Perform the following Taylor Series Expansions:

1. \(f(x)=\frac { 1 }{ (1-x) }\)

\(\frac { 1 }{ (1-x) }\) is equivalent to \({ 1\cdot (1-x) }^{ -1 }\)

Taking the first derivative we get: \({ -(1-x) }^{ -2 }\cdot (-1)=\frac { 1 }{ { (1-x) }^{ 2 } }\)

The second derivative is: \({ -2(1-x) }^{ -3 }\cdot (-1)=\frac { 2 }{ { (1-x) }^{ 3 } }\)

The third derivative is: \({ -3\cdot 2\cdot { (1-x) }^{ -4 } }\cdot (-1)=\frac { 6 }{ { (1-x) }^{ 4 } }\)

The fourth derivative is: \({ -4\cdot 3\cdot 2\cdot { (1-x) }^{ -5 } }\cdot (-1)=\frac { 24 }{ { (1-x) }^{ 5 } }\)

Now, evaluating the above derivatives at \(x=0\), we get:

\({ f(0)=\frac { 1 }{ 1-0 } }=1=0!\)

\({ f'(0)=\frac { 1 }{ { (1-0) }^{ 2 } } }=1=1!\)

\({ f''(0)=\frac { 2 }{ { (1-0) }^{ 3 } } }=2=2!\)

\({ f'''(0)=\frac { 6 }{ { (1-0) }^{ 4 } } }=6=3!\)

\({ f''''(0)=\frac { 24 }{ { (1-0) }^{ 5 } } }=24=4!\)

So:

\(1+\frac { 1 }{ 1! } x+\frac { 2 }{ 2! } { x }^{ 2 }+\frac { 6 }{ 3! } { x }^{ 3 }+\frac { 24 }{ 4! } { x }^{ 4 }+...\)

\(=1+x+{ x }^{ 2 }+{ x }^{ 3 }+{ x }^{ 4 }...\)

\(=\sum _{ n=0 }^{ \infty }{ \frac { { f }^{ (n) }(0) }{ n! } (x{ ) }^{ n } }\)

Since the above is a geometric series, it converges when \(|x|<1\)

2. \(f(x)={ e }^{ x }\)

Since the derivative of \({ e }^{ x }\) is always just \({ e }^{ x }\), our first through fourth derivatives will all result in \({ e }^{ x }\).

Again, since all the derivatives are the same, we’ll solve for where \(x=0\) and the result will be the same for all four derivatives:

\(f(0)={ e }^{ 0 }=1\)

Which leads us to:

\({ e }^{ x }=\sum _{ n=0 }^{ \infty }{ \frac { { f }^{ (n) }(0) }{ n! } (x{ ) }^{ n } }\)

\(=1+\frac { 1 }{ 1! } x+\frac { 1 }{ 2! } { x }^{ 2 }+\frac { 1 }{ 3! } { x }^{ 3 }+\frac { 1 }{ 4! } { x }^{ 4 }+...\)

\(=\sum _{ n=0 }^{ \infty }{ \frac { { x }^{ n } }{ n! } }\)

3. \(f(x)=ln(1+x)\)

We know that the derivative of \(ln\) is \(\frac { 1 }{ x }\). So, taking the first derivative, we get:

\({ (1+x) }^{ -1 }\)

The second derivative would be:

\({ -1\cdot (1+x) }^{ -2 }\)

The third derivative would be:

\({ 2\cdot (1+x) }^{ -3 }\)

Finally, the fourth derivative would be:

\({ -3\cdot 2\cdot (1+x) }^{ -4 }\)

Next, we’ll evaluate each of the above derivatives at \(x=0\):

\(f(0)=ln(1+0)=ln(1)=0\)

\(f'(0)=(1+0{ ) }^{ -1 }=1\)

\(f''(0)=-1\cdot (1+0{ ) }^{ -2 }=-1\)

\(f'''(0)=2\cdot (1+0{ ) }^{ -3 }=2\)

\(f''''(0)=-3\cdot 2\cdot (1+0{ ) }^{ -4 }=-6\)

This leads us to:

\(ln(1+x)=\sum _{ n=0 }^{ \infty }{ \frac { { f }^{ (n) }(0) }{ n! } (x{ ) }^{ n } }\)

\(=0+\sum _{ n=1 }^{ \infty }{ \frac { { (-1) }^{ (n+1) }(n-1)! }{ n! } (x{ ) }^{ n } }\)

\(=\sum _{ n=1 }^{ \infty }{ \frac { { (-1) }^{ (n+1) }({ x }^{ n }) }{ n } }\)