Resid. Df Resid. Dev Pr(>Chi)  
## NULL                                  640     505.40           
## TrailsA              1   5.3815       639     500.02  0.02035 *
## Sex                  1   3.3913       638     496.63  0.06554 .
## PovStat              1   1.3103       637     495.32  0.25234  
## Age                  1   2.2815       636     493.04  0.13092  
## WRATtotal            1   1.8446       635     491.19  0.17441  
## TrailsA:Sex          1   0.1610       634     491.03  0.68825  
## TrailsA:PovStat      1   0.4359       633     490.60  0.50911  
## Sex:PovStat          1   0.7356       632     489.86  0.39108  
## TrailsA:Sex:PovStat  1   0.6780       631     489.18  0.41027  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TMTAlog4 <- glm(PsychAggress ~ TrailsA + Sex, data = Allvars, family = "binomial")
summary(TMTAlog4)
## 
## Call:
## glm(formula = PsychAggress ~ TrailsA + Sex, family = "binomial", 
##     data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.1553   0.4598   0.4829   0.5732   1.1918  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  2.335826   0.205687  11.356   <2e-16 ***
## TrailsA     -0.006459   0.002729  -2.367   0.0179 *  
## SexMen      -0.431945   0.235930  -1.831   0.0671 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 505.40  on 640  degrees of freedom
## Residual deviance: 496.63  on 638  degrees of freedom
## AIC: 502.63
## 
## Number of Fisher Scoring iterations: 4
plot(predictorEffect("TrailsA",TMTAlog3))

Trail Making Test Part A - Physical Assault

Model 1

TMTAlog1 <- glm(PhysAssault ~ TrailsA, data=Allvars,family = "binomial")
summary(TMTAlog1)
## 
## Call:
## glm(formula = PhysAssault ~ TrailsA, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.5662  -0.5393  -0.5186  -0.4840   2.2518  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -1.602571   0.283815  -5.647 1.64e-08 ***
## TrailsA     -0.010496   0.008213  -1.278    0.201    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 482.53  on 640  degrees of freedom
## Residual deviance: 479.87  on 639  degrees of freedom
## AIC: 483.87
## 
## Number of Fisher Scoring iterations: 6
exp(cbind(OR = coef(TMTAlog1), confint(TMTAlog1)))
##                    OR    2.5 %    97.5 %
## (Intercept) 0.2013782 0.124961 0.3715058
## TrailsA     0.9895584 0.971045 1.0014763
########Compare to null model 
#Difference in Deviance
with(TMTAlog1,null.deviance - deviance)
## [1] 2.664886
#Degrees of freedom for the difference between two models
with(TMTAlog1,df.null - df.residual)
## [1] 1
#p-value
with(TMTAlog1,pchisq(null.deviance-deviance,df.null-df.residual,lower.tail=FALSE))
## [1] 0.1025852

Model 2

TMTAlog2 <- glm(PhysAssault ~ TrailsA + Age + Sex + PovStat + WRATtotal, data = Allvars, family = "binomial")
summary(TMTAlog2)
## 
## Call:
## glm(formula = PhysAssault ~ TrailsA + Age + Sex + PovStat + WRATtotal, 
##     family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.8280  -0.5544  -0.4735  -0.3948   2.4131  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)  
## (Intercept)  -1.106171   1.056618  -1.047   0.2951  
## TrailsA      -0.005757   0.006888  -0.836   0.4033  
## Age          -0.031146   0.014013  -2.223   0.0262 *
## SexMen       -0.133250   0.245234  -0.543   0.5869  
## PovStatBelow  0.497935   0.253546   1.964   0.0495 *
## WRATtotal     0.014741   0.017431   0.846   0.3977  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 482.53  on 640  degrees of freedom
## Residual deviance: 468.44  on 635  degrees of freedom
## AIC: 480.44
## 
## Number of Fisher Scoring iterations: 5
confint(TMTAlog2)
##                     2.5 %       97.5 %
## (Intercept)  -3.204878260  0.950549388
## TrailsA      -0.023671777  0.004114868
## Age          -0.058973070 -0.003903141
## SexMen       -0.618366886  0.345925262
## PovStatBelow -0.004036407  0.992778921
## WRATtotal    -0.018681019  0.049876074
exp(cbind(OR = coef(TMTAlog2), confint(TMTAlog2)))
##                     OR      2.5 %    97.5 %
## (Intercept)  0.3308234 0.04056384 2.5871306
## TrailsA      0.9942597 0.97660620 1.0041233
## Age          0.9693345 0.94273216 0.9961045
## SexMen       0.8752466 0.53882368 1.4132970
## PovStatBelow 1.6453197 0.99597173 2.6987236
## WRATtotal    1.0148506 0.98149239 1.0511408
########Compare to null model 
#Difference in Deviance
with(TMTAlog2,null.deviance - deviance)
## [1] 14.09208
#Degrees of freedom for the difference between two models
with(TMTAlog2,df.null - df.residual)
## [1] 5
#p-value
with(TMTAlog2,pchisq(null.deviance-deviance,df.null-df.residual,lower.tail=FALSE))
## [1] 0.01503496

