These are the participant numbers. We have 24 participants.

##  [1] "5"  "8"  "9"  "10" "11" "12" "19" "21" "22" "36" "38" "42" "43" "44" "49"
## [16] "50" "55" "57" "59" "60" "61" "65" "66"

Demographics

Age. For two we have missing data. The mean = 26.75 (SD=4.12), median = 26, min = 19 and max = 37.

##    vars  n  mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 20 26.75 4.12     26   26.56 2.97  19  37    18 0.55     0.23 0.92

Gender. Majority (78%) female.

## # A tibble: 2 x 3
##   dem_genCHR     n percent
##   <chr>      <int> <chr>  
## 1 Female        18 78.3%  
## 2 Male           5 21.7%

Race/Ethnicity. Majority (83%) non-Hispanic white.

## # A tibble: 3 x 4
## # Groups:   dem_latinoCHR [2]
##   dem_latinoCHR Race_comb     n percent
##   <labelled>    <chr>     <int> <chr>  
## 1 Hispanic      Other         1 4.3%   
## 2 Hispanic      White         3 13.0%  
## 3 Non-hispanic  White        19 82.6%

Education. Majority (74%) have some college education.

## The following `from` values were not present in `x`: 1
## # A tibble: 5 x 3
##   dem_educ1                                 n percent
##   <fct>                                 <int> <chr>  
## 1 some high school but did not graduate     1 4.3%   
## 2 High school graduate or GED               3 13.0%  
## 3 Some college or 2-year degree             8 34.8%  
## 4 4-year college graduate                   9 39.1%  
## 5 More than a 4-year college degree         2 8.7%

Marital status. Most (87%) were currently married.

## The following `from` values were not present in `x`: 2, 3, 4, 6, 7
## # A tibble: 2 x 3
##   marital_stat1     n percent
##   <labelled>    <int> <chr>  
## 1 Never married     3 13.0%  
## 2 Now married      20 87.0%

Religion. Most were Latter Day Saints.

## The following `from` values were not present in `x`: 1, 4, 5, 6, 7, 8, 9, 12
## # A tibble: 5 x 3
##   religion1                                          n percent
##   <labelled>                                     <int> <chr>  
## 1 Agnostic                                           1 4.3%   
## 2 LDS                                               16 69.6%  
## 3 Nothing in particular                              2 8.7%   
## 4 Roman catholic                                     2 8.7%   
## 5 Spiritual but not commited to particular faith     2 8.7%

Religious attendance. Church or other religious meeting attendance was varied.

## # A tibble: 6 x 3
##   rel_attend1               n percent
##   <fct>                 <int> <chr>  
## 1 Never                     2 8.7%   
## 2 Once a year or less       3 13.0%  
## 3 A few times a year        3 13.0%  
## 4 A few times a month       2 8.7%   
## 5 Once a week               8 34.8%  
## 6 More than once a week     5 21.7%

Religious private. Time spent in private religious activities (e.g., prayer meditation) was varied too but mostly daily.

## # A tibble: 6 x 3
##   rel_spend1                 n percent
##   <fct>                  <int> <chr>  
## 1 Rarely or never            4 17.4%  
## 2 a few times a month        3 13.0%  
## 3 Once a week                1 4.3%   
## 4 Two or more times/week     3 13.0%  
## 5 Daily                     10 43.5%  
## 6 More than once a day       2 8.7%

Outcome measures

Literacy. Average health literacy was fairly high at 4.23.

##          vars  n mean   sd median trimmed  mad min max range  skew kurtosis
## lit_writ    1 23 4.26 0.81      4    4.32 1.48   3   5     2 -0.47    -1.39
## lit_con     2 23 4.22 0.67      4    4.26 0.00   3   5     2 -0.24    -0.94
## lit_help    3 23 4.22 0.95      4    4.37 1.48   2   5     3 -1.02     0.02
##            se
## lit_writ 0.17
## lit_con  0.14
## lit_help 0.20
##    vars  n mean  sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 23 4.23 0.6   4.33    4.28 0.49   3   5     2 -0.51    -0.54 0.12

Numeracy. Avergae for overall numeracy was around 4.38. For ability it was 4.53 and for preference was 4.24.

##             vars  n mean   sd median trimmed  mad min max range  skew kurtosis
## num_fract      1 23 4.39 1.41      5    4.53 1.48   1   6     5 -0.59    -0.54
## num_perc       2 23 4.48 1.47      5    4.63 1.48   1   6     5 -0.57    -0.72
## num_tip        3 23 4.48 1.50      5    4.63 1.48   1   6     5 -0.57    -0.86
## num_off        4 23 4.74 1.45      5    4.89 1.48   1   6     5 -0.84    -0.39
## num_tab        5 23 4.04 1.46      4    4.16 1.48   1   6     5 -0.49    -0.55
## num_chance     6 23 3.35 1.75      3    3.32 2.97   1   6     5  0.12    -1.49
## num_predict    7 23 4.74 1.66      5    5.00 1.48   1   6     5 -1.21     0.05
## num_useful     8 23 4.83 1.23      5    4.95 1.48   2   6     4 -0.67    -0.80
##               se
## num_fract   0.29
## num_perc    0.31
## num_tip     0.31
## num_off     0.30
## num_tab     0.30
## num_chance  0.36
## num_predict 0.35
## num_useful  0.26
##    vars  n mean   sd median trimmed  mad  min  max range skew kurtosis   se
## X1    1 23 4.38 0.88   4.38    4.41 1.11 2.62 5.75  3.12 -0.1    -0.98 0.18
##    vars  n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 23 4.52 1.36   4.75    4.67 1.48   1   6     5 -0.78    -0.12 0.28
##    vars  n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 23 4.24 0.77   4.25    4.21 0.74   3   6     3 0.18    -0.56 0.16

Labels for the pre/postnatal participants, survey timings, and decision.

## The following `from` values were not present in `x`: 3
## [1] "3_month_followup_d_arm_1" "3_month_followup_s_arm_1"
## [3] "3_month_followup_s_arm_2" "at_diagnosis_arm_1"      
## [5] "at_diagnosis_arm_2"       "post_decision_dns_arm_1" 
## [7] "post_decision_s_arm_1"    "post_decision_s_arm_2"
## [1] "At diagnosis prenatal"                       
## [2] "At diagnosis postnatal"                      
## [3] "Post-decision prenatal (Survived)"           
## [4] "Post-decision postnatal (Survived)"          
## [5] "Post-decison prenatal (Did not survive)"     
## [6] "3-month follow up prenatal (Survived)"       
## [7] "3-month follow up postnatal (Survived)"      
## [8] "3-month follow up prenatal (Did not survive)"
## [1] "At diagnosis"                        "Post-decision (Survived)"           
## [3] "Post-decison (Did not survive)"      "3-month follow up (Survived)"       
## [5] "3-month follow up (Did not survive)"

Brief Symptom Inventory. I need to figure these out.

##            vars  n mean   sd median trimmed  mad min max range skew kurtosis
## glo_nerv      1 69 1.70 1.38    2.0    1.63 1.48   0   4     4 0.18    -1.27
## glo_faint     2 69 0.84 1.26    0.0    0.63 0.00   0   4     4 1.26     0.28
## glo_contr     3 69 0.16 0.53    0.0    0.02 0.00   0   3     3 3.61    13.30
## glo_other     4 69 0.29 0.79    0.0    0.11 0.00   0   4     4 3.37    11.99
## glo_troub     5 69 1.78 1.25    1.0    1.74 1.48   0   4     4 0.41    -0.95
## glo_annoy     6 69 2.13 1.21    2.0    2.14 1.48   0   4     4 0.00    -1.18
## glo_pains     7 69 0.42 1.05    0.0    0.16 0.00   0   4     4 2.51     5.26
## glo_open      8 69 0.23 0.60    0.0    0.09 0.00   0   3     3 2.73     7.30
## glo_endlif    9 68 0.13 0.49    0.0    0.00 0.00   0   2     2 3.41    10.01
## glo_trust    10 67 0.60 0.97    0.0    0.42 0.00   0   4     4 1.74     2.70
## glo_poor     11 67 1.19 1.18    1.0    1.07 1.48   0   4     4 0.71    -0.53
## glo_scared   12 67 0.61 0.87    0.0    0.47 0.00   0   4     4 1.50     2.22
## glo_temp     13 67 0.88 1.12    0.0    0.69 0.00   0   4     4 1.18     0.60
## glo_lonewo   14 67 1.24 1.23    1.0    1.09 1.48   0   4     4 0.79    -0.37
## glo_block    15 67 1.84 1.48    2.0    1.80 1.48   0   4     4 0.17    -1.43
## glo_lone     16 67 1.40 1.22    1.0    1.27 1.48   0   4     4 0.64    -0.45
## glo_blue     17 67 1.72 1.24    1.0    1.65 1.48   0   4     4 0.35    -0.96
## glo_noint    18 67 1.43 1.29    1.0    1.33 1.48   0   4     4 0.54    -0.99
## glo_fear     19 68 1.35 1.26    1.0    1.25 1.48   0   4     4 0.49    -0.93
## glo_hurt     20 68 1.09 1.14    1.0    0.95 1.48   0   4     4 0.90    -0.07
## glo_peop     21 68 0.71 0.90    0.0    0.59 0.00   0   3     3 0.96    -0.22
## glo_infer    22 68 0.78 0.99    0.5    0.61 0.74   0   4     4 1.26     0.90
## glo_nause    23 68 1.01 1.31    0.0    0.82 0.00   0   4     4 0.99    -0.31
## glo_watch    24 68 0.68 1.09    0.0    0.45 0.00   0   4     4 1.69     2.07
## glo_sleep    25 68 1.65 1.34    1.0    1.57 1.48   0   4     4 0.36    -1.23
## glo_check    26 68 1.31 1.34    1.0    1.16 1.48   0   4     4 0.68    -0.86
## glo_decis    27 68 1.76 1.34    1.0    1.71 1.48   0   4     4 0.28    -1.21
## glo_trave    28 68 0.34 0.80    0.0    0.16 0.00   0   4     4 3.08    10.35
## glo_breat    29 68 0.60 1.05    0.0    0.38 0.00   0   4     4 1.74     2.07
## glo_spell    30 68 0.78 1.18    0.0    0.55 0.00   0   4     4 1.49     1.16
## glo_avoid    31 68 0.57 1.04    0.0    0.34 0.00   0   4     4 1.84     2.46
## glo_blank    32 68 1.57 1.19    1.0    1.50 1.48   0   4     4 0.43    -0.78
## glo_numb     33 68 0.57 1.11    0.0    0.32 0.00   0   4     4 1.85     2.30
## glo_sins     34 68 0.43 0.87    0.0    0.23 0.00   0   4     4 2.17     4.32
## glo_hopel    35 68 0.93 1.19    0.0    0.73 0.00   0   4     4 1.14     0.35
## glo_conce    36 68 1.71 1.21    2.0    1.64 1.48   0   4     4 0.37    -0.80
## glo_weak     37 68 0.74 1.09    0.0    0.54 0.00   0   4     4 1.35     0.86
## glo_keyed    38 68 0.59 1.04    0.0    0.36 0.00   0   4     4 1.81     2.38
## glo_death    39 68 0.44 0.74    0.0    0.30 0.00   0   3     3 1.50     1.26
## glo_beat     40 68 0.07 0.26    0.0    0.00 0.00   0   1     1 3.20     8.34
## glo_break    41 67 0.33 0.79    0.0    0.13 0.00   0   3     3 2.32     4.26
## glo_selfc    42 68 1.19 1.22    1.0    1.05 1.48   0   4     4 0.74    -0.51
## glo_uneas    43 68 1.00 1.28    0.0    0.80 0.00   0   4     4 1.05    -0.11
## glo_close    44 68 0.40 0.78    0.0    0.23 0.00   0   4     4 2.42     6.66
## glo_terr     45 68 0.46 0.87    0.0    0.27 0.00   0   4     4 2.07     3.97
## glo_argu     46 68 0.50 0.76    0.0    0.36 0.00   0   3     3 1.49     1.65
## glo_neral    47 68 0.82 1.11    0.0    0.64 0.00   0   4     4 1.26     0.61
## glo_achie    48 67 0.60 1.16    0.0    0.33 0.00   0   4     4 1.91     2.48
## glo_restl    49 68 0.82 1.23    0.0    0.61 0.00   0   4     4 1.27     0.41
## glo_worth    50 68 0.74 1.03    0.0    0.54 0.00   0   4     4 1.50     1.63
## glo_takea    51 68 0.54 1.03    0.0    0.30 0.00   0   4     4 2.11     3.82
## glo_guilt    52 68 1.24 1.32    1.0    1.07 1.48   0   4     4 0.77    -0.51
## glo_wrong    53 68 0.60 1.05    0.0    0.39 0.00   0   4     4 1.66     1.53
##              se
## glo_nerv   0.17
## glo_faint  0.15
## glo_contr  0.06
## glo_other  0.09
## glo_troub  0.15
## glo_annoy  0.15
## glo_pains  0.13
## glo_open   0.07
## glo_endlif 0.06
## glo_trust  0.12
## glo_poor   0.14
## glo_scared 0.11
## glo_temp   0.14
## glo_lonewo 0.15
## glo_block  0.18
## glo_lone   0.15
## glo_blue   0.15
## glo_noint  0.16
## glo_fear   0.15
## glo_hurt   0.14
## glo_peop   0.11
## glo_infer  0.12
## glo_nause  0.16
## glo_watch  0.13
## glo_sleep  0.16
## glo_check  0.16
## glo_decis  0.16
## glo_trave  0.10
## glo_breat  0.13
## glo_spell  0.14
## glo_avoid  0.13
## glo_blank  0.14
## glo_numb   0.13
## glo_sins   0.11
## glo_hopel  0.14
## glo_conce  0.15
## glo_weak   0.13
## glo_keyed  0.13
## glo_death  0.09
## glo_beat   0.03
## glo_break  0.10
## glo_selfc  0.15
## glo_uneas  0.16
## glo_close  0.09
## glo_terr   0.11
## glo_argu   0.09
## glo_neral  0.13
## glo_achie  0.14
## glo_restl  0.15
## glo_worth  0.13
## glo_takea  0.12
## glo_guilt  0.16
## glo_wrong  0.13
## `summarise()` regrouping output by 'redcap_event_name1' (override with `.groups` argument)
## # A tibble: 11 x 5
## # Groups:   redcap_event_name1 [8]
##    redcap_event_name1                           Decision   count  mean     sd
##    <fct>                                        <chr>      <int> <dbl>  <dbl>
##  1 At diagnosis prenatal                        <NA>          22 0.753  0.525
##  2 At diagnosis postnatal                       <NA>           1 0.906 NA    
##  3 Post-decision prenatal (Survived)            Surgery       12 0.719  0.562
##  4 Post-decision postnatal (Survived)           Surgery        1 1.23  NA    
##  5 Post-decison prenatal (Did not survive)      Palliative     6 1.33   0.662
##  6 Post-decison prenatal (Did not survive)      Surgery        3 0.881  0.491
##  7 Post-decison prenatal (Did not survive)      <NA>           1 0.140 NA    
##  8 3-month follow up prenatal (Survived)        Surgery       11 0.664  0.491
##  9 3-month follow up postnatal (Survived)       Surgery        1 2.33  NA    
## 10 3-month follow up prenatal (Did not survive) Palliative     6 1.76   0.384
## 11 3-month follow up prenatal (Did not survive) Surgery        5 0.909  0.701

