# STRAEQ-2 120 items scale
gs4_deauth() # indicate there is no need for a token.
items_120 <- read_sheet("https://docs.google.com/spreadsheets/d/1nEfuMVtYh5kclsDS1qxKsbMRiIw-libDEp7epfjZDq0/edit#gid=0")
DT::datatable(items_120)
Ratings distribution of the full list of items
General ratings distribution
pallete <- c("#85D4E3", "#F4B5BD", "#9C964A", "#C94A7D", "#CDC08C", "#FAD77B", "#7294D4", "#DC863B", "#972D15")
all_exp_plot <- df_tidy %>%
ggplot(aes(rating, fill = expert)) +
geom_bar() +
scale_fill_manual(values = pallete)
all_exp_plot

Expert’s ratings distribution
e1 <- df %>%
ggplot(aes(adeyemi)) +
geom_bar(fill = "#85D4E3")
e2 <- df %>%
ggplot(aes(daniela)) +
geom_bar(fill = "#F4B5BD")
e3 <- df %>%
ggplot(aes(hans)) +
geom_bar(fill = "#9C964A")
e4 <- df %>%
ggplot(aes(mattie)) +
geom_bar(fill = "#C94A7D")
e5 <- df %>%
ggplot(aes(olivier)) +
geom_bar(fill = "#CDC08C")
e6 <- df %>%
ggplot(aes(qinglan)) +
geom_bar(fill = "#FAD77B")
e7 <- df %>%
ggplot(aes(rodrigo)) +
geom_bar(fill = "#7294D4")
e8 <- df %>%
ggplot(aes(siegwart)) +
geom_bar(fill = "#DC863B")
e9 <- df %>%
ggplot(aes(soufian)) +
geom_bar(fill = "#972D15")
plot_grid(e1, e2, e3, e4, e5, e6, e7, e8, e9)

Expert’s ratings distribution per subscales
# for face grid labs
subscale.labs <- c("T1", "T2", "T3", "T4", "R1", "R2", "R3", "R4", "F1", "F2", "F3", "F4")
names(subscale.labs) <- c("temp_sens","temp_soli","temp_desi", "temp_conf", "risk_sens", "risk_soli", "risk_desi", "risk_conf", "food_sens", "food_soli", "food_desi", "food_conf")
expert_plot <- df_tidy %>%
ggplot(aes(rating, fill = expert, show.legend = FALSE)) +
geom_bar(show.legend = FALSE) +
facet_grid(expert ~ subscale, labeller = labeller(subscale = subscale.labs)) +
scale_fill_manual(values = pallete)
expert_plot

Full list of items per dimension and subscale
Temperature regulation dimension
Temperature: sensitivity subscale
temp_sens <- df %>%
filter(grepl('temp_sens', subscale)) %>% #select rows "temp_sens" in the subscale column
arrange(sd) %>%
arrange(desc(mean)) %>%
select(item, mean, sd, country)
DT::datatable(temp_sens)
Temperature: solitary subscale
temp_soli <- df %>%
filter(grepl('temp_soli', subscale)) %>%
arrange(sd) %>%
arrange(desc(mean)) %>%
select(item, mean, sd, country)
DT::datatable(temp_soli)
Temperature: desire to outsource with others subscale
temp_desi <- df %>%
filter(grepl('temp_desi', subscale)) %>%
arrange(sd) %>%
arrange(desc(mean)) %>%
select(item, mean, sd, country)
DT::datatable(temp_desi)
Temperature: confidence in others subscale
temp_conf <- df %>%
filter(grepl('temp_conf', subscale)) %>%
arrange(sd) %>%
arrange(desc(mean)) %>%
select(item, mean, sd, country)
DT::datatable(temp_conf)
Risk avoidance dimension
Risk: sensitivity subscale
risk_sens <- df %>%
filter(grepl('risk_sens', subscale)) %>%
arrange(sd) %>%
arrange(desc(mean)) %>%
select(item, mean, sd, country)
DT::datatable(risk_sens)
Risk: solitary subscale
risk_soli <- df %>%
filter(grepl('risk_soli', subscale)) %>%
arrange(sd) %>%
arrange(desc(mean)) %>%
select(item, mean, sd, country)
DT::datatable(risk_soli)
Risk: desire to outsource with others subscale
risk_desi <- df %>%
filter(grepl('risk_desi', subscale)) %>%
arrange(sd) %>%
arrange(desc(mean)) %>%
select(item, mean, sd, country)
DT::datatable(risk_desi)
Risk: confidence in others subscale
risk_conf <- df %>%
filter(grepl('risk_conf', subscale)) %>%
arrange(sd) %>%
arrange(desc(mean)) %>%
select(item, mean, sd, country)
DT::datatable(risk_conf)
Food intake dimension
Food: sensitivity subscale
food_sens <- df %>%
filter(grepl('food_sens', subscale)) %>%
arrange(sd) %>%
arrange(desc(mean)) %>%
select(item, mean, sd, country)
DT::datatable(food_sens)
Food: solitary subscale
food_soli <- df %>%
filter(grepl('food_soli', subscale)) %>%
arrange(sd) %>%
arrange(desc(mean)) %>%
select(item, mean, sd, country)
DT::datatable(food_soli)
Food: desire to outsource with others subscale
food_desi <- df %>%
filter(grepl('food_desi', subscale)) %>%
arrange(sd) %>%
arrange(desc(mean)) %>%
select(item, mean, sd, country)
DT::datatable(food_desi)
Food: confidence in others subscale
food_conf <- df %>%
filter(grepl('food_conf', subscale)) %>%
arrange(sd) %>%
arrange(desc(mean)) %>%
select(item, mean, sd, country)
DT::datatable(food_conf)
World map of the 120 selected items
# import the world.cities data frame from 'maps' in order to have GPS positions of the countries
data(world.cities)
# remane some country to match the world.cities data base
items_120$country[items_120$country == "United Kingdom"] <- "UK"
items_120$country[items_120$country == "United States"] <- "USA"
items_120$country[items_120$country == "Serbia"] <- "Serbia and Montenegro"
# merge the desired cols from that the world.cities data frame with mine by country = add lat and lng
items_120 <- world.cities %>%
filter(capital == 1) %>%
dplyr::select(country = country.etc, lat, lng = long) %>%
left_join(items_120, ., by = "country")
# identify the number of items per country, this is needed to vary the size of the dots in the map
df_country_count <- items_120 %>%
group_by(country) %>%
summarise(n()) %>%
rename(n = "n()")
# create the data frame to generate the map
items_120 <- left_join(items_120, df_country_count)
# create the map
m <- leaflet(items_120) %>% addTiles() %>%
addCircles(lng = ~lng, lat = ~lat, weight = 1,
radius = ~ log(n + 5) * 100000, popup = ~paste(country, ":", item, "(", subscale, ")"),
stroke = T, opacity = 1, fill = T, color = "#a500a5", fillOpacity = 0.09)
# print the map
m