Model 3

TMTAlog3 <- glm(PhysAssault ~ (TrailsA + Sex + PovStat)^3 + Age + WRATtotal, data = Allvars, family = "binomial")
summary(TMTAlog3)
## 
## Call:
## glm(formula = PhysAssault ~ (TrailsA + Sex + PovStat)^3 + Age + 
##     WRATtotal, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.9896  -0.5444  -0.4687  -0.3914   2.4456  
## 
## Coefficients:
##                               Estimate Std. Error z value Pr(>|z|)  
## (Intercept)                 -1.363e+00  1.058e+00  -1.289   0.1973  
## TrailsA                      7.282e-05  7.277e-03   0.010   0.9920  
## SexMen                       7.630e-02  5.733e-01   0.133   0.8941  
## PovStatBelow                 1.662e+00  8.945e-01   1.858   0.0632 .
## Age                         -2.951e-02  1.412e-02  -2.090   0.0366 *
## WRATtotal                    1.521e-02  1.745e-02   0.872   0.3832  
## TrailsA:SexMen              -8.029e-03  1.526e-02  -0.526   0.5987  
## TrailsA:PovStatBelow        -4.104e-02  2.948e-02  -1.392   0.1638  
## SexMen:PovStatBelow         -1.192e+00  1.159e+00  -1.028   0.3040  
## TrailsA:SexMen:PovStatBelow  4.372e-02  3.509e-02   1.246   0.2129  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 482.53  on 640  degrees of freedom
## Residual deviance: 466.00  on 631  degrees of freedom
## AIC: 486
## 
## Number of Fisher Scoring iterations: 6
confint(TMTAlog3)
##                                    2.5 %       97.5 %
## (Intercept)                 -3.466733133  0.698550735
## TrailsA                     -0.022462644  0.010741157
## SexMen                      -0.973440421  1.399852489
## PovStatBelow                 0.006201422  3.512932999
## Age                         -0.057593946 -0.002109772
## WRATtotal                   -0.018221155  0.050392858
## TrailsA:SexMen              -0.048493721  0.019944784
## TrailsA:PovStatBelow        -0.105757832  0.010049154
## SexMen:PovStatBelow         -3.556398613  1.153705945
## TrailsA:SexMen:PovStatBelow -0.024980614  0.119436934
exp(cbind(OR = coef(TMTAlog3), confint(TMTAlog3)))
##                                    OR      2.5 %     97.5 %
## (Intercept)                 0.2557689 0.03121885  2.0108364
## TrailsA                     1.0000728 0.97778776  1.0107991
## SexMen                      1.0792863 0.37778107  4.0546018
## PovStatBelow                5.2680898 1.00622069 33.5465155
## Age                         0.9709182 0.94403320  0.9978925
## WRATtotal                   1.0153311 0.98194385  1.0516842
## TrailsA:SexMen              0.9920033 0.95266332  1.0201450
## TrailsA:PovStatBelow        0.9597892 0.89964249  1.0100998
## SexMen:PovStatBelow         0.3037608 0.02854143  3.1699187
## TrailsA:SexMen:PovStatBelow 1.0446857 0.97532882  1.1268622
########Compare to null model 
#Difference in Deviance
with(TMTAlog3,null.deviance - deviance)
## [1] 16.52871
#Degrees of freedom for the difference between two models
with(TMTAlog3,df.null - df.residual)
## [1] 9
#p-value
with(TMTAlog3,pchisq(null.deviance-deviance,df.null-df.residual,lower.tail=FALSE))
## [1] 0.05662862