Decision Quality Values . I need to figure these out.

##        vars  n mean   sd median trimmed  mad min max range  skew kurtosis   se
## v_pain    1 37 1.54 0.84      1    1.42 0.00   1   4     3  1.26     0.40 0.14
## v_live    2 36 2.17 1.18      2    2.00 1.48   1   6     5  1.30     1.62 0.20
## v_phys    3 41 4.78 1.11      5    4.91 1.48   1   6     5 -1.08     1.41 0.17
## v_ment    4 40 4.22 1.19      4    4.25 1.48   2   6     4 -0.16    -1.02 0.19
## v_time    5 44 4.41 1.32      4    4.50 1.48   2   6     4 -0.28    -0.97 0.20
## v_try     6 42 3.26 1.73      3    3.21 1.48   1   6     5  0.44    -1.20 0.27

Knowledge pt1 fetus questions. I need to figure these out. These were taken at post-decision and 3 month follow up (for survived and did not survive).

##           vars  n mean   sd median trimmed mad min max range  skew kurtosis
## k_prim       1 44 2.95 0.21      3    3.00   0   2   3     1 -4.22    16.15
## k_mprob      2 43 1.86 1.13      1    1.71   0   1   4     3  0.76    -1.06
## k_opt1       3 44 1.11 0.32      1    1.03   0   1   2     1  2.35     3.62
## k_opt2       4 44 1.25 0.44      1    1.19   0   1   2     1  1.12    -0.77
## l_opt3       5 44 1.14 0.35      1    1.06   0   1   2     1  2.05     2.24
## k_com        6 41 1.00 0.00      1    1.00   0   1   1     0   NaN      NaN
## k_sur        7 40 1.02 0.16      1    1.00   0   1   2     1  5.86    33.15
## k_survive    8 44 1.82 0.45      2    1.86   0   1   3     2 -0.79     0.46
## k_comfort    9 44 0.05 0.21      0    0.00   0   0   1     1  4.22    16.15
## k_cable1    10 44 1.07 0.25      1    1.00   0   1   2     1  3.31     9.17
## k_cable2    11 44 1.00 0.00      1    1.00   0   1   1     0   NaN      NaN
## k_cable3    12 43 1.44 0.50      1    1.43   0   1   2     1  0.23    -1.99
## k_cable4    13 44 1.18 0.39      1    1.11   0   1   2     1  1.59     0.55
## k_cable5    14 44 1.16 0.37      1    1.08   0   1   2     1  1.80     1.27
##             se
## k_prim    0.03
## k_mprob   0.17
## k_opt1    0.05
## k_opt2    0.07
## l_opt3    0.05
## k_com     0.00
## k_sur     0.02
## k_survive 0.07
## k_comfort 0.03
## k_cable1  0.04
## k_cable2  0.00
## k_cable3  0.08
## k_cable4  0.06
## k_cable5  0.06

Knowledge pt1 neonate questions. I need to figure these out.

##            vars n mean   sd median trimmed  mad min max range skew kurtosis  se
## k_nprim       1 2  3.0 0.00    3.0     3.0 0.00   3   3     0  NaN      NaN 0.0
## k_nmprob      2 2  3.0 1.41    3.0     3.0 1.48   2   4     2    0    -2.75 1.0
## k_ncom        3 2  1.5 0.71    1.5     1.5 0.74   1   2     1    0    -2.75 0.5
## k_nsur        4 2  1.0 0.00    1.0     1.0 0.00   1   1     0  NaN      NaN 0.0
## k_nsurvive    5 2  2.0 0.00    2.0     2.0 0.00   2   2     0  NaN      NaN 0.0
## k_ncomfort    6 2  0.0 0.00    0.0     0.0 0.00   0   0     0  NaN      NaN 0.0
## k_ncable1     7 2  1.5 0.71    1.5     1.5 0.74   1   2     1    0    -2.75 0.5
## k_ncable2     8 2  1.5 0.71    1.5     1.5 0.74   1   2     1    0    -2.75 0.5
## k_ncable3     9 2  1.5 0.71    1.5     1.5 0.74   1   2     1    0    -2.75 0.5
## k_ncable4    10 2  1.5 0.71    1.5     1.5 0.74   1   2     1    0    -2.75 0.5
## k_ncable5    11 2  1.5 0.71    1.5     1.5 0.74   1   2     1    0    -2.75 0.5

Comrade questions. These were only measured post decision.

##            vars  n mean   sd median trimmed mad min max range  skew kurtosis
## com_aware     1 22 4.18 1.18      5    4.39   0   1   5     4 -1.33     0.63
## com_expres    2 22 4.18 1.14      5    4.39   0   1   5     4 -1.26     0.68
## com_chanc     3 22 4.45 1.06      5    4.72   0   1   5     4 -2.08     3.57
## com_infor     4 22 4.14 1.28      5    4.39   0   1   5     4 -1.40     0.73
## com_expan     5 22 4.18 1.30      5    4.44   0   1   5     4 -1.45     0.79
## com_under     6 22 4.23 1.07      5    4.39   0   1   5     4 -1.33     1.29
## com_advan     7 22 4.32 1.21      5    4.61   0   1   5     4 -1.82     2.26
## com_disad     8 22 4.27 1.20      5    4.56   0   1   5     4 -1.76     2.13
## com_decid     9 22 4.27 1.28      5    4.56   0   1   5     4 -1.53     1.10
## com_invol    10 22 4.14 1.42      5    4.39   0   1   5     4 -1.36     0.33
##              se
## com_aware  0.25
## com_expres 0.24
## com_chanc  0.23
## com_infor  0.27
## com_expan  0.28
## com_under  0.23
## com_advan  0.26
## com_disad  0.26
## com_decid  0.27
## com_invol  0.30
## `summarise()` regrouping output by 'redcap_event_name1' (override with `.groups` argument)
## # A tibble: 8 x 5
## # Groups:   redcap_event_name1 [6]
##   redcap_event_name1                           Decision   count   mean     sd
##   <fct>                                        <chr>      <int>  <dbl>  <dbl>
## 1 Post-decision prenatal (Survived)            Surgery       12   4.48  0.681
## 2 Post-decision postnatal (Survived)           Surgery        1   4.4  NA    
## 3 Post-decison prenatal (Did not survive)      Palliative     6   4.02  1.22 
## 4 Post-decison prenatal (Did not survive)      Surgery        3   3.63  2.28 
## 5 3-month follow up prenatal (Survived)        Surgery       11 NaN    NA    
## 6 3-month follow up postnatal (Survived)       Surgery        1 NaN    NA    
## 7 3-month follow up prenatal (Did not survive) Palliative     6 NaN    NA    
## 8 3-month follow up prenatal (Did not survive) Surgery        5 NaN    NA

Preference for shared decision making questions. Note that one participant (ID=44) did not complete the second survey.