Compare Models 1,2, & 3

anova(TMTAlog1,TMTAlog2,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PhysAssault ~ TrailsA
## Model 2: PhysAssault ~ TrailsA + Age + Sex + PovStat + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)  
## 1       639     479.87                       
## 2       635     468.44  4   11.427  0.02216 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(TMTAlog2,TMTAlog3,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PhysAssault ~ TrailsA + Age + Sex + PovStat + WRATtotal
## Model 2: PhysAssault ~ (TrailsA + Sex + PovStat)^3 + Age + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1       635     468.44                     
## 2       631     466.00  4   2.4366    0.656
anova(TMTAlog1,TMTAlog3,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PhysAssault ~ TrailsA
## Model 2: PhysAssault ~ (TrailsA + Sex + PovStat)^3 + Age + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)  
## 1       639     479.87                       
## 2       631     466.00  8   13.864  0.08538 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Suggested Model by predictors

anova(TMTAlog3, test="Chisq")
## Analysis of Deviance Table
## 
## Model: binomial, link: logit
## 
## Response: PhysAssault
## 
## Terms added sequentially (first to last)
## 
## 
##                     Df Deviance Resid. Df Resid. Dev Pr(>Chi)  
## NULL                                  640     482.53           
## TrailsA              1   2.6649       639     479.87  0.10259  
## Sex                  1   0.5758       638     479.29  0.44795  
## PovStat              1   5.0877       637     474.20  0.02410 *
## Age                  1   5.0333       636     469.17  0.02486 *
## WRATtotal            1   0.7303       635     468.44  0.39278  
## TrailsA:Sex          1   0.0169       634     468.42  0.89666  
## TrailsA:PovStat      1   0.7216       633     467.70  0.39561  
## Sex:PovStat          1   0.0962       632     467.61  0.75639  
## TrailsA:Sex:PovStat  1   1.6019       631     466.00  0.20563  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TMTAlog4 <- glm(PhysAssault ~ TrailsA + PovStat + Age, data = Allvars, family = "binomial")
summary(TMTAlog4)
## 
## Call:
## glm(formula = PhysAssault ~ TrailsA + PovStat + Age, family = "binomial", 
##     data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.7820  -0.5546  -0.4799  -0.3925   2.3219  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)  
## (Intercept)  -0.435029   0.650356  -0.669   0.5036  
## TrailsA      -0.007343   0.007395  -0.993   0.3208  
## PovStatBelow  0.471055   0.249746   1.886   0.0593 .
## Age          -0.031701   0.014071  -2.253   0.0243 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 482.53  on 640  degrees of freedom
## Residual deviance: 469.43  on 637  degrees of freedom
## AIC: 477.43
## 
## Number of Fisher Scoring iterations: 5

Trail Making Test Part B - Psychological Aggression

Model 1

TMTBlog1 <- glm(PsychAggress ~ TrailsB, data=Allvars,family = "binomial")
summary(TMTBlog1)
## 
## Call:
## glm(formula = PsychAggress ~ TrailsB, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.0693   0.5050   0.5163   0.5371   0.6409  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  2.096241   0.206390  10.157   <2e-16 ***
## TrailsB     -0.002060   0.001462  -1.409    0.159    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 505.40  on 640  degrees of freedom
## Residual deviance: 503.51  on 639  degrees of freedom
## AIC: 507.51
## 
## Number of Fisher Scoring iterations: 4
confint(TMTBlog1)
##                    2.5 %       97.5 %
## (Intercept)  1.698395018 2.5090041923
## TrailsB     -0.004850198 0.0009051254
exp(cbind(OR = coef(TMTBlog1), confint(TMTBlog1)))
##                    OR     2.5 %    97.5 %
## (Intercept) 8.1355301 5.4651689 12.292683
## TrailsB     0.9979425 0.9951615  1.000906
########Compare to null model 
#Difference in Deviance
with(TMTBlog1,null.deviance - deviance)
## [1] 1.895159
#Degrees of freedom for the difference between two models
with(TMTBlog1,df.null - df.residual)
## [1] 1
#p-value
with(TMTBlog1,pchisq(null.deviance-deviance,df.null-df.residual,lower.tail=FALSE))
## [1] 0.1686212