## The following `from` values were not present in `x`: 1
## # A tibble: 4 x 2
##   cps_time12                                                                   n
##   <labelled>                                                               <int>
## 1 I will make the decision after seriously considering my doctor(s) opini…     9
## 2 I will make the decision with little input from my doctor(s)                 2
## 3 My doctor(s) and I will make the decision together                          10
## 4 My doctor(s) will make the decision but will seriously consider my opin…     2

## # A tibble: 9 x 4
## # Groups:   redcap_event_name1, Decision [4]
##   redcap_event_name1         Decision  cps_time34                              n
##   <fct>                      <chr>     <labelled>                          <int>
## 1 Post-decision prenatal (S… Surgery   I will make the decision after ser…     4
## 2 Post-decision prenatal (S… Surgery   I will make the decision with litt…     1
## 3 Post-decision prenatal (S… Surgery   My doctor(s) and I will make the d…     6
## 4 Post-decision prenatal (S… Surgery   My doctor(s) will make the decisio…     1
## 5 Post-decision postnatal (… Surgery   My doctor(s) will make the decisio…     1
## 6 Post-decison prenatal (Di… Palliati… I will make the decision after ser…     5
## 7 Post-decison prenatal (Di… Palliati… My doctor(s) will make the decisio…     1
## 8 Post-decison prenatal (Di… Surgery   I will make the decision after ser…     2
## 9 Post-decison prenatal (Di… Surgery   My doctor(s) will make the decisio…     1

Decision self-efficacy questions. Looking okay. A score of 0 means ‘extremely low self efficacy’ and a score of 100 means ‘extremely high self efficacy’ – “basically confidence in understanding the information enough and to be able to make a choice”

##           vars  n mean   sd median trimmed  mad min max range  skew kurtosis
## dse_avail    1 44 3.30 1.02      4    3.50 0.00   0   4     4 -1.48     1.45
## dse_bene     2 45 3.38 0.91      4    3.54 0.00   0   4     4 -1.67     2.81
## dse_risk     3 45 3.33 0.90      4    3.49 0.00   0   4     4 -1.58     2.67
## dse_under    4 44 3.36 0.92      4    3.53 0.00   0   4     4 -1.64     2.69
## dse_askq     5 45 3.22 1.13      4    3.43 0.00   0   4     4 -1.46     1.21
## dse_expre    6 45 3.20 1.04      4    3.38 0.00   0   4     4 -1.23     0.76
## dse_aska     7 45 3.31 0.87      4    3.43 0.00   0   4     4 -1.42     2.44
## dse_figu     8 45 3.31 0.90      4    3.46 0.00   0   4     4 -1.54     2.62
## dse_hand     9 45 2.82 1.19      3    2.92 1.48   0   4     4 -0.45    -1.11
## dse_best    10 44 3.32 0.86      3    3.47 1.48   0   4     4 -1.72     3.79
## dse_delay   11 45 3.07 1.14      3    3.22 1.48   0   4     4 -0.95    -0.28
##             se
## dse_avail 0.15
## dse_bene  0.14
## dse_risk  0.13
## dse_under 0.14
## dse_askq  0.17
## dse_expre 0.15
## dse_aska  0.13
## dse_figu  0.13
## dse_hand  0.18
## dse_best  0.13
## dse_delay 0.17
## `summarise()` regrouping output by 'redcap_event_name1' (override with `.groups` argument)
## # A tibble: 11 x 5
## # Groups:   redcap_event_name1 [8]
##    redcap_event_name1                           Decision   count   mean    sd
##    <fct>                                        <chr>      <int>  <dbl> <dbl>
##  1 At diagnosis prenatal                        <NA>          22  82.23 15.80
##  2 At diagnosis postnatal                       <NA>           1 100    NA   
##  3 Post-decision prenatal (Survived)            Surgery       12  80.68 20.48
##  4 Post-decision postnatal (Survived)           Surgery        1  93.18 NA   
##  5 Post-decison prenatal (Did not survive)      Palliative     6  66.67 33.85
##  6 Post-decison prenatal (Did not survive)      Surgery        3  83.33 28.87
##  7 Post-decison prenatal (Did not survive)      <NA>           1   0    NA   
##  8 3-month follow up prenatal (Survived)        Surgery       11   0     0   
##  9 3-month follow up postnatal (Survived)       Surgery        1   0    NA   
## 10 3-month follow up prenatal (Did not survive) Palliative     6   0     0   
## 11 3-month follow up prenatal (Did not survive) Surgery        5   0     0

Decision conflict questions. Looking okay. A score of 0 is ‘no decisional conflict’ and 100 is ‘extremely high decisional conflict’ – “basically clear about the best choice for themselves”

##           vars  n mean   sd median trimmed  mad min max range  skew kurtosis
## dcs_optio    1 45 4.42 0.92      5    4.59 0.00   1   5     4 -2.29     5.87
## dcs_benef    2 45 4.47 0.89      5    4.62 0.00   1   5     4 -2.51     7.13
## dsc_risks    3 45 4.31 1.00      5    4.51 0.00   1   5     4 -1.85     3.33
## dsc_bmatt    4 45 4.49 0.89      5    4.65 0.00   1   5     4 -2.57     7.36
## dsc_rmatt    5 45 4.42 0.89      5    4.59 0.00   1   5     4 -1.84     3.59
## dsc_impor    6 45 4.38 0.94      5    4.57 0.00   1   5     4 -2.09     4.85
## dcs_suppr    7 45 4.51 0.79      5    4.65 0.00   1   5     4 -2.22     6.56
## dcs_press    8 45 4.29 1.06      5    4.51 0.00   1   5     4 -1.70     2.34
## dcs_advic    9 45 4.38 0.96      5    4.57 0.00   1   5     4 -1.99     4.19
## dcs_clear   10 45 4.33 1.00      5    4.54 0.00   1   5     4 -1.88     3.40
## dcs_sure    11 45 4.29 0.99      5    4.49 0.00   1   5     4 -1.81     3.28
## dcs_easy    12 45 3.29 1.59      3    3.35 2.97   1   5     4 -0.23    -1.50
## dcs_infor   13 45 4.44 0.92      5    4.62 0.00   1   5     4 -2.34     6.03
## dcs_shows   14 45 4.51 0.84      5    4.68 0.00   1   5     4 -2.04     4.72
## dcs_stick   15 45 4.56 0.81      5    4.73 0.00   1   5     4 -2.28     6.11
## dcs_satis   16 45 4.33 1.07      5    4.57 0.00   1   5     4 -1.99     3.57
##             se
## dcs_optio 0.14
## dcs_benef 0.13
## dsc_risks 0.15
## dsc_bmatt 0.13
## dsc_rmatt 0.13
## dsc_impor 0.14
## dcs_suppr 0.12
## dcs_press 0.16
## dcs_advic 0.14
## dcs_clear 0.15
## dcs_sure  0.15
## dcs_easy  0.24
## dcs_infor 0.14
## dcs_shows 0.13
## dcs_stick 0.12
## dcs_satis 0.16
##           vars  n mean   sd median trimmed  mad min max range  skew kurtosis
## dcs_optio    1 45 3.42 0.92      4    3.59 0.00   0   4     4 -2.29     5.87
## dcs_benef    2 45 3.47 0.89      4    3.62 0.00   0   4     4 -2.51     7.13
## dsc_risks    3 45 3.31 1.00      4    3.51 0.00   0   4     4 -1.85     3.33
## dsc_bmatt    4 45 3.49 0.89      4    3.65 0.00   0   4     4 -2.57     7.36
## dsc_rmatt    5 45 3.42 0.89      4    3.59 0.00   0   4     4 -1.84     3.59
## dsc_impor    6 45 3.38 0.94      4    3.57 0.00   0   4     4 -2.09     4.85
## dcs_suppr    7 45 3.51 0.79      4    3.65 0.00   0   4     4 -2.22     6.56
## dcs_press    8 45 3.29 1.06      4    3.51 0.00   0   4     4 -1.70     2.34
## dcs_advic    9 45 3.38 0.96      4    3.57 0.00   0   4     4 -1.99     4.19
## dcs_clear   10 45 3.33 1.00      4    3.54 0.00   0   4     4 -1.88     3.40
## dcs_sure    11 45 3.29 0.99      4    3.49 0.00   0   4     4 -1.81     3.28
## dcs_easy    12 45 2.29 1.59      2    2.35 2.97   0   4     4 -0.23    -1.50
## dcs_infor   13 45 3.44 0.92      4    3.62 0.00   0   4     4 -2.34     6.03
## dcs_shows   14 45 3.51 0.84      4    3.68 0.00   0   4     4 -2.04     4.72
## dcs_stick   15 45 3.56 0.81      4    3.73 0.00   0   4     4 -2.28     6.11
## dcs_satis   16 45 3.33 1.07      4    3.57 0.00   0   4     4 -1.99     3.57
##             se
## dcs_optio 0.14
## dcs_benef 0.13
## dsc_risks 0.15
## dsc_bmatt 0.13
## dsc_rmatt 0.13
## dsc_impor 0.14
## dcs_suppr 0.12
## dcs_press 0.16
## dcs_advic 0.14
## dcs_clear 0.15
## dcs_sure  0.15
## dcs_easy  0.24
## dcs_infor 0.14
## dcs_shows 0.13
## dcs_stick 0.12
## dcs_satis 0.16
## `summarise()` ungrouping output (override with `.groups` argument)
## # A tibble: 8 x 4
##   redcap_event_name1                           count   mean    sd
##   <fct>                                        <int>  <dbl> <dbl>
## 1 At diagnosis prenatal                           22   0     0   
## 2 At diagnosis postnatal                           1   0    NA   
## 3 Post-decision prenatal (Survived)               12  85.42 13.82
## 4 Post-decision postnatal (Survived)               1  98.44 NA   
## 5 Post-decison prenatal (Did not survive)         10  67.03 33.56
## 6 3-month follow up prenatal (Survived)           11  83.52 28.76
## 7 3-month follow up postnatal (Survived)           1 100    NA   
## 8 3-month follow up prenatal (Did not survive)    11  85.80 12.45
## `summarise()` regrouping output by 'redcap_event_name1' (override with `.groups` argument)
## # A tibble: 11 x 5
## # Groups:   redcap_event_name1 [8]
##    redcap_event_name1                           Decision   count   mean     sd
##    <fct>                                        <chr>      <int>  <dbl>  <dbl>
##  1 At diagnosis prenatal                        <NA>          22   0     0    
##  2 At diagnosis postnatal                       <NA>           1   0    NA    
##  3 Post-decision prenatal (Survived)            Surgery       12  85.42 13.82 
##  4 Post-decision postnatal (Survived)           Surgery        1  98.44 NA    
##  5 Post-decison prenatal (Did not survive)      Palliative     6  69.53 30.03 
##  6 Post-decison prenatal (Did not survive)      Surgery        3  84.38  9.758
##  7 Post-decison prenatal (Did not survive)      <NA>           1   0    NA    
##  8 3-month follow up prenatal (Survived)        Surgery       11  83.52 28.76 
##  9 3-month follow up postnatal (Survived)       Surgery        1 100    NA    
## 10 3-month follow up prenatal (Did not survive) Palliative     6  76.82  8.917
## 11 3-month follow up prenatal (Did not survive) Surgery        5  96.56  4.739

Decision regret questions. Looking okay. A score of 0 is ‘no regret’ and 100 is ‘high regret’ – “basically was it a good decision, would they do it again”

##           vars  n mean   sd median trimmed  mad min max range  skew kurtosis
## drs_right    1 23 4.61 0.89      5    4.79 0.00   1   5     4 -2.89     8.76
## drs_regre    2 23 1.61 0.99      1    1.42 0.00   1   5     4  1.87     3.47
## drs_again    3 23 4.43 0.99      5    4.63 0.00   1   5     4 -1.97     3.70
## drs_harm     4 23 2.17 1.37      2    2.00 1.48   1   5     4  0.82    -0.77
## drs_wise     5 23 4.52 0.90      5    4.68 0.00   1   5     4 -2.58     7.37
##             se
## drs_right 0.19
## drs_regre 0.21
## drs_again 0.21
## drs_harm  0.29
## drs_wise  0.19
## `summarise()` regrouping output by 'redcap_event_name1' (override with `.groups` argument)
## # A tibble: 11 x 5
## # Groups:   redcap_event_name1 [8]
##    redcap_event_name1                           Decision   count   mean     sd
##    <fct>                                        <chr>      <int>  <dbl>  <dbl>
##  1 At diagnosis prenatal                        <NA>          22 NaN    NA    
##  2 At diagnosis postnatal                       <NA>           1 NaN    NA    
##  3 Post-decision prenatal (Survived)            Surgery       12 NaN    NA    
##  4 Post-decision postnatal (Survived)           Surgery        1 NaN    NA    
##  5 Post-decison prenatal (Did not survive)      Palliative     6 NaN    NA    
##  6 Post-decison prenatal (Did not survive)      Surgery        3 NaN    NA    
##  7 Post-decison prenatal (Did not survive)      <NA>           1 NaN    NA    
##  8 3-month follow up prenatal (Survived)        Surgery       11  85    30    
##  9 3-month follow up postnatal (Survived)       Surgery        1  80    NA    
## 10 3-month follow up prenatal (Did not survive) Palliative     6  73.33  8.756
## 11 3-month follow up prenatal (Did not survive) Surgery        5  95     7.071

Consultation quality questions. Looking at min to max values they look okay.