Model 2

TMTBlog2 <- glm(PsychAggress ~ TrailsB + Age + Sex + PovStat + WRATtotal, data = Allvars, family = "binomial")
summary(TMTBlog2)
## 
## Call:
## glm(formula = PsychAggress ~ TrailsB + Age + Sex + PovStat + 
##     WRATtotal, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.3531   0.4211   0.5030   0.5782   0.8264  
## 
## Coefficients:
##                Estimate Std. Error z value Pr(>|z|)  
## (Intercept)   2.0933884  1.0094916   2.074   0.0381 *
## TrailsB      -0.0003588  0.0017599  -0.204   0.8385  
## Age          -0.0211512  0.0134906  -1.568   0.1169  
## SexMen       -0.4252520  0.2365446  -1.798   0.0722 .
## PovStatBelow  0.2968811  0.2712465   1.095   0.2737  
## WRATtotal     0.0220975  0.0166967   1.323   0.1857  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 505.40  on 640  degrees of freedom
## Residual deviance: 494.48  on 635  degrees of freedom
## AIC: 506.48
## 
## Number of Fisher Scoring iterations: 4
confint(TMTBlog2)
##                     2.5 %      97.5 %
## (Intercept)   0.133869024 4.098898653
## TrailsB      -0.003714358 0.003210407
## Age          -0.047809751 0.005190886
## SexMen       -0.894452306 0.035563355
## PovStatBelow -0.221287309 0.846636446
## WRATtotal    -0.010959994 0.054668008
exp(cbind(OR = coef(TMTBlog2), confint(TMTBlog2)))
##                     OR     2.5 %    97.5 %
## (Intercept)  8.1123569 1.1432431 60.273869
## TrailsB      0.9996413 0.9962925  1.003216
## Age          0.9790709 0.9533151  1.005204
## SexMen       0.6536051 0.4088315  1.036203
## PovStatBelow 1.3456552 0.8014864  2.331791
## WRATtotal    1.0223434 0.9890998  1.056190
########Compare to null model 
#Difference in Deviance
with(TMTBlog2,null.deviance - deviance)
## [1] 10.92303
#Degrees of freedom for the difference between two models
with(TMTBlog2,df.null - df.residual)
## [1] 5
#p-value
with(TMTBlog2,pchisq(null.deviance-deviance,df.null-df.residual,lower.tail=FALSE))
## [1] 0.05292765

Model 3

TMTBlog3 <- glm(PsychAggress ~ (TrailsB + Sex + PovStat)^3 + Age + WRATtotal, data = Allvars, family = "binomial")
summary(TMTBlog3)
## 
## Call:
## glm(formula = PsychAggress ~ (TrailsB + Sex + PovStat)^3 + Age + 
##     WRATtotal, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.3166   0.4161   0.4923   0.5692   0.9530  
## 
## Coefficients:
##                               Estimate Std. Error z value Pr(>|z|)  
## (Intercept)                  2.119e+00  1.070e+00   1.980   0.0477 *
## TrailsB                      6.311e-05  2.892e-03   0.022   0.9826  
## SexMen                      -2.864e-01  4.901e-01  -0.584   0.5590  
## PovStatBelow                 2.764e-01  7.131e-01   0.388   0.6983  
## Age                         -2.183e-02  1.356e-02  -1.610   0.1073  
## WRATtotal                    2.252e-02  1.719e-02   1.310   0.1900  
## TrailsB:SexMen              -2.024e-03  3.473e-03  -0.583   0.5600  
## TrailsB:PovStatBelow        -1.571e-03  5.167e-03  -0.304   0.7611  
## SexMen:PovStatBelow         -8.859e-01  1.024e+00  -0.865   0.3868  
## TrailsB:SexMen:PovStatBelow  1.100e-02  8.062e-03   1.364   0.1725  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 505.40  on 640  degrees of freedom
## Residual deviance: 490.99  on 631  degrees of freedom
## AIC: 510.99
## 
## Number of Fisher Scoring iterations: 5
confint(TMTBlog3)
##                                    2.5 %      97.5 %
## (Intercept)                  0.040995977 4.243386118
## TrailsB                     -0.005314178 0.006180063
## SexMen                      -1.257432994 0.671448445
## PovStatBelow                -1.102935668 1.720782202
## Age                         -0.048621607 0.004639968
## WRATtotal                   -0.011510819 0.056032243
## TrailsB:SexMen              -0.009085005 0.004661670
## TrailsB:PovStatBelow        -0.011454410 0.009293020
## SexMen:PovStatBelow         -2.939374247 1.102186380
## TrailsB:SexMen:PovStatBelow -0.004275290 0.028250524
exp(cbind(OR = coef(TMTBlog3), confint(TMTBlog3)))
##                                    OR      2.5 %    97.5 %
## (Intercept)                 8.3202488 1.04184791 69.643273
## TrailsB                     1.0000631 0.99469992  1.006199
## SexMen                      0.7509982 0.28438310  1.957070
## PovStatBelow                1.3184107 0.33189532  5.588898
## Age                         0.9784054 0.95254150  1.004651
## WRATtotal                   1.0227769 0.98855518  1.057632
## TrailsB:SexMen              0.9979777 0.99095614  1.004673
## TrailsB:PovStatBelow        0.9984302 0.98861094  1.009336
## SexMen:PovStatBelow         0.4123557 0.05289882  3.010741
## TrailsB:SexMen:PovStatBelow 1.0110596 0.99573384  1.028653
########Compare to null model 
#Difference in Deviance
with(TMTBlog3,null.deviance - deviance)
## [1] 14.41466
#Degrees of freedom for the difference between two models
with(TMTBlog3,df.null - df.residual)
## [1] 9
#p-value
with(TMTBlog3,pchisq(null.deviance-deviance,df.null-df.residual,lower.tail=FALSE))
## [1] 0.1083207