##    vars  n mean sd median trimmed mad min max range  skew kurtosis   se
## X1    1 45 5.24  1      6    5.38   0   2   6     4 -1.15     0.64 0.15
## # A tibble: 12 x 4
## # Groups:   redcap_event_name1, Decision [6]
##    redcap_event_name1           Decision  con_option                           n
##    <fct>                        <chr>     <labelled>                       <int>
##  1 At diagnosis prenatal        <NA>      Encouraged a medical interventi…     5
##  2 At diagnosis prenatal        <NA>      Encouraged palliative care           4
##  3 At diagnosis prenatal        <NA>      Encouraged termination               1
##  4 At diagnosis prenatal        <NA>      Neither encouraged or discourag…    12
##  5 At diagnosis postnatal       <NA>      Encouraged a medical interventi…     1
##  6 Post-decision prenatal (Sur… Surgery   Encouraged a medical interventi…     2
##  7 Post-decision prenatal (Sur… Surgery   Encouraged termination               1
##  8 Post-decision prenatal (Sur… Surgery   Neither encouraged or discourag…     9
##  9 Post-decision postnatal (Su… Surgery   Encouraged a medical interventi…     1
## 10 Post-decison prenatal (Did … Palliati… Encouraged palliative care           6
## 11 Post-decison prenatal (Did … Surgery   Encouraged a medical interventi…     2
## 12 Post-decison prenatal (Did … Surgery   Neither encouraged or discourag…     1

SF12 questions. I need to figure these out.

##            vars  n mean   sd median trimmed  mad min max range  skew kurtosis
## sf_1genhea    1 45 2.47 0.89      3    2.46 1.48   1   4     3 -0.09    -0.84
## sf_2moder     2 44 2.80 0.41      3    2.86 0.00   2   3     1 -1.42     0.00
## sf_3stair     3 45 2.49 0.63      3    2.57 0.00   1   3     2 -0.77    -0.48
## sf_4less      4 45 1.60 0.50      2    1.62 0.00   1   2     1 -0.39    -1.88
## sf_5kind      5 45 1.67 0.48      2    1.70 0.00   1   2     1 -0.68    -1.57
## sf_6like      6 45 1.29 0.46      1    1.24 0.00   1   2     1  0.90    -1.21
## sf_7care      7 45 1.44 0.50      1    1.43 0.00   1   2     1  0.22    -2.00
## sf_8pain      8 45 2.36 1.13      2    2.30 1.48   1   5     4  0.40    -0.97
## sf_9calm      9 45 3.80 1.04      4    3.81 1.48   2   6     4  0.03    -0.63
## sf_10ener    10 45 4.24 0.93      4    4.30 1.48   2   6     4 -0.49    -0.29
## sf_11blue    11 45 3.73 1.25      4    3.70 1.48   1   6     5  0.09    -0.79
## sf_12soc     12 45 3.49 1.06      4    3.54 1.48   1   5     4 -0.48    -0.43
##              se
## sf_1genhea 0.13
## sf_2moder  0.06
## sf_3stair  0.09
## sf_4less   0.07
## sf_5kind   0.07
## sf_6like   0.07
## sf_7care   0.07
## sf_8pain   0.17
## sf_9calm   0.15
## sf_10ener  0.14
## sf_11blue  0.19
## sf_12soc   0.16
##            vars  n mean   sd median trimmed  mad min max range  skew kurtosis
## sf_1genhea    1 45 3.53 0.89      3    3.54 1.48   2   5     3  0.09    -0.84
## sf_2moder     2 44 2.80 0.41      3    2.86 0.00   2   3     1 -1.42     0.00
## sf_3stair     3 45 2.49 0.63      3    2.57 0.00   1   3     2 -0.77    -0.48
## sf_4less      4 45 1.60 0.50      2    1.62 0.00   1   2     1 -0.39    -1.88
## sf_5kind      5 45 1.67 0.48      2    1.70 0.00   1   2     1 -0.68    -1.57
## sf_6like      6 45 1.29 0.46      1    1.24 0.00   1   2     1  0.90    -1.21
## sf_7care      7 45 1.44 0.50      1    1.43 0.00   1   2     1  0.22    -2.00
## sf_8pain      8 45 3.64 1.13      4    3.70 1.48   1   5     4 -0.40    -0.97
## sf_9calm      9 45 3.20 1.04      3    3.19 1.48   1   5     4 -0.03    -0.63
## sf_10ener    10 45 2.76 0.93      3    2.70 1.48   1   5     4  0.49    -0.29
## sf_11blue    11 45 3.73 1.25      4    3.70 1.48   1   6     5  0.09    -0.79
## sf_12soc     12 45 3.49 1.06      4    3.54 1.48   1   5     4 -0.48    -0.43
##              se
## sf_1genhea 0.13
## sf_2moder  0.06
## sf_3stair  0.09
## sf_4less   0.07
## sf_5kind   0.07
## sf_6like   0.07
## sf_7care   0.07
## sf_8pain   0.17
## sf_9calm   0.15
## sf_10ener  0.14
## sf_11blue  0.19
## sf_12soc   0.16
## `summarise()` regrouping output by 'redcap_event_name1' (override with `.groups` argument)
## # A tibble: 11 x 5
## # Groups:   redcap_event_name1 [8]
##    redcap_event_name1                           Decision   count    mean      sd
##    <fct>                                        <chr>      <int>   <dbl>   <dbl>
##  1 At diagnosis prenatal                        <NA>          22   2.659  0.3804
##  2 At diagnosis postnatal                       <NA>           1   2.583 NA     
##  3 Post-decision prenatal (Survived)            Surgery       12 NaN     NA     
##  4 Post-decision postnatal (Survived)           Surgery        1 NaN     NA     
##  5 Post-decison prenatal (Did not survive)      Palliative     6 NaN     NA     
##  6 Post-decison prenatal (Did not survive)      Surgery        3 NaN     NA     
##  7 Post-decison prenatal (Did not survive)      <NA>           1 NaN     NA     
##  8 3-month follow up prenatal (Survived)        Surgery       11   2.841  0.4401
##  9 3-month follow up postnatal (Survived)       Surgery        1   1.583 NA     
## 10 3-month follow up prenatal (Did not survive) Palliative     6   2.333  0.4346
## 11 3-month follow up prenatal (Did not survive) Surgery        5   2.683  0.4802
##    vars  n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 45 2.64 0.45   2.67    2.65 0.49 1.5 3.5     2 -0.28     0.02 0.07

ICCAP survived questions. I need to figure these out.

##                vars  n mean   sd median trimmed  mad min max range  skew
## icc_explain_v2    1 24 4.46 0.59    4.5    4.50 0.74   3   5     2 -0.46
## icc_nurse_v2      2 25 4.44 0.65    5.0    4.52 0.00   3   5     2 -0.66
## icc_enough_v2     3 25 4.20 0.96    4.0    4.33 1.48   2   5     3 -0.93
## icc_satis_v2      4 25 4.28 0.98    5.0    4.43 0.00   2   5     3 -1.06
## icc_friend_v2     5 25 4.64 0.57    5.0    4.71 0.00   3   5     2 -1.19
## icc_under_v2      6 25 4.28 1.31    5.0    4.52 0.00   1   5     4 -1.79
## icc_people_v2     7 25 4.72 0.46    5.0    4.76 0.00   4   5     1 -0.92
## icc_pract_v2      8 25 4.52 0.92    5.0    4.71 0.00   1   5     4 -2.38
## icc_share_v2      9 25 4.72 0.46    5.0    4.76 0.00   4   5     1 -0.92
## icc_worry_v2     10 25 4.60 0.58    5.0    4.67 0.00   3   5     2 -1.00
## icc_symp_v2      11 25 4.56 0.87    5.0    4.71 0.00   1   5     4 -2.73
## icc_agree_v2     12 25 4.84 0.37    5.0    4.90 0.00   4   5     1 -1.74
## icc_talk_v2      13 25 4.60 0.76    5.0    4.76 0.00   2   5     3 -1.94
## icc_happy_v2     14 25 4.76 0.44    5.0    4.81 0.00   4   5     1 -1.15
## icc_good_v2      15 25 4.76 0.44    5.0    4.81 0.00   4   5     1 -1.15
## icc_sad_v2       16 25 3.56 0.92    4.0    3.62 0.00   1   5     4 -0.95
## icc_angry_v2     17 25 3.00 1.04    3.0    3.00 1.48   1   5     4  0.00
## icc_blame_v2     18 25 3.56 1.04    4.0    3.62 1.48   1   5     4 -0.57
## icc_guilt_v2     19 25 3.04 1.14    3.0    3.05 1.48   1   5     4 -0.24
## icc_life_v2      20 25 4.12 0.60    4.0    4.14 0.00   3   5     2 -0.03
## icc_func_v2      21 25 4.20 0.96    4.0    4.33 1.48   1   5     4 -1.48
## icc_burd_v2      22 25 3.52 1.00    4.0    3.62 1.48   1   5     4 -0.88
## icc_health_v2    23 25 3.52 0.96    4.0    3.57 1.48   1   5     4 -0.59
## icc_anxious_v2   24 25 3.84 0.90    4.0    3.90 1.48   2   5     3 -0.36
## icc_face_v2      25 25 4.08 0.81    4.0    4.19 0.00   1   5     4 -1.93
## icc_same_v2      26 25 3.20 0.76    3.0    3.19 0.00   2   5     3  0.22
## icc_worgre_v2    27 25 4.48 0.51    4.0    4.48 0.00   4   5     1  0.08
## icc_doubt_v2     28 25 2.52 0.77    3.0    2.52 1.48   1   4     3 -0.06
## icc_fear_v2      29 25 3.36 0.91    3.0    3.38 1.48   1   5     4 -0.40
## icc_handi_v2     30 25 2.84 1.11    3.0    2.81 1.48   1   5     4  0.12
## icc_cant_v2      31 25 3.52 1.00    4.0    3.57 1.48   1   5     4 -0.64
## icc_norma_v2     32 25 3.84 0.62    4.0    3.81 0.00   3   5     2  0.10
##                kurtosis   se
## icc_explain_v2    -0.90 0.12
## icc_nurse_v2      -0.71 0.13
## icc_enough_v2     -0.24 0.19
## icc_satis_v2      -0.14 0.20
## icc_friend_v2      0.33 0.11
## icc_under_v2       1.81 0.26
## icc_people_v2     -1.19 0.09
## icc_pract_v2       6.01 0.18
## icc_share_v2      -1.19 0.09
## icc_worry_v2      -0.12 0.12
## icc_symp_v2        8.31 0.17
## icc_agree_v2       1.09 0.07
## icc_talk_v2        3.27 0.15
## icc_happy_v2      -0.71 0.09
## icc_good_v2       -0.71 0.09
## icc_sad_v2         0.66 0.18
## icc_angry_v2      -0.48 0.21
## icc_blame_v2      -0.34 0.21
## icc_guilt_v2      -0.79 0.23
## icc_life_v2       -0.43 0.12
## icc_func_v2        2.50 0.19
## icc_burd_v2        0.78 0.20
## icc_health_v2      0.10 0.19
## icc_anxious_v2    -0.74 0.18
## icc_face_v2        5.78 0.16
## icc_same_v2       -0.45 0.15
## icc_worgre_v2     -2.07 0.10
## icc_doubt_v2      -0.55 0.15
## icc_fear_v2        0.19 0.18
## icc_handi_v2      -0.64 0.22
## icc_cant_v2       -0.18 0.20
## icc_norma_v2      -0.65 0.12
##                vars  n mean   sd median trimmed  mad min max range  skew
## icc_explain_v2    1 24 4.46 0.59    4.5    4.50 0.74   3   5     2 -0.46
## icc_nurse_v2      2 25 4.44 0.65    5.0    4.52 0.00   3   5     2 -0.66
## icc_enough_v2     3 25 4.20 0.96    4.0    4.33 1.48   2   5     3 -0.93
## icc_satis_v2      4 25 4.28 0.98    5.0    4.43 0.00   2   5     3 -1.06
## icc_friend_v2     5 25 4.64 0.57    5.0    4.71 0.00   3   5     2 -1.19
## icc_under_v2      6 25 4.28 1.31    5.0    4.52 0.00   1   5     4 -1.79
## icc_people_v2     7 25 4.72 0.46    5.0    4.76 0.00   4   5     1 -0.92
## icc_pract_v2      8 25 4.52 0.92    5.0    4.71 0.00   1   5     4 -2.38
## icc_share_v2      9 25 4.72 0.46    5.0    4.76 0.00   4   5     1 -0.92
## icc_worry_v2     10 25 4.60 0.58    5.0    4.67 0.00   3   5     2 -1.00
## icc_symp_v2      11 25 4.56 0.87    5.0    4.71 0.00   1   5     4 -2.73
## icc_agree_v2     12 25 4.84 0.37    5.0    4.90 0.00   4   5     1 -1.74
## icc_talk_v2      13 25 4.60 0.76    5.0    4.76 0.00   2   5     3 -1.94
## icc_happy_v2     14 25 4.76 0.44    5.0    4.81 0.00   4   5     1 -1.15
## icc_good_v2      15 25 4.76 0.44    5.0    4.81 0.00   4   5     1 -1.15
## icc_sad_v2       16 25 3.56 0.92    4.0    3.62 0.00   1   5     4 -0.95
## icc_angry_v2     17 25 3.00 1.04    3.0    3.00 1.48   1   5     4  0.00
## icc_blame_v2     18 25 3.56 1.04    4.0    3.62 1.48   1   5     4 -0.57
## icc_guilt_v2     19 25 3.04 1.14    3.0    3.05 1.48   1   5     4 -0.24
##                kurtosis   se
## icc_explain_v2    -0.90 0.12
## icc_nurse_v2      -0.71 0.13
## icc_enough_v2     -0.24 0.19
## icc_satis_v2      -0.14 0.20
## icc_friend_v2      0.33 0.11
## icc_under_v2       1.81 0.26
## icc_people_v2     -1.19 0.09
## icc_pract_v2       6.01 0.18
## icc_share_v2      -1.19 0.09
## icc_worry_v2      -0.12 0.12
## icc_symp_v2        8.31 0.17
## icc_agree_v2       1.09 0.07
## icc_talk_v2        3.27 0.15
## icc_happy_v2      -0.71 0.09
## icc_good_v2       -0.71 0.09
## icc_sad_v2         0.66 0.18
## icc_angry_v2      -0.48 0.21
## icc_blame_v2      -0.34 0.21
## icc_guilt_v2      -0.79 0.23
## Warning: `funs()` is deprecated as of dplyr 0.8.0.
## Please use a list of either functions or lambdas: 
## 
##   # Simple named list: 
##   list(mean = mean, median = median)
## 
##   # Auto named with `tibble::lst()`: 
##   tibble::lst(mean, median)
## 
##   # Using lambdas
##   list(~ mean(., trim = .2), ~ median(., na.rm = TRUE))
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_warnings()` to see where this warning was generated.
##                vars  n mean   sd median trimmed  mad min max range  skew
## icc_explain_v2    1 24 3.46 0.59    3.5    3.50 0.74   2   4     2 -0.46
## icc_nurse_v2      2 25 3.44 0.65    4.0    3.52 0.00   2   4     2 -0.66
## icc_enough_v2     3 25 3.20 0.96    3.0    3.33 1.48   1   4     3 -0.93
## icc_satis_v2      4 25 3.28 0.98    4.0    3.43 0.00   1   4     3 -1.06
## icc_friend_v2     5 25 3.64 0.57    4.0    3.71 0.00   2   4     2 -1.19
## icc_under_v2      6 22 3.73 0.46    4.0    3.78 0.00   3   4     1 -0.95
## icc_people_v2     7 25 3.72 0.46    4.0    3.76 0.00   3   4     1 -0.92
## icc_pract_v2      8 24 3.67 0.56    4.0    3.75 0.00   2   4     2 -1.34
## icc_share_v2      9 25 3.72 0.46    4.0    3.76 0.00   3   4     1 -0.92
## icc_worry_v2     10 25 3.60 0.58    4.0    3.67 0.00   2   4     2 -1.00
## icc_symp_v2      11 24 3.71 0.46    4.0    3.75 0.00   3   4     1 -0.86
## icc_agree_v2     12 25 3.84 0.37    4.0    3.90 0.00   3   4     1 -1.74
## icc_talk_v2      13 25 3.60 0.76    4.0    3.76 0.00   1   4     3 -1.94
## icc_happy_v2     14 25 3.76 0.44    4.0    3.81 0.00   3   4     1 -1.15
## icc_good_v2      15 25 3.76 0.44    4.0    3.81 0.00   3   4     1 -1.15
## icc_sad_v2       16 23 1.57 0.84    1.0    1.42 0.00   1   4     3  1.33
## icc_angry_v2     17 23 2.17 0.89    2.0    2.11 1.48   1   4     3  0.43
## icc_blame_v2     18 21 1.71 0.90    1.0    1.59 0.00   1   4     3  0.94
## icc_guilt_v2     19 23 2.13 1.01    2.0    2.05 1.48   1   4     3  0.51
##                kurtosis   se
## icc_explain_v2    -0.90 0.12
## icc_nurse_v2      -0.71 0.13
## icc_enough_v2     -0.24 0.19
## icc_satis_v2      -0.14 0.20
## icc_friend_v2      0.33 0.11
## icc_under_v2      -1.14 0.10
## icc_people_v2     -1.19 0.09
## icc_pract_v2       0.73 0.12
## icc_share_v2      -1.19 0.09
## icc_worry_v2      -0.12 0.12
## icc_symp_v2       -1.31 0.09
## icc_agree_v2       1.09 0.07
## icc_talk_v2        3.27 0.15
## icc_happy_v2      -0.71 0.09
## icc_good_v2       -0.71 0.09
## icc_sad_v2         0.89 0.18
## icc_angry_v2      -0.61 0.18
## icc_blame_v2      -0.24 0.20
## icc_guilt_v2      -0.93 0.21
## `summarise()` regrouping output by 'redcap_event_name1' (override with `.groups` argument)
## # A tibble: 11 x 5
## # Groups:   redcap_event_name1 [8]
##    redcap_event_name1                           Decision   count    mean      sd
##    <fct>                                        <chr>      <int>   <dbl>   <dbl>
##  1 At diagnosis prenatal                        <NA>          22 NaN     NA     
##  2 At diagnosis postnatal                       <NA>           1 NaN     NA     
##  3 Post-decision prenatal (Survived)            Surgery       12   3.297  0.3173
##  4 Post-decision postnatal (Survived)           Surgery        1   3.421 NA     
##  5 Post-decison prenatal (Did not survive)      Palliative     6 NaN     NA     
##  6 Post-decison prenatal (Did not survive)      Surgery        3 NaN     NA     
##  7 Post-decison prenatal (Did not survive)      <NA>           1 NaN     NA     
##  8 3-month follow up prenatal (Survived)        Surgery       11   3.235  0.4878
##  9 3-month follow up postnatal (Survived)       Surgery        1   3.176 NA     
## 10 3-month follow up prenatal (Did not survive) Palliative     6 NaN     NA     
## 11 3-month follow up prenatal (Did not survive) Surgery        5 NaN     NA

ICCAP did not survive questions. I need to figure these out.