Compare Models 1,2, & 3

anova(TMTBlog1,TMTBlog2,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PsychAggress ~ TrailsB
## Model 2: PsychAggress ~ TrailsB + Age + Sex + PovStat + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)  
## 1       639     503.51                       
## 2       635     494.48  4   9.0279  0.06041 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(TMTBlog2,TMTBlog3,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PsychAggress ~ TrailsB + Age + Sex + PovStat + WRATtotal
## Model 2: PsychAggress ~ (TrailsB + Sex + PovStat)^3 + Age + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1       635     494.48                     
## 2       631     490.99  4   3.4916   0.4792
anova(TMTBlog1,TMTBlog3,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PsychAggress ~ TrailsB
## Model 2: PsychAggress ~ (TrailsB + Sex + PovStat)^3 + Age + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1       639     503.51                     
## 2       631     490.99  8    12.52   0.1295

Suggested model by predictors

anova(TMTBlog3, test="Chisq")
## Analysis of Deviance Table
## 
## Model: binomial, link: logit
## 
## Response: PsychAggress
## 
## Terms added sequentially (first to last)
## 
## 
##                     Df Deviance Resid. Df Resid. Dev Pr(>Chi)  
## NULL                                  640     505.40           
## TrailsB              1   1.8952       639     503.51  0.16862  
## Sex                  1   3.5987       638     499.91  0.05783 .
## PovStat              1   1.5013       637     498.41  0.22048  
## Age                  1   2.1980       636     496.21  0.13819  
## WRATtotal            1   1.7299       635     494.48  0.18842  
## TrailsB:Sex          1   0.0003       634     494.48  0.98510  
## TrailsB:PovStat      1   1.1518       633     493.33  0.28317  
## Sex:PovStat          1   0.3637       632     492.96  0.54648  
## TrailsB:Sex:PovStat  1   1.9758       631     490.99  0.15983  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TMTBlog4 <- glm(PsychAggress ~ Sex  + Age + WRATtotal, data = Allvars, family = "binomial")
summary(TMTBlog4)
## 
## Call:
## glm(formula = PsychAggress ~ Sex + Age + WRATtotal, family = "binomial", 
##     data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.2850   0.4317   0.4986   0.5734   0.8093  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)   
## (Intercept)  2.31934    0.89316   2.597  0.00941 **
## SexMen      -0.43214    0.23609  -1.830  0.06718 . 
## Age         -0.02420    0.01290  -1.875  0.06073 . 
## WRATtotal    0.02134    0.01444   1.478  0.13953   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 505.40  on 640  degrees of freedom
## Residual deviance: 495.76  on 637  degrees of freedom
## AIC: 503.76
## 
## Number of Fisher Scoring iterations: 4