##                vars  n mean   sd median trimmed  mad min max range  skew
## icc_explain_v3    1 19 4.47 0.84      5    4.59 0.00   2   5     3 -1.51
## icc_nurse_v3      2 19 4.68 0.48      5    4.71 0.00   4   5     1 -0.73
## icc_enough_v3     3 19 4.53 0.70      5    4.59 0.00   3   5     2 -1.02
## icc_satis_v3      4 19 4.53 0.61      5    4.59 0.00   3   5     2 -0.78
## icc_friend_v3     5 19 4.63 0.50      5    4.65 0.00   4   5     1 -0.50
## icc_under_v3      6 19 4.32 0.75      4    4.35 1.48   3   5     2 -0.52
## icc_people_v3     7 19 4.58 0.51      5    4.59 0.00   4   5     1 -0.29
## icc_pract_v3      8 19 4.16 1.26      5    4.29 0.00   1   5     4 -1.55
## icc_share_v3      9 19 4.58 0.61      5    4.65 0.00   3   5     2 -0.99
## icc_worry_v3     10 19 4.21 1.08      5    4.35 0.00   1   5     4 -1.39
## icc_symp_v3      11 19 4.79 0.42      5    4.82 0.00   4   5     1 -1.31
## icc_agree_v3     12 19 4.74 0.45      5    4.76 0.00   4   5     1 -0.99
## icc_talk_v3      13 19 4.79 0.42      5    4.82 0.00   4   5     1 -1.31
## icc_happy_v3     14 19 4.84 0.37      5    4.88 0.00   4   5     1 -1.73
## icc_good_v3      15 19 4.84 0.37      5    4.88 0.00   4   5     1 -1.73
## icc_sad_v3       16 19 4.26 0.81      4    4.35 1.48   2   5     3 -1.06
## icc_angry_v3     17 19 3.53 0.84      4    3.53 0.00   2   5     3 -0.61
## icc_blame_v3     18 19 3.68 1.11      4    3.71 1.48   2   5     3 -0.10
## icc_guilt_v3     19 19 3.74 0.93      4    3.76 1.48   2   5     3 -0.28
##                kurtosis   se
## icc_explain_v3     1.55 0.19
## icc_nurse_v3      -1.54 0.11
## icc_enough_v3     -0.35 0.16
## icc_satis_v3      -0.55 0.14
## icc_friend_v3     -1.84 0.11
## icc_under_v3      -1.16 0.17
## icc_people_v3     -2.01 0.12
## icc_pract_v3       1.31 0.29
## icc_share_v3      -0.18 0.14
## icc_worry_v3       1.44 0.25
## icc_symp_v3       -0.29 0.10
## icc_agree_v3      -1.06 0.10
## icc_talk_v3       -0.29 0.10
## icc_happy_v3       1.06 0.09
## icc_good_v3        1.06 0.09
## icc_sad_v3         0.89 0.18
## icc_angry_v3      -0.70 0.19
## icc_blame_v3      -1.48 0.25
## icc_guilt_v3      -0.93 0.21
##                vars  n mean   sd median trimmed  mad min max range  skew
## icc_explain_v3    1 19 3.47 0.84      4    3.59 0.00   1   4     3 -1.51
## icc_nurse_v3      2 19 3.68 0.48      4    3.71 0.00   3   4     1 -0.73
## icc_enough_v3     3 19 3.53 0.70      4    3.59 0.00   2   4     2 -1.02
## icc_satis_v3      4 19 3.53 0.61      4    3.59 0.00   2   4     2 -0.78
## icc_friend_v3     5 19 3.63 0.50      4    3.65 0.00   3   4     1 -0.50
## icc_under_v3      6 19 3.32 0.75      3    3.35 1.48   2   4     2 -0.52
## icc_people_v3     7 19 3.58 0.51      4    3.59 0.00   3   4     1 -0.29
## icc_pract_v3      8 17 3.53 0.62      4    3.60 0.00   2   4     2 -0.83
## icc_share_v3      9 19 3.58 0.61      4    3.65 0.00   2   4     2 -0.99
## icc_worry_v3     10 18 3.39 0.78      4    3.44 0.00   2   4     2 -0.71
## icc_symp_v3      11 19 3.79 0.42      4    3.82 0.00   3   4     1 -1.31
## icc_agree_v3     12 19 3.74 0.45      4    3.76 0.00   3   4     1 -0.99
## icc_talk_v3      13 19 3.79 0.42      4    3.82 0.00   3   4     1 -1.31
## icc_happy_v3     14 19 3.84 0.37      4    3.88 0.00   3   4     1 -1.73
## icc_good_v3      15 19 3.84 0.37      4    3.88 0.00   3   4     1 -1.73
## icc_sad_v3       16 11 1.27 0.65      1    1.11 0.00   1   3     2  1.80
## icc_angry_v3     17 18 1.56 0.78      1    1.50 0.00   1   3     2  0.87
## icc_blame_v3     18 13 1.92 0.76      2    1.91 1.48   1   3     2  0.11
## icc_guilt_v3     19 15 1.60 0.74      1    1.54 0.00   1   3     2  0.68
##                kurtosis   se
## icc_explain_v3     1.55 0.19
## icc_nurse_v3      -1.54 0.11
## icc_enough_v3     -0.35 0.16
## icc_satis_v3      -0.55 0.14
## icc_friend_v3     -1.84 0.11
## icc_under_v3      -1.16 0.17
## icc_people_v3     -2.01 0.12
## icc_pract_v3      -0.51 0.15
## icc_share_v3      -0.18 0.14
## icc_worry_v3      -1.07 0.18
## icc_symp_v3       -0.29 0.10
## icc_agree_v3      -1.06 0.10
## icc_talk_v3       -0.29 0.10
## icc_happy_v3       1.06 0.09
## icc_good_v3        1.06 0.09
## icc_sad_v3         1.80 0.19
## icc_angry_v3      -0.90 0.18
## icc_blame_v3      -1.40 0.21
## icc_guilt_v3      -1.00 0.19
## `summarise()` regrouping output by 'redcap_event_name1' (override with `.groups` argument)
## # A tibble: 11 x 5
## # Groups:   redcap_event_name1 [8]
##    redcap_event_name1                           Decision   count    mean      sd
##    <fct>                                        <chr>      <int>   <dbl>   <dbl>
##  1 At diagnosis prenatal                        <NA>          22 NaN     NA     
##  2 At diagnosis postnatal                       <NA>           1 NaN     NA     
##  3 Post-decision prenatal (Survived)            Surgery       12 NaN     NA     
##  4 Post-decision postnatal (Survived)           Surgery        1 NaN     NA     
##  5 Post-decison prenatal (Did not survive)      Palliative     6   3.053  0.1756
##  6 Post-decison prenatal (Did not survive)      Surgery        3   3.644  0.2171
##  7 Post-decison prenatal (Did not survive)      <NA>           1 NaN     NA     
##  8 3-month follow up prenatal (Survived)        Surgery       11 NaN     NA     
##  9 3-month follow up postnatal (Survived)       Surgery        1 NaN     NA     
## 10 3-month follow up prenatal (Did not survive) Palliative     6   3.066  0.5142
## 11 3-month follow up prenatal (Did not survive) Surgery        5   3.602  0.1326

Use of information questions. I need to figure these out.

##            vars  n mean   sd median trimmed  mad min max range  skew kurtosis
## use_fam       1 22 3.55 1.22    4.0    3.61 1.48   1   5     4 -0.32    -1.13
## use_friend    2 22 2.23 1.23    2.0    2.06 1.48   1   5     4  0.90    -0.13
## use_par       3 22 2.36 1.22    2.0    2.33 1.48   1   4     3  0.23    -1.59
## use_pro       4 22 4.32 0.84    5.0    4.39 0.00   3   5     2 -0.60    -1.37
## use_supp      5 22 2.32 1.36    2.0    2.22 1.48   1   5     4  0.42    -1.41
## use_book      6 22 1.82 1.22    1.0    1.61 0.00   1   5     4  1.23     0.23
## use_mag       7 22 1.14 0.35    1.0    1.06 0.00   1   2     1  1.98     2.00
## use_jour      8 22 1.82 1.40    1.0    1.56 0.00   1   5     4  1.50     0.72
## use_int       9 22 2.41 1.22    2.5    2.33 1.48   1   5     4  0.28    -1.10
## use_tv       10 22 1.14 0.35    1.0    1.06 0.00   1   2     1  1.98     2.00
##              se
## use_fam    0.26
## use_friend 0.26
## use_par    0.26
## use_pro    0.18
## use_supp   0.29
## use_book   0.26
## use_mag    0.07
## use_jour   0.30
## use_int    0.26
## use_tv     0.07
## The following `from` values were not present in `x`: 1, 2, 3, 4
## Complete? 
##  [1] NA  2 NA NA  2 NA NA  2 NA NA  2 NA NA  2 NA NA  0  2 NA NA  2 NA NA  2 NA
## [26] NA  2 NA NA  2 NA NA  2 NA NA  2 NA NA  2 NA NA NA NA  2 NA NA  2 NA NA  2
## [51] NA NA  2 NA NA  2 NA NA  2 NA NA  2 NA NA  2 NA NA  2 NA
## # A tibble: 5 x 4
## # Groups:   redcap_event_name1, Decision [5]
##   redcap_event_name1               Decision   use_of_information_sources_…     n
##   <fct>                            <chr>      <labelled>                   <int>
## 1 Post-decision prenatal (Survive… Surgery    2                               12
## 2 Post-decision postnatal (Surviv… Surgery    2                                1
## 3 Post-decison prenatal (Did not … Palliative 2                                6
## 4 Post-decison prenatal (Did not … Surgery    2                                3
## 5 Post-decison prenatal (Did not … <NA>       0                                1

Perinatal grief survived questions. I need to figure these out.

##           vars  n mean   sd median trimmed  mad min max range  skew kurtosis
## pgs_depre    1 12 2.67 1.37    2.5     2.6 2.22   1   5     4  0.17    -1.52
## pgs_along    2 12 2.42 1.16    2.0     2.4 1.48   1   4     3  0.18    -1.58
## pgs_empty    3 12 2.25 1.22    2.0     2.1 0.74   1   5     4  0.96    -0.17
## pgs_keep     4 12 2.75 1.54    2.0     2.7 1.48   1   5     4  0.25    -1.71
## pgs_talk     5 12 3.50 1.31    4.0     3.6 0.74   1   5     4 -0.88    -0.52
## pgs_griev    6 12 3.00 1.41    3.0     3.0 1.48   1   5     4  0.00    -1.54
## pgs_frigh    7 12 3.25 1.42    4.0     3.3 1.48   1   5     4 -0.40    -1.44
## pgs_suici    8 12 1.25 0.45    1.0     1.2 0.00   1   2     1  1.01    -1.04
## pgs_medic    9 12 2.33 1.50    2.0     2.2 1.48   1   5     4  0.52    -1.52
## pgs_miss    10 12 3.08 1.38    3.5     3.1 0.74   1   5     4 -0.52    -1.31
## pgs_adjus   11 12 4.08 1.16    4.5     4.2 0.74   2   5     3 -0.78    -1.04
## pgs_recal   12 12 3.42 1.38    4.0     3.5 1.48   1   5     4 -0.32    -1.49
## pgs_upset   13 12 1.67 0.98    1.0     1.5 0.00   1   4     3  1.14     0.03
## pgs_cryth   14 12 2.17 1.27    2.0     2.1 1.48   1   4     3  0.45    -1.59
## pgs_quilt   15 12 2.17 1.40    2.0     2.0 1.48   1   5     4  0.82    -0.93
## pgs_phsyc   16 12 1.67 1.23    1.0     1.4 0.00   1   5     4  1.66     1.65
## pgs_unpro   17 12 1.92 1.38    1.0     1.7 0.00   1   5     4  1.09    -0.34
## pgs_laugh   18 12 1.58 0.90    1.0     1.4 0.00   1   4     3  1.49     1.44
## pgs_slow    19 12 2.17 1.34    1.5     2.1 0.74   1   4     3  0.35    -1.80
## pgs_part    20 12 1.92 1.16    1.5     1.8 0.74   1   4     3  0.78    -1.04
## pgs_down    21 12 2.08 1.31    1.5     2.0 0.74   1   4     3  0.53    -1.61
## pgs_worth   22 12 1.50 0.90    1.0     1.3 0.00   1   4     3  1.69     1.95
## pgs_blame   23 12 2.00 0.95    2.0     1.9 1.48   1   4     3  0.58    -0.78
## pgs_cross   24 12 2.00 1.21    1.5     1.9 0.74   1   4     3  0.57    -1.42
## pgs_profc   25 12 2.75 1.42    2.5     2.7 2.22   1   5     4  0.05    -1.69
## pgs_exist   26 12 2.25 1.54    1.5     2.1 0.74   1   5     4  0.57    -1.54
## pgs_lone    27 12 1.92 1.31    1.5     1.7 0.74   1   5     4  1.25     0.20
##             se
## pgs_depre 0.40
## pgs_along 0.34
## pgs_empty 0.35
## pgs_keep  0.45
## pgs_talk  0.38
## pgs_griev 0.41
## pgs_frigh 0.41
## pgs_suici 0.13
## pgs_medic 0.43
## pgs_miss  0.40
## pgs_adjus 0.34
## pgs_recal 0.40
## pgs_upset 0.28
## pgs_cryth 0.37
## pgs_quilt 0.41
## pgs_phsyc 0.36
## pgs_unpro 0.40
## pgs_laugh 0.26
## pgs_slow  0.39
## pgs_part  0.34
## pgs_down  0.38
## pgs_worth 0.26
## pgs_blame 0.28
## pgs_cross 0.35
## pgs_profc 0.41
## pgs_exist 0.45
## pgs_lone  0.38
##           vars  n mean   sd median trimmed  mad min max range  skew kurtosis
## pgs_depre    1 12 2.67 1.37    2.5     2.6 2.22   1   5     4  0.17    -1.52
## pgs_along    2 12 2.42 1.16    2.0     2.4 1.48   1   4     3  0.18    -1.58
## pgs_empty    3 12 2.25 1.22    2.0     2.1 0.74   1   5     4  0.96    -0.17
## pgs_keep     4 12 2.75 1.54    2.0     2.7 1.48   1   5     4  0.25    -1.71
## pgs_talk     5 12 3.50 1.31    4.0     3.6 0.74   1   5     4 -0.88    -0.52
## pgs_griev    6 12 3.00 1.41    3.0     3.0 1.48   1   5     4  0.00    -1.54
## pgs_frigh    7 12 3.25 1.42    4.0     3.3 1.48   1   5     4 -0.40    -1.44
## pgs_suici    8 12 1.25 0.45    1.0     1.2 0.00   1   2     1  1.01    -1.04
## pgs_medic    9 12 2.33 1.50    2.0     2.2 1.48   1   5     4  0.52    -1.52
## pgs_miss    10 12 3.08 1.38    3.5     3.1 0.74   1   5     4 -0.52    -1.31
## pgs_adjus   11 12 1.92 1.16    1.5     1.8 0.74   1   4     3  0.78    -1.04
## pgs_recal   12 12 3.42 1.38    4.0     3.5 1.48   1   5     4 -0.32    -1.49
## pgs_upset   13 12 1.67 0.98    1.0     1.5 0.00   1   4     3  1.14     0.03
## pgs_cryth   14 12 2.17 1.27    2.0     2.1 1.48   1   4     3  0.45    -1.59
## pgs_quilt   15 12 2.17 1.40    2.0     2.0 1.48   1   5     4  0.82    -0.93
## pgs_phsyc   16 12 1.67 1.23    1.0     1.4 0.00   1   5     4  1.66     1.65
## pgs_unpro   17 12 1.92 1.38    1.0     1.7 0.00   1   5     4  1.09    -0.34
## pgs_laugh   18 12 1.58 0.90    1.0     1.4 0.00   1   4     3  1.49     1.44
## pgs_slow    19 12 2.17 1.34    1.5     2.1 0.74   1   4     3  0.35    -1.80
## pgs_part    20 12 1.92 1.16    1.5     1.8 0.74   1   4     3  0.78    -1.04
## pgs_down    21 12 2.08 1.31    1.5     2.0 0.74   1   4     3  0.53    -1.61
## pgs_worth   22 12 1.50 0.90    1.0     1.3 0.00   1   4     3  1.69     1.95
## pgs_blame   23 12 2.00 0.95    2.0     1.9 1.48   1   4     3  0.58    -0.78
## pgs_cross   24 12 2.00 1.21    1.5     1.9 0.74   1   4     3  0.57    -1.42
## pgs_profc   25 12 2.75 1.42    2.5     2.7 2.22   1   5     4  0.05    -1.69
## pgs_exist   26 12 2.25 1.54    1.5     2.1 0.74   1   5     4  0.57    -1.54
## pgs_lone    27 12 1.92 1.31    1.5     1.7 0.74   1   5     4  1.25     0.20
##             se
## pgs_depre 0.40
## pgs_along 0.34
## pgs_empty 0.35
## pgs_keep  0.45
## pgs_talk  0.38
## pgs_griev 0.41
## pgs_frigh 0.41
## pgs_suici 0.13
## pgs_medic 0.43
## pgs_miss  0.40
## pgs_adjus 0.34
## pgs_recal 0.40
## pgs_upset 0.28
## pgs_cryth 0.37
## pgs_quilt 0.41
## pgs_phsyc 0.36
## pgs_unpro 0.40
## pgs_laugh 0.26
## pgs_slow  0.39
## pgs_part  0.34
## pgs_down  0.38
## pgs_worth 0.26
## pgs_blame 0.28
## pgs_cross 0.35
## pgs_profc 0.41
## pgs_exist 0.45
## pgs_lone  0.38
## `summarise()` regrouping output by 'redcap_event_name1' (override with `.groups` argument)
## # A tibble: 11 x 5
## # Groups:   redcap_event_name1 [8]
##    redcap_event_name1                           Decision   count   mean    sd
##    <fct>                                        <chr>      <int>  <dbl> <dbl>
##  1 At diagnosis prenatal                        <NA>          22   0     0   
##  2 At diagnosis postnatal                       <NA>           1   0    NA   
##  3 Post-decision prenatal (Survived)            Surgery       12   0     0   
##  4 Post-decision postnatal (Survived)           Surgery        1   0    NA   
##  5 Post-decison prenatal (Did not survive)      Palliative     6   0     0   
##  6 Post-decison prenatal (Did not survive)      Surgery        3   0     0   
##  7 Post-decison prenatal (Did not survive)      <NA>           1   0    NA   
##  8 3-month follow up prenatal (Survived)        Surgery       11  56.73 18.68
##  9 3-month follow up postnatal (Survived)       Surgery        1 115    NA   
## 10 3-month follow up prenatal (Did not survive) Palliative     6   0     0   
## 11 3-month follow up prenatal (Did not survive) Surgery        5   0     0

Perinatal grief did not survive questions. I need to figure these out.

##           vars  n mean   sd median trimmed  mad min max range  skew kurtosis
## pgd_depre    1 11 3.55 1.04      4    3.56 1.48   2   5     3 -0.11    -1.36
## pgd_along    2 11 3.36 1.21      4    3.44 0.00   1   5     4 -0.64    -1.01
## pgd_empty    3 11 4.00 0.89      4    4.11 0.00   2   5     3 -0.76    -0.16
## pgd_keep     4 11 3.64 0.81      4    3.67 0.00   2   5     3 -0.40    -0.62
## pgd_need     5 11 4.55 0.69      5    4.67 0.00   3   5     2 -0.98    -0.45
## pgd_griev    6 11 4.64 0.50      5    4.67 0.00   4   5     1 -0.49    -1.91
## pgd_frigh    7 11 3.55 0.93      3    3.56 1.48   2   5     3  0.22    -1.18
## pgd_suici    8 11 1.91 1.22      1    1.78 0.00   1   4     3  0.75    -1.21
## pgd_medic    9 11 2.45 1.57      2    2.33 1.48   1   5     4  0.29    -1.79
## pgd_miss    10 11 4.55 1.21      5    4.89 0.00   1   5     4 -2.23     3.64
## pgd_adjus   11 11 2.82 0.98      3    2.89 1.48   1   4     3 -0.26    -1.23
## pgd_recal   12 11 3.36 1.21      4    3.33 1.48   2   5     3 -0.02    -1.76
## pgd_upset   13 11 3.00 1.18      3    3.00 1.48   1   5     4  0.00    -1.24
## pgd_cryth   14 11 3.91 0.94      4    4.00 1.48   2   5     3 -0.49    -0.84
## pgd_guilt   15 11 2.91 1.22      3    2.89 1.48   1   5     4  0.15    -1.39
## pgd_physc   16 11 2.64 1.21      2    2.56 0.00   1   5     4  0.64    -1.01
## pgd_unpro   17 11 2.36 1.29      3    2.22 1.48   1   5     4  0.40    -0.91
## pgd_laugh   18 11 2.91 1.14      2    2.78 0.00   2   5     3  0.53    -1.50
## pgd_slow    19 11 3.27 1.35      3    3.22 1.48   2   5     3  0.22    -1.89
## pgd_part    20 11 3.18 1.40      3    3.22 1.48   1   5     4  0.11    -1.54
## pgd_down    21 11 3.09 1.30      3    3.11 1.48   1   5     4 -0.40    -1.23
## pgd_worth   22 11 2.82 1.17      3    2.78 1.48   1   5     4  0.31    -1.08
## pgd_blame   23 11 3.09 1.30      4    3.11 1.48   1   5     4 -0.15    -1.68
## pgd_cross   24 11 2.82 1.33      3    2.78 1.48   1   5     4  0.07    -1.49
## pgd_profc   25 11 3.27 1.10      4    3.22 1.48   2   5     3 -0.08    -1.73
## pgd_exist   26 11 3.64 1.03      4    3.67 1.48   2   5     3 -0.33    -1.23
## pgd_lone    27 11 3.55 1.13      4    3.56 1.48   2   5     3 -0.29    -1.52
##             se
## pgd_depre 0.31
## pgd_along 0.36
## pgd_empty 0.27
## pgd_keep  0.24
## pgd_need  0.21
## pgd_griev 0.15
## pgd_frigh 0.28
## pgd_suici 0.37
## pgd_medic 0.47
## pgd_miss  0.37
## pgd_adjus 0.30
## pgd_recal 0.36
## pgd_upset 0.36
## pgd_cryth 0.28
## pgd_guilt 0.37
## pgd_physc 0.36
## pgd_unpro 0.39
## pgd_laugh 0.34
## pgd_slow  0.41
## pgd_part  0.42
## pgd_down  0.39
## pgd_worth 0.35
## pgd_blame 0.39
## pgd_cross 0.40
## pgd_profc 0.33
## pgd_exist 0.31
## pgd_lone  0.34
##           vars  n mean   sd median trimmed  mad min max range  skew kurtosis
## pgd_depre    1 11 3.55 1.04      4    3.56 1.48   2   5     3 -0.11    -1.36
## pgd_along    2 11 3.36 1.21      4    3.44 0.00   1   5     4 -0.64    -1.01
## pgd_empty    3 11 4.00 0.89      4    4.11 0.00   2   5     3 -0.76    -0.16
## pgd_keep     4 11 3.64 0.81      4    3.67 0.00   2   5     3 -0.40    -0.62
## pgd_need     5 11 4.55 0.69      5    4.67 0.00   3   5     2 -0.98    -0.45
## pgd_griev    6 11 4.64 0.50      5    4.67 0.00   4   5     1 -0.49    -1.91
## pgd_frigh    7 11 3.55 0.93      3    3.56 1.48   2   5     3  0.22    -1.18
## pgd_suici    8 11 1.91 1.22      1    1.78 0.00   1   4     3  0.75    -1.21
## pgd_medic    9 11 2.45 1.57      2    2.33 1.48   1   5     4  0.29    -1.79
## pgd_miss    10 11 4.55 1.21      5    4.89 0.00   1   5     4 -2.23     3.64
## pgd_adjus   11 11 3.18 0.98      3    3.11 1.48   2   5     3  0.26    -1.23
## pgd_recal   12 11 3.36 1.21      4    3.33 1.48   2   5     3 -0.02    -1.76
## pgd_upset   13 11 3.00 1.18      3    3.00 1.48   1   5     4  0.00    -1.24
## pgd_cryth   14 11 3.91 0.94      4    4.00 1.48   2   5     3 -0.49    -0.84
## pgd_guilt   15 11 2.91 1.22      3    2.89 1.48   1   5     4  0.15    -1.39
## pgd_physc   16 11 2.64 1.21      2    2.56 0.00   1   5     4  0.64    -1.01
## pgd_unpro   17 11 2.36 1.29      3    2.22 1.48   1   5     4  0.40    -0.91
## pgd_laugh   18 11 2.91 1.14      2    2.78 0.00   2   5     3  0.53    -1.50
## pgd_slow    19 11 3.27 1.35      3    3.22 1.48   2   5     3  0.22    -1.89
## pgd_part    20 11 3.18 1.40      3    3.22 1.48   1   5     4  0.11    -1.54
## pgd_down    21 11 3.09 1.30      3    3.11 1.48   1   5     4 -0.40    -1.23
## pgd_worth   22 11 2.82 1.17      3    2.78 1.48   1   5     4  0.31    -1.08
## pgd_blame   23 11 3.09 1.30      4    3.11 1.48   1   5     4 -0.15    -1.68
## pgd_cross   24 11 2.82 1.33      3    2.78 1.48   1   5     4  0.07    -1.49
## pgd_profc   25 11 3.27 1.10      4    3.22 1.48   2   5     3 -0.08    -1.73
## pgd_exist   26 11 3.64 1.03      4    3.67 1.48   2   5     3 -0.33    -1.23
## pgd_lone    27 11 3.55 1.13      4    3.56 1.48   2   5     3 -0.29    -1.52
##             se
## pgd_depre 0.31
## pgd_along 0.36
## pgd_empty 0.27
## pgd_keep  0.24
## pgd_need  0.21
## pgd_griev 0.15
## pgd_frigh 0.28
## pgd_suici 0.37
## pgd_medic 0.47
## pgd_miss  0.37
## pgd_adjus 0.30
## pgd_recal 0.36
## pgd_upset 0.36
## pgd_cryth 0.28
## pgd_guilt 0.37
## pgd_physc 0.36
## pgd_unpro 0.39
## pgd_laugh 0.34
## pgd_slow  0.41
## pgd_part  0.42
## pgd_down  0.39
## pgd_worth 0.35
## pgd_blame 0.39
## pgd_cross 0.40
## pgd_profc 0.33
## pgd_exist 0.31
## pgd_lone  0.34
## `summarise()` regrouping output by 'redcap_event_name1' (override with `.groups` argument)
## # A tibble: 11 x 5
## # Groups:   redcap_event_name1 [8]
##    redcap_event_name1                           Decision   count  mean    sd
##    <fct>                                        <chr>      <int> <dbl> <dbl>
##  1 At diagnosis prenatal                        <NA>          22   0    0   
##  2 At diagnosis postnatal                       <NA>           1   0   NA   
##  3 Post-decision prenatal (Survived)            Surgery       12   0    0   
##  4 Post-decision postnatal (Survived)           Surgery        1   0   NA   
##  5 Post-decison prenatal (Did not survive)      Palliative     6   0    0   
##  6 Post-decison prenatal (Did not survive)      Surgery        3   0    0   
##  7 Post-decison prenatal (Did not survive)      <NA>           1   0   NA   
##  8 3-month follow up prenatal (Survived)        Surgery       11   0    0   
##  9 3-month follow up postnatal (Survived)       Surgery        1   0   NA   
## 10 3-month follow up prenatal (Did not survive) Palliative     6  98.5 16.18
## 11 3-month follow up prenatal (Did not survive) Surgery        5  78   16.14