Trail Making Test Part B - Physical Assault

Model 1

TMTBlog1 <- glm(PhysAssault ~ TrailsB, data=Allvars,family = "binomial")
summary(TMTBlog1)
## 
## Call:
## glm(formula = PhysAssault ~ TrailsB, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.5441  -0.5312  -0.5209  -0.4882   2.1550  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -1.800563   0.214371  -8.399   <2e-16 ***
## TrailsB     -0.001394   0.001730  -0.806     0.42    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 482.53  on 640  degrees of freedom
## Residual deviance: 481.85  on 639  degrees of freedom
## AIC: 485.85
## 
## Number of Fisher Scoring iterations: 4
confint(TMTBlog1)
##                    2.5 %       97.5 %
## (Intercept) -2.225644745 -1.383091814
## TrailsB     -0.004987308  0.001835261
exp(cbind(OR = coef(TMTBlog1), confint(TMTBlog1)))
##                    OR     2.5 %    97.5 %
## (Intercept) 0.1652059 0.1079978 0.2508019
## TrailsB     0.9986066 0.9950251 1.0018369
########Compare to null model 
#Difference in Deviance
with(TMTBlog1,null.deviance - deviance)
## [1] 0.6782001
#Degrees of freedom for the difference between two models
with(TMTBlog1,df.null - df.residual)
## [1] 1
#p-value
with(TMTBlog1,pchisq(null.deviance-deviance,df.null-df.residual,lower.tail=FALSE))
## [1] 0.4102072

Model 2

TMTBlog2 <- glm(PhysAssault ~ TrailsB + Age + Sex + PovStat + WRATtotal, data = Allvars, family = "binomial")
summary(TMTBlog2)
## 
## Call:
## glm(formula = PhysAssault ~ TrailsB + Age + Sex + PovStat + WRATtotal, 
##     family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.8230  -0.5492  -0.4750  -0.3924   2.3795  
## 
## Coefficients:
##                Estimate Std. Error z value Pr(>|z|)  
## (Intercept)  -1.3836639  1.0890102  -1.271   0.2039  
## TrailsB       0.0004079  0.0019634   0.208   0.8354  
## Age          -0.0340712  0.0142096  -2.398   0.0165 *
## SexMen       -0.1582465  0.2442859  -0.648   0.5171  
## PovStatBelow  0.4860101  0.2528681   1.922   0.0546 .
## WRATtotal     0.0191430  0.0186090   1.029   0.3036  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 482.53  on 640  degrees of freedom
## Residual deviance: 469.38  on 635  degrees of freedom
## AIC: 481.38
## 
## Number of Fisher Scoring iterations: 5
confint(TMTBlog2)
##                     2.5 %       97.5 %
## (Intercept)  -3.550585477  0.728040054
## TrailsB      -0.003625984  0.004115663
## Age          -0.062358059 -0.006533071
## SexMen       -0.641711303  0.318865256
## PovStatBelow -0.014762189  0.979371610
## WRATtotal    -0.016588773  0.056560198
exp(cbind(OR = coef(TMTBlog2), confint(TMTBlog2)))
##                     OR      2.5 %    97.5 %
## (Intercept)  0.2506585 0.02870783 2.0710175
## TrailsB      1.0004079 0.99638058 1.0041241
## Age          0.9665027 0.93954641 0.9934882
## SexMen       0.8536393 0.52639084 1.3755660
## PovStatBelow 1.6258164 0.98534624 2.6627825
## WRATtotal    1.0193274 0.98354806 1.0581903
########Compare to null model 
#Difference in Deviance
with(TMTBlog2,null.deviance - deviance)
## [1] 13.14969
#Degrees of freedom for the difference between two models
with(TMTBlog2,df.null - df.residual)
## [1] 5
#p-value
with(TMTBlog2,pchisq(null.deviance-deviance,df.null-df.residual,lower.tail=FALSE))
## [1] 0.02201567

Model 3

TMTBlog3 <- glm(PhysAssault ~ (TrailsB + Sex + PovStat)^3 + Age + WRATtotal, data = Allvars, family = "binomial")
summary(TMTBlog3)
## 
## Call:
## glm(formula = PhysAssault ~ (TrailsB + Sex + PovStat)^3 + Age + 
##     WRATtotal, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.8076  -0.5530  -0.4680  -0.3874   2.3898  
## 
## Coefficients:
##                               Estimate Std. Error z value Pr(>|z|)  
## (Intercept)                 -1.3070879  1.1474161  -1.139    0.255  
## TrailsB                     -0.0003952  0.0033321  -0.119    0.906  
## SexMen                      -0.4164733  0.5404079  -0.771    0.441  
## PovStatBelow                 0.3301475  0.5989564   0.551    0.581  
## Age                         -0.0339108  0.0142097  -2.386    0.017 *
## WRATtotal                    0.0193090  0.0188812   1.023    0.306  
## TrailsB:SexMen               0.0022476  0.0043351   0.518    0.604  
## TrailsB:PovStatBelow         0.0012567  0.0049259   0.255    0.799  
## SexMen:PovStatBelow          0.5698502  0.9182035   0.621    0.535  
## TrailsB:SexMen:PovStatBelow -0.0046844  0.0073815  -0.635    0.526  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 482.53  on 640  degrees of freedom
## Residual deviance: 468.86  on 631  degrees of freedom
## AIC: 488.86
## 
## Number of Fisher Scoring iterations: 5
confint(TMTBlog3)
##                                    2.5 %       97.5 %
## (Intercept)                 -3.586519885  0.922804562
## TrailsB                     -0.007675075  0.005630066
## SexMen                      -1.488985092  0.639884285
## PovStatBelow                -0.853851868  1.506410081
## Age                         -0.062201434 -0.006373086
## WRATtotal                   -0.016975165  0.057248566
## TrailsB:SexMen              -0.006319224  0.011010130
## TrailsB:PovStatBelow        -0.008693041  0.011011262
## SexMen:PovStatBelow         -1.229855510  2.384454883
## TrailsB:SexMen:PovStatBelow -0.019760664  0.009613506
########Compare to null model 
#Difference in Deviance
with(TMTBlog3,null.deviance - deviance)
## [1] 13.67086
#Degrees of freedom for the difference between two models
with(TMTBlog3,df.null - df.residual)
## [1] 9
#p-value
with(TMTBlog3,pchisq(null.deviance-deviance,df.null-df.residual,lower.tail=FALSE))
## [1] 0.1345244

Compare Models 1,2, & 3

anova(TMTBlog1,TMTBlog2,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PhysAssault ~ TrailsB
## Model 2: PhysAssault ~ TrailsB + Age + Sex + PovStat + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)  
## 1       639     481.85                       
## 2       635     469.38  4   12.472  0.01417 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(TMTBlog2,TMTBlog3,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PhysAssault ~ TrailsB + Age + Sex + PovStat + WRATtotal
## Model 2: PhysAssault ~ (TrailsB + Sex + PovStat)^3 + Age + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1       635     469.38                     
## 2       631     468.86  4  0.52117   0.9714
anova(TMTBlog1,TMTBlog3,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PhysAssault ~ TrailsB
## Model 2: PhysAssault ~ (TrailsB + Sex + PovStat)^3 + Age + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1       639     481.85                     
## 2       631     468.86  8   12.993   0.1121

Sugested Model by predictors

anova(TMTBlog3, test="Chisq")
## Analysis of Deviance Table
## 
## Model: binomial, link: logit
## 
## Response: PhysAssault
## 
## Terms added sequentially (first to last)
## 
## 
##                     Df Deviance Resid. Df Resid. Dev Pr(>Chi)  
## NULL                                  640     482.53           
## TrailsB              1   0.6782       639     481.85  0.41021  
## Sex                  1   0.7212       638     481.13  0.39574  
## PovStat              1   5.0344       637     476.10  0.02485 *
## Age                  1   5.6329       636     470.47  0.01763 *
## WRATtotal            1   1.0830       635     469.38  0.29803  
## TrailsB:Sex          1   0.0358       634     469.35  0.84987  
## TrailsB:PovStat      1   0.0523       633     469.29  0.81916  
## Sex:PovStat          1   0.0247       632     469.27  0.87506  
## TrailsB:Sex:PovStat  1   0.4084       631     468.86  0.52281  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TMTBlog4 <- glm(PhysAssault ~ Age + PovStat, data = Allvars, family = "binomial")
summary(TMTBlog4)
## 
## Call:
## glm(formula = PhysAssault ~ Age + PovStat, family = "binomial", 
##     data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.7492  -0.5539  -0.4770  -0.3956   2.3402  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)  
## (Intercept)  -0.53355    0.64202  -0.831   0.4059  
## Age          -0.03471    0.01372  -2.530   0.0114 *
## PovStatBelow  0.45113    0.24862   1.815   0.0696 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 482.53  on 640  degrees of freedom
## Residual deviance: 470.90  on 638  degrees of freedom
## AIC: 476.9
## 
## Number of Fisher Scoring iterations: 5