Assessing burden questions. I need to figure these out.

##             vars  n mean   sd median trimmed  mad min max range  skew kurtosis
## bur_consum     1 68 3.49 1.13      4    3.55 1.48   1   5     4 -0.40    -0.55
## bur_burden     2 68 4.07 1.01      4    4.20 1.48   1   5     4 -0.83    -0.14
## bur_number     3 68 0.28 0.45      0    0.23 0.00   0   1     1  0.96    -1.09
## bur_upset      4 68 0.18 0.38      0    0.11 0.00   0   1     1  1.66     0.77
## bur_mess       5 68 0.12 0.32      0    0.04 0.00   0   1     1  2.32     3.44
## bur_compli     6 68 0.07 0.26      0    0.00 0.00   0   1     1  3.20     8.34
## bur_match      7 68 0.07 0.26      0    0.00 0.00   0   1     1  3.20     8.34
## bur_diffic     8 67 0.04 0.21      0    0.00 0.00   0   1     1  4.30    16.78
## bur_perceiv    9 67 3.79 0.81      4    3.76 1.48   2   5     3  0.22    -1.14
##               se
## bur_consum  0.14
## bur_burden  0.12
## bur_number  0.05
## bur_upset   0.05
## bur_mess    0.04
## bur_compli  0.03
## bur_match   0.03
## bur_diffic  0.03
## bur_perceiv 0.10
## `summarise()` ungrouping output (override with `.groups` argument)
## # A tibble: 8 x 4
##   redcap_event_name1                           count  mean      sd
##   <fct>                                        <int> <dbl>   <dbl>
## 1 At diagnosis prenatal                           22 1.333  0.1878
## 2 At diagnosis postnatal                           1 1.556 NA     
## 3 Post-decision prenatal (Survived)               12 1.297  0.1781
## 4 Post-decision postnatal (Survived)               1 1.444 NA     
## 5 Post-decison prenatal (Did not survive)         10 1.358  0.3415
## 6 3-month follow up prenatal (Survived)           11 1.313  0.2374
## 7 3-month follow up postnatal (Survived)           1 1.778 NA     
## 8 3-month follow up prenatal (Did not survive)    11 1.369  0.2609

ICCAP scale questions. I need to figure these out.

##             vars n mean sd median trimmed mad min max range skew kurtosis se
## icc_explain    1 1    2 NA      2       2   0   2   2     0   NA       NA NA
## icc_nurse      2 1    5 NA      5       5   0   5   5     0   NA       NA NA
## icc_enough     3 1    2 NA      2       2   0   2   2     0   NA       NA NA
## icc_satis      4 1    2 NA      2       2   0   2   2     0   NA       NA NA
## icc_friend     5 1    5 NA      5       5   0   5   5     0   NA       NA NA
## icc_under      6 1    5 NA      5       5   0   5   5     0   NA       NA NA
## icc_people     7 1    5 NA      5       5   0   5   5     0   NA       NA NA
## icc_pract      8 1    2 NA      2       2   0   2   2     0   NA       NA NA
## icc_share      9 1    2 NA      2       2   0   2   2     0   NA       NA NA
## icc_worry     10 1    2 NA      2       2   0   2   2     0   NA       NA NA
## icc_symp      11 1    5 NA      5       5   0   5   5     0   NA       NA NA
## icc_agree     12 1    5 NA      5       5   0   5   5     0   NA       NA NA
## icc_talk      13 1    5 NA      5       5   0   5   5     0   NA       NA NA
## icc_happy     14 1    5 NA      5       5   0   5   5     0   NA       NA NA
## icc_good      15 1    5 NA      5       5   0   5   5     0   NA       NA NA
## icc_sad       16 1    5 NA      5       5   0   5   5     0   NA       NA NA
## icc_angry     17 1    5 NA      5       5   0   5   5     0   NA       NA NA
## icc_blame     18 1    5 NA      5       5   0   5   5     0   NA       NA NA
## icc_guilt     19 1    5 NA      5       5   0   5   5     0   NA       NA NA
## icc_life      20 1    5 NA      5       5   0   5   5     0   NA       NA NA
## icc_func      21 1    1 NA      1       1   0   1   1     0   NA       NA NA
## icc_burd      22 1    1 NA      1       1   0   1   1     0   NA       NA NA
## icc_health    23 1    1 NA      1       1   0   1   1     0   NA       NA NA
## icc_anxious   24 1    1 NA      1       1   0   1   1     0   NA       NA NA
## icc_face      25 1    1 NA      1       1   0   1   1     0   NA       NA NA
## icc_same      26 1    1 NA      1       1   0   1   1     0   NA       NA NA
## icc_worgre    27 1    1 NA      1       1   0   1   1     0   NA       NA NA
## icc_doubt     28 1    1 NA      1       1   0   1   1     0   NA       NA NA
## icc_fear      29 1    1 NA      1       1   0   1   1     0   NA       NA NA
## icc_handi     30 1    1 NA      1       1   0   1   1     0   NA       NA NA
## icc_cant      31 1    1 NA      1       1   0   1   1     0   NA       NA NA
## icc_norma     32 1    1 NA      1       1   0   1   1     0   NA       NA NA
## `summarise()` ungrouping output (override with `.groups` argument)
## # A tibble: 8 x 4
##   redcap_event_name1                           count    mean    sd
##   <fct>                                        <int>   <dbl> <dbl>
## 1 At diagnosis prenatal                           22 NaN        NA
## 2 At diagnosis postnatal                           1 NaN        NA
## 3 Post-decision prenatal (Survived)               12 NaN        NA
## 4 Post-decision postnatal (Survived)               1 NaN        NA
## 5 Post-decison prenatal (Did not survive)         10   2.938    NA
## 6 3-month follow up prenatal (Survived)           11 NaN        NA
## 7 3-month follow up postnatal (Survived)           1 NaN        NA
## 8 3-month follow up prenatal (Did not survive)    11 NaN        NA

Decision quality values scale questions. I need to figure these out.

##            vars n mean   sd median trimmed  mad min max range skew kurtosis  se
## v_littlepd    1 2  1.0 0.00    1.0     1.0 0.00   1   1     0  NaN      NaN 0.0
## v_anytreat    2 2  1.0 0.00    1.0     1.0 0.00   1   1     0  NaN      NaN 0.0
## v_avoidphy    3 2  3.5 3.54    3.5     3.5 3.71   1   6     5    0    -2.75 2.5
## v_avoidmen    4 2  3.5 3.54    3.5     3.5 3.71   1   6     5    0    -2.75 2.5
## v_avoidtre    5 2  5.0 1.41    5.0     5.0 1.48   4   6     2    0    -2.75 1.0
## v_everytre    6 2  1.0 0.00    1.0     1.0 0.00   1   1     0  NaN      NaN 0.0
## # A tibble: 1 x 3
## # Groups:   redcap_event_name1 [1]
##   redcap_event_name1                      v_littlepd     n
##   <fct>                                        <dbl> <int>
## 1 Post-decison prenatal (Did not survive)          1     2
## Complete? 
##  [1] NA  2 NA NA  0 NA NA  0 NA NA NA NA NA  0 NA NA  0 NA NA NA  0 NA NA NA NA
## [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA  0 NA NA  0 NA NA NA
## [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA  0 NA NA  0 NA
## `summarise()` ungrouping output (override with `.groups` argument)
## # A tibble: 8 x 4
##   redcap_event_name1                           count  mean      sd
##   <fct>                                        <int> <dbl>   <dbl>
## 1 At diagnosis prenatal                           22 NaN   NA     
## 2 At diagnosis postnatal                           1 NaN   NA     
## 3 Post-decision prenatal (Survived)               12 NaN   NA     
## 4 Post-decision postnatal (Survived)               1 NaN   NA     
## 5 Post-decison prenatal (Did not survive)         10   2.5  0.9428
## 6 3-month follow up prenatal (Survived)           11 NaN   NA     
## 7 3-month follow up postnatal (Survived)           1 NaN   NA     
## 8 3-month follow up prenatal (Did not survive)    11 NaN   NA

Who died questions. I need to figure these out.

## # A tibble: 11 x 3
## # Groups:   redcap_event_name1 [8]
##    redcap_event_name1                           Decision       n
##    <fct>                                        <chr>      <int>
##  1 At diagnosis prenatal                        <NA>          22
##  2 At diagnosis postnatal                       <NA>           1
##  3 Post-decision prenatal (Survived)            Surgery       12
##  4 Post-decision postnatal (Survived)           Surgery        1
##  5 Post-decison prenatal (Did not survive)      Palliative     6
##  6 Post-decison prenatal (Did not survive)      Surgery        3
##  7 Post-decison prenatal (Did not survive)      <NA>           1
##  8 3-month follow up prenatal (Survived)        Surgery       11
##  9 3-month follow up postnatal (Survived)       Surgery        1
## 10 3-month follow up prenatal (Did not survive) Palliative     6
## 11 3-month follow up prenatal (Did not survive) Surgery        5
## # A tibble: 6 x 3
## # Groups:   redcap_event_name1 [4]
##   redcap_event_name1                           Decision       n
##   <fct>                                        <chr>      <int>
## 1 Post-decision prenatal (Survived)            Surgery       12
## 2 Post-decison prenatal (Did not survive)      Palliative     6
## 3 Post-decison prenatal (Did not survive)      Surgery        3
## 4 3-month follow up prenatal (Survived)        Surgery       11
## 5 3-month follow up prenatal (Did not survive) Palliative     6
## 6 3-month follow up prenatal (Did not survive) Surgery